王秋菊,劉 峰,常本超,韓東來(lái),隋玉剛,楊興玉,陳海龍,新家憲,劉艷霞,焦 峰
(1. 黑龍江省農(nóng)業(yè)科學(xué)院土壤肥料與資源環(huán)境研究所,哈爾濱 150086;2. 黑龍江省農(nóng)業(yè)科學(xué)院科研處,哈爾濱 150086;3. 黑龍江省農(nóng)墾建三江管理局八五九農(nóng)場(chǎng),黑龍江 156326;4. 日本 NICH研究所,日本札幌 079-01;5. 黑龍江省農(nóng)業(yè)科學(xué)院遙感技術(shù)中心,哈爾濱 150086;6. 黑龍江八一農(nóng)墾大學(xué),大慶 163319)
三江平原低濕地水田土壤理化特性及暗管排水效果
王秋菊1,劉 峰2,常本超1,韓東來(lái)3,隋玉剛3,楊興玉3,陳海龍3,新家憲4,劉艷霞5,焦 峰6※
(1. 黑龍江省農(nóng)業(yè)科學(xué)院土壤肥料與資源環(huán)境研究所,哈爾濱 150086;2. 黑龍江省農(nóng)業(yè)科學(xué)院科研處,哈爾濱 150086;3. 黑龍江省農(nóng)墾建三江管理局八五九農(nóng)場(chǎng),黑龍江 156326;4. 日本 NICH研究所,日本札幌 079-01;5. 黑龍江省農(nóng)業(yè)科學(xué)院遙感技術(shù)中心,哈爾濱 150086;6. 黑龍江八一農(nóng)墾大學(xué),大慶 163319)
低濕土壤漬澇問(wèn)題是限制農(nóng)業(yè)生產(chǎn)的瓶頸問(wèn)題,為改良低濕土壤漬澇問(wèn)題,該文研究低濕地水田草甸沼澤土土壤特性,并探討利用暗管排水進(jìn)行低濕地排水及種植水稻的效果。結(jié)果表明,草甸沼澤土土壤質(zhì)地黏重、各層土壤黏粒質(zhì)量分?jǐn)?shù)在40%以上;有效孔隙低,在6.40%~7.81%之間,通氣、透水性差,母質(zhì)層幾乎不透氣、透水,土體容氣度為5.55%~16.08%;含水率高,自然狀態(tài)達(dá)到40%以上;土壤容重低,耕層為0.93 g/cm3,母質(zhì)層1.30 g/cm3;硬度低,液性指數(shù)在0.38~0.61之間,整體處于可塑狀態(tài),機(jī)械承載力差;草甸沼澤土上設(shè)置暗管可以改善土壤的透水性,隨距暗管距離不同,土壤排水效果有差異,距離暗管越近,土壤排水效果越好,水分降低的越明顯;同樣排水曬田后,暗管處理土壤表層狀態(tài)呈干裂狀態(tài),對(duì)照(無(wú)暗管排水區(qū))則仍呈濕潤(rùn)狀態(tài);從水稻產(chǎn)量看,有暗管的處理水稻產(chǎn)量比無(wú)暗管處理增產(chǎn)8.06%。研究可為低濕地水田合理利用及改良提供依據(jù)。
土壤;理化特性;排水;暗管;產(chǎn)量;三江平原;水田
三江平原位于黑龍江省東部,是黑龍江、松花江和烏蘇里江匯流沖積形成的低平原區(qū),總面積10.89萬(wàn)km2,耕地面積366.77萬(wàn)hm2,其中低濕耕地占63.7%[1]。平原區(qū)海拔高度為65~80 m,地勢(shì)低洼,土質(zhì)黏重,降水集中,易發(fā)生澇災(zāi),導(dǎo)致大田作物大幅度減產(chǎn);收獲季節(jié)土壤過(guò)濕,機(jī)械不能作業(yè),經(jīng)常發(fā)生豐產(chǎn)不豐收現(xiàn)象[2]。三江平原開(kāi)發(fā)初期,首先是通過(guò)建立大型排水渠道解決了地表水問(wèn)題;其次是通過(guò)開(kāi)展深松、超深松和心土混層等技術(shù)打破滯水層,在排除“壤中水”方面取得了一定效果[3-4]。但在降雨集中的作物生長(zhǎng)季節(jié),洪澇災(zāi)害仍頻繁困擾農(nóng)業(yè)生產(chǎn)。為徹底解決農(nóng)田澇害,“七五”期間黑龍江省提出“以稻治澇”的低濕地治理對(duì)策,通過(guò)推進(jìn)“旱改水”大力發(fā)展水稻,不僅糧食產(chǎn)量大增,也為改善國(guó)家口糧構(gòu)成做出重要貢獻(xiàn)[5-6]。隨種稻時(shí)間推移,低濕地水田土壤的問(wèn)題日漸凸顯。這類(lèi)土壤存在的主要問(wèn)題[7-8]:1)土壤長(zhǎng)期受地面水和地下潛水浸漬,氧化還原電位低,易產(chǎn)生硫化氫等有毒物質(zhì)危害根系、影響水稻生長(zhǎng)發(fā)育;2)由于土壤有機(jī)質(zhì)高,其質(zhì)量分?jǐn)?shù)多在5%以上,生育后期土壤氮素供給過(guò)剩,易造成倒伏減產(chǎn)、降低稻米食味;3)三江平原水稻以井水灌溉為主,井水升溫和節(jié)水灌溉技術(shù)備受重視,由于缺乏有效的土壤排水技術(shù),在非灌水期土壤水分降低緩慢,生育期間影響曬田效果;成熟后不能及時(shí)進(jìn)行機(jī)械收獲,甚至發(fā)生霉變、雪捂等次生災(zāi)害[9-10];也影響機(jī)械翻耕整地。本文分析三江平原低濕地水田土壤特性,針對(duì)低濕土壤存在的問(wèn)題,圍繞低濕地水田排水,初步探討暗管排水的效果,為低濕田的利用和改良提供依據(jù)。
1.1 供試土壤
試驗(yàn)地點(diǎn)在黑龍江省農(nóng)墾建三江管理局 859農(nóng)場(chǎng)第29 作業(yè)區(qū)(47°30′N(xiāo)、134°20′E,海拔高度為 65.6 m),年降雨量550~600 mm,有效積溫2 200 ℃,供試土壤為草甸沼澤土型水田土壤,種植水稻年限15 a。草甸沼澤土剖面發(fā)育明顯(圖1):第1層為黑土腐殖質(zhì)層,富含有機(jī)質(zhì),厚度約20 cm;其下第2層為黃黏土母質(zhì)層,厚度約10 cm,由于氧化鐵聚集,土色明亮;第3層為灰色潛育層,土壤通體軟黏,無(wú)明顯的犁底層。草甸沼澤土化學(xué)性質(zhì)如表 1所示,供試土壤土腐殖質(zhì)層薄,但有機(jī)質(zhì)含量高,高于黑龍江省一般耕地土壤耕層的有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)(30 g/kg)[11];母質(zhì)層土壤養(yǎng)分含量低,尤其是有機(jī)質(zhì)、有效磷、速效鉀含量明顯低于腐殖質(zhì)層。
圖1 典型草甸沼澤土剖面Fig.1 Profile of meadow marsh soil
表1 供試土壤化學(xué)性質(zhì)Table 1 Chemical characteristic of tested soil
1.2 暗管鋪設(shè)方法
在試驗(yàn)區(qū)鋪設(shè)暗管,暗管區(qū)長(zhǎng)80 m、寬50 m。暗管間距10 m,平均埋深70 cm,坡降為1/1 000(圖2a),截面如圖2b,田間排列如圖2c所示。暗管為直徑25 cm的聚氯乙烯打孔管。鋪設(shè)方法:先用小型鉤機(jī)挖寬30 cm、深60~80 cm明溝,并將耕層土壤和下層土壤分別放置2側(cè),以便分層回填;用細(xì)沙調(diào)整溝底坡降后,將包好過(guò)濾紗網(wǎng)的聚氯乙烯管平放到溝底并連接首尾,在管上鋪厚30~40 cm稻秸和稻殼作為過(guò)濾材料(圖2d),踏實(shí)后回填分層土壤;在暗管排水出口與區(qū)外明渠接連,并設(shè)有開(kāi)關(guān)閥門(mén)。
1.3 試驗(yàn)設(shè)計(jì)
試驗(yàn)于2016年春季開(kāi)始,設(shè)有暗管區(qū)和無(wú)暗管區(qū)(對(duì)照),大區(qū)對(duì)比,每區(qū)長(zhǎng)80 m,寬50 m,面積400 m2。試驗(yàn)區(qū)灌水管理一致,采用淺-濕-干間歇灌溉模式:淺水層階段保持土壤表面3~5 cm水層,逐漸達(dá)到濕潤(rùn)狀態(tài),即表層無(wú)明水,腳窩有水的狀態(tài),當(dāng)達(dá)到地面干燥、腳窩濕潤(rùn)狀態(tài)再次灌水,水層深度3~5 cm。在水稻分蘗末期曬田和成熟初期打開(kāi)暗管閥門(mén)排水,其余時(shí)期保持水層階段關(guān)閉閥門(mén)。水稻于2016年4月10日播種,5月20日移栽到試驗(yàn)區(qū),9月30日收獲。人工插秧,插秧規(guī)格行距30 cm,株距10 cm,每穴插3株,每公頃插秧密度為水稻品種龍粳 31。試驗(yàn)區(qū)施肥一致,N、P2O5、K2O肥施用量分別為120、60、60 kg/hm2。其中N按照基肥、返青肥、穗肥比例 4∶3∶3施肥;鉀肥按基肥、穗肥比例3∶2施肥;磷肥作為基肥一次性施入。試驗(yàn)區(qū)10 a平均降水量580 mm,有效積溫2 210 ℃[12]。
圖2 暗管田間設(shè)計(jì)圖Fig.2 Design diagram of subsurface pipe in field
1.4 調(diào)查項(xiàng)目及方法
土樣取樣方法:收獲后選取代表性點(diǎn)挖 60 cm×60 cm×100 cm土壤剖面,用100 mL的環(huán)刀取原狀土樣分別按照10~15、20~25、40~45 cm深度取樣,每層取3次平行樣;取原狀土?xí)r同時(shí)取土壤化學(xué)樣品,用于化學(xué)指標(biāo)測(cè)定的土樣取樣層次為 0~15、>15~30、>30~50 cm,其中0~15 cm耕層按S形多點(diǎn)取樣,混合后按四分法留500 g備用。
土壤物理性質(zhì)測(cè)定方法:土壤顆粒組成采用MS-2000激光粒度儀(Malvern Instruments Limited Enigma Business Park, APA2000)測(cè)定,并參照楊金玲等[13]校正系數(shù)進(jìn)行校正;土壤三相組成采用DIK-1150三相測(cè)定儀(大起理化工業(yè)株式會(huì)社,±1.0%)測(cè)定,容氣度為氣相占液相與氣相之和的百分比,%;土壤含水率采用烘干法測(cè)定(105 ℃);土壤飽和導(dǎo)水率采用 DIK-4050透水性測(cè)定儀(大起理化工業(yè)株式會(huì)社)測(cè)定;土壤通氣系數(shù)采用DIK-5001通氣性測(cè)定儀(大起理化工業(yè)株式會(huì)社)測(cè)定;土壤硬度采用DIK-5521硬度計(jì)(大起理化工業(yè)株式會(huì)社,5 MPa)田間原位測(cè)定;土壤液限測(cè)定采用DIK-5700液限測(cè)定器(大起理化工業(yè)株式會(huì)社)測(cè)定。土壤塑限測(cè)定是在液限測(cè)定基礎(chǔ)上采用搓條法,然后根據(jù)測(cè)定土壤條狀斷裂時(shí)的水分含量來(lái)測(cè)定[14];土壤水分特征曲線分別采用砂柱法、壓力膜法和離心機(jī)法測(cè)定不同壓力下土壤含水量,繪制土壤水分特征曲線,計(jì)算土壤孔隙組成;水中沉淀容積采用參照《土壤物理測(cè)定方法》測(cè)定[15]。
式中W0為自然土壤含水率,%;W1為土壤液限含水率,%;W2為土壤塑限含水率,%。
化學(xué)指標(biāo)測(cè)定方法:土壤pH值采用美國(guó)產(chǎn)原位IQ150土壤pH計(jì)(Spectrum Technologies, Inc)測(cè)定,測(cè)定位置分別為土表以下5、15、25 cm,每層測(cè)5點(diǎn),取平均值;堿解氮采用擴(kuò)散吸收法測(cè)定;速效磷含量測(cè)定采用碳酸氫鈉提取法測(cè)定;速效鉀含量測(cè)定采用鹽酸浸提-AAS法測(cè)定;土壤有機(jī)質(zhì)采用重鉻酸鉀外加熱法測(cè)定[16]。
水稻產(chǎn)量測(cè)定方法:水稻成熟后,采用久保田牌水稻聯(lián)合收割機(jī)(日本久保田株式會(huì)社)全區(qū)直接收獲測(cè)產(chǎn),由于機(jī)械直接收獲時(shí)水稻籽實(shí)水分質(zhì)量分?jǐn)?shù)較高,水稻標(biāo)準(zhǔn)產(chǎn)量按照水稻籽實(shí)水分質(zhì)量分?jǐn)?shù)為 14.5%時(shí)的質(zhì)量計(jì)算得出。
數(shù)據(jù)采用Microsoft Excel及DPS 6.85進(jìn)行數(shù)據(jù)處理。
2.1 低濕地水田土壤物理性質(zhì)
2.1.1 顆粒和孔隙組成
三江平原低濕地多為沼澤化土壤,成土母質(zhì)為第四紀(jì)河湖沉積物,土質(zhì)黏重。由表2可知,各土層黏粒質(zhì)量分?jǐn)?shù)均超過(guò)40%,按照國(guó)際土壤分類(lèi)標(biāo)準(zhǔn)[17]劃分各層均為黏土。0~15 cm耕層土壤總孔隙度為58.68%,高于東北地區(qū)其他各類(lèi)相同層次土壤[11]。其中<0.000 2 mm的微小孔隙比例最大,高達(dá)44.94%;>15~30、>30~50 cm母質(zhì)層總孔隙度分別為50.66%和46.08%,微小孔隙為41.03%、36.77%。當(dāng)量直徑>0.05 mm的大孔隙僅為2.49%~5.92%,有效孔隙低,在6.40%~7.81%之間,土壤內(nèi)排水能力十分弱。
表2 土壤物理特性Table 2 Soil physical property
2.1.2 通氣、透水、持水和可塑性
土壤通氣性與透水性測(cè)定結(jié)果高度一致(表 2):耕層0~15 cm土壤通氣透水性比母質(zhì)層高,母質(zhì)層幾乎不通氣。土壤三相組成,耕層有機(jī)質(zhì)含量高,固相率為32.77%,母質(zhì)層接近 60%。土壤整體容氣度相對(duì)較低,在5.55%~16.08%之間,表明土壤處于過(guò)濕狀態(tài)。
由土壤水分特征曲線(圖3a)知,由于土質(zhì)黏重,土壤持水能力極強(qiáng),剖面從上至下呈降低趨勢(shì)。從土壤剖面硬度變化曲線(圖3b)看,土壤硬度在700 kPa以下,土體軟,承載力低,缺少承載作業(yè)機(jī)械的堅(jiān)硬土層。特別是0~20 cm土層,土壤硬度接近于0,易陷車(chē)。從表2土壤液性指數(shù)看出,各土層液性指數(shù)為 0.38~0.61,為可塑狀態(tài),不宜機(jī)械作業(yè),易發(fā)生陷車(chē),影響機(jī)械作業(yè)效率。
圖3 土壤水分特征曲線及硬度Fig.3 Soil water characteristic curve and soil hardness
2.2 暗管排水效果分析
2.2.1 對(duì)土壤水分影響
為明確暗管的排水效果,分別在分蘗末期排水曬田后和收獲前觀測(cè)田面水分狀態(tài)。圖4a是暗管區(qū)曬田5 d后地表狀態(tài),田面干燥呈龜裂狀;圖4b是對(duì)照區(qū),田面有積水。水稻成熟期再次觀測(cè)結(jié)果,暗管區(qū)(圖 4c)水分已經(jīng)排出,田面干燥;對(duì)照區(qū)田面雖無(wú)積水,但泥濘陷腳(圖4d)。
圖4 暗管區(qū)(SP)及對(duì)照無(wú)暗管區(qū)(CK)田面狀況Fig.4 Soil surface condition for subsurface pipe and CK plots without subsurface pipe
圖 5是收獲之前土壤含水率測(cè)定結(jié)果。各個(gè)土層含水率,暗管區(qū)均低于對(duì)照區(qū);距暗管5 m處(兩暗管中間位置)土壤含水率也低于對(duì)照,表明 1條暗管的排水范圍超過(guò)10 m。暗管區(qū)相同土層含水率比較,暗管正上方所在位置(0 m)最低,并且隨距暗管水平距離增加而呈增加趨勢(shì)。
圖5 距暗管不同距離不同土層土壤含水率Fig.5 Soil water content of different depths at different distances away from subsurface pipe
2.2.2 對(duì)水稻產(chǎn)量影響
暗管區(qū)和對(duì)照區(qū)全區(qū)直接收獲測(cè)產(chǎn),暗管處理水稻產(chǎn)量比對(duì)照增產(chǎn)8.06%(表3)。
表3 暗管排水對(duì)水稻產(chǎn)量影響Table 3 Effect of subsurface pipe drainage on rice yield
黑龍江省三江平原由于土質(zhì)黏重,排水性差,徑流排泄不暢等,種植旱田作物時(shí)土壤水分過(guò)多是它的主要特點(diǎn)[18]。改為水田可以充分發(fā)揮土壤自身的保水性能,趨利避害。但土質(zhì)黏重也影響土壤氣體交換,不利于水稻生長(zhǎng)發(fā)育[19-21],同時(shí)也影響土壤微生物區(qū)系組成和微生物活性[22-24];長(zhǎng)期滯水會(huì)導(dǎo)致土壤氧化還原電位降低,產(chǎn)生的有毒物質(zhì)危害水稻生育。另一方面,水田的犁底層是承載機(jī)械行走的基礎(chǔ)[25-26]。供試土壤硬度小于10 kg/cm2,表層硬度接近0,無(wú)犁底層,造成機(jī)械作業(yè)困難,限制了農(nóng)業(yè)的現(xiàn)代化發(fā)展。低濕地土壤有機(jī)質(zhì)豐富,潛在肥力高,但養(yǎng)分釋放緩慢。因此改善土壤排水性對(duì)于活化土壤養(yǎng)分有重要意義[27-28]。隨氣溫升高,養(yǎng)分釋放速度逐漸增加,在水稻生育后期會(huì)出現(xiàn)土壤供氮過(guò)?,F(xiàn)象,不僅造成倒伏,還會(huì)導(dǎo)致稻米蛋白積累過(guò)多影響食味[29]。暗管試驗(yàn)結(jié)果表明,距離暗管越遠(yuǎn)土壤含水率越高,說(shuō)明暗管排水能力有局限性。本試驗(yàn)所采用暗渠間隔、坡降等技術(shù)參數(shù)是參照日本標(biāo)準(zhǔn)[30]設(shè)計(jì)的,初步試驗(yàn)證明該標(biāo)準(zhǔn)切實(shí)可行。今后要進(jìn)一步研究確定合理的暗渠間隔及其與深松、鼠洞、以及其他技術(shù)組合的綜合排水效果,為進(jìn)一步降低施工成本,提高排水效果提供科學(xué)依據(jù),也為低濕地改良提供有效的應(yīng)用技術(shù)。
通過(guò)暗管排水試驗(yàn)初步得到以下結(jié)論:
1)供試的草甸沼澤土質(zhì)地黏重,土壤持水能力極強(qiáng),通氣孔隙少,無(wú)效孔隙高;土壤通氣、透水性差,母質(zhì)層幾乎不透氣、透水;從水分特征曲線看,土壤自然含水率高達(dá) 40%以上,土體容氣度僅 5.55%~16.08%;液性指數(shù)在0.38~0.61,處于可塑狀態(tài),土壤硬度低,機(jī)械承載力差。
2)供試土壤耕層有機(jī)質(zhì)豐富,潛在肥力高,下層瘠薄。
3)暗管提高土壤排水能力的效果明顯,特別是在提高曬田效果方面效果顯著。調(diào)查結(jié)果,暗管區(qū)土壤含水率低于對(duì)照區(qū),距離暗管越近土壤含水率越低,對(duì)于提高收獲機(jī)械作業(yè)效率有重要意義。
4)產(chǎn)量實(shí)測(cè)結(jié)果表明暗管區(qū)比對(duì)照增產(chǎn)8.06%。
本研究對(duì)低濕地暗管排水進(jìn)行初步探索,對(duì)暗管排水后效還需進(jìn)一步調(diào)查和研究。
[1] 姜秋香,付強(qiáng),王子龍,等. 三江平原水土資源空間匹配格局[J]. 自然資源學(xué)報(bào),2011,26(2):270-278.Jiang Qiuxiang, Fu Qiang, Wang Zilong, et al. Spatial matching patterns of land and water resources in Sanjiang Plain[J]. Journal of Natural Resources, 2011, 26(2): 270-278. (in Chinese with English abstract)
[2] 趙魁義,婁彥景,胡金明,等. 三江平原濕地生態(tài)環(huán)境受威脅現(xiàn)狀及其保育研究[J]. 自然資源學(xué)報(bào),2008, 23(5):790-796.Zhao Kuiyi, Lou Yanjing, Hu Jinming, et al. A study of current status and conservation of threatened wetland ecological environment in Sanjiang Plain[J]. Journal of Natural Resources, 2008, 23(5): 790-796. (in Chinese with English abstract)
[3] 劉彥隨,甘紅,張富剛. 中國(guó)東北地區(qū)農(nóng)業(yè)水土資源匹配格局[J]. 地理學(xué)報(bào),2006,61(8):847-854.Liu Yansui, Gan Hong, Zhang Fugang. Analysis of the matching patterns of land and water resources in Northeast China[J]. Acta Geographica Sinica, 2006, 61(8): 847-854.(in Chinese with English abstract)
[4] 孟慶英,張春峰,賈會(huì)彬,等. 不同機(jī)械改土方式對(duì)白漿土物理特性及酶活性的影響[J]. 土壤學(xué)報(bào),2016,53(2):552-559.Meng Qingying, Zhang Chunfeng, Jia Huibin, et al. Effects of mechanical soil amelioration method on physical properties of and enzyme activity in Planosol[J]. Acta Pedologica Sinica,2016, 53(2): 552-559. (in Chinese with English abstract)
[5] 張守金,王學(xué)農(nóng),袁斌. “以稻治澇”是近期解決三江平原漬澇的好辦法[J]. 黑龍江水利科技,1988(2):16-17.Zhang Shoujin, Wang Xuenong, Yuan Bin. "Rice for Waterlogging" is the good way to solve the waterlogging of Sanjiang Plain[J]. Heilongjiang Science and Technology of Water Conservancy, 1988(2): 16-17. (in Chinese with English abstract)
[6] 程思順,黃潤(rùn)哲,李芳. 以稻治澇,以稻致富[J]. 黑龍江水利科技,1998(1): 28-30.Cheng Sishun, Huang Runzhe, Li Fang. Using rice to govern waterlogging and to become rich[J]. Heilongjiang Science and Technology of Water Conservancy, 1998(1): 28-30. (in Chinese with English abstract)
[7] 陸建建. 濕地生態(tài)學(xué)[M]. 北京:高等教育出版社,2006.
[8] 夏貴菊,何彤慧,于驥,等. 銀川平原草甸濕地鹽土及其鹽分分布特征[J]. 土壤,2016,48(4):785-792.Xia Guiju, He Tonghui, Yu Ji, et al. Salt profile distributions of meadow wetland in Yinchuan Plain[J]. Soils, 2016, 48(4):785-792. (in Chinese with English abstract)
[9] Oster J D, Frenkel H. The chemistry of the reclamation of sodic soils with gypsum and lime[J]. Soil Science Society of America Journal, 1980, 44(1): 41-45.
[10] Oster J D, Grattan S R. Drainage water reuseI[J]. Irrigation and Drainage Systems, 2002, 16(4): 297-310.
[11] 黑龍江省土地管理局,黑龍江省土壤普查辦公室. 黑龍江土壤[M]. 北京:農(nóng)業(yè)出版社,1992.
[12] 黑龍江省統(tǒng)計(jì)局. 2006-2016黑龍江省統(tǒng)計(jì)年鑒[M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2016.
[13] 楊金玲,張甘霖,李德成,等. 激光法與濕篩-吸管法測(cè)定土壤顆粒組成的轉(zhuǎn)換及質(zhì)地的確定[J]. 土壤學(xué)報(bào),2009,46(5): 772-780.Yang Jinling, Zhang Ganlin, Li Decheng, et al. Relationships of soil particle size distribution between sieve-pipette and laser diffraction methods[J]. Acta Pedologica Sinica, 2009,46(5): 772-780. (in Chinese with English abstract)
[14] 鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2005,30-165.
[15] 翁德衡. 土壤物理性測(cè)定法[M]. 重慶:科學(xué)技術(shù)文獻(xiàn)出版社重慶分社,1979.
[16] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析[M]. 北京:中國(guó)農(nóng)業(yè)科技出版社,1999.
[17] 中國(guó)科學(xué)院南京土壤研究所. 中國(guó)土壤[M]. 北京:科學(xué)出版社,1980.
[18] 何璉. 中國(guó)三江平原[M]. 黑龍江:黑龍江科學(xué)技術(shù)出版社,2000.
[19] 龔子同,張效樸. 我國(guó)水稻土資源特點(diǎn)及低產(chǎn)水稻土的增產(chǎn)潛力[J]. 農(nóng)業(yè)現(xiàn)代化研究,1988(3):33-36.Gong Zitong, Zhang Xiaopu. The characteristics of our country paddy soil resources and potential of low yield paddy soil[J]. Research of Agricultural Modernization, 1988(3): 33-36. (in Chinese with English abstract)
[20] 張琳,張鳳榮,姜廣輝,等. 我國(guó)中低產(chǎn)田改造的糧食增產(chǎn)潛力與糧食安全保障[J]. 農(nóng)業(yè)現(xiàn)代化研究,2005,26(1):22-25.Zhang Lin, Zhang Fengrong, Jiang Guanghui, et al. Potential improvement of medium low yielded farmland and guarantee of food safety in China[J]. Research of Agricultural Modernization, 2005, 26(1): 22-25. (in Chinese with English abstract)
[21] 劉占軍,艾超,徐新朋. 低產(chǎn)水稻土改良與管理研究策略[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(2):509-516.Liu Zhanjun, Ai Chao, Xu Xinming. Research strategy of reclamation and management for low-yield rice paddy soils[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2):509-516. (in Chinese with English abstract)
[22] Boehm M J, Wu T, Stone A G, et al. Cross polarized magicangle spinning13C nuclear magnetic resonance spectroscopic characterization of soil organic matter relative to culturable bacterial species composition and sustained biological control of pythium root rot[J]. Applied and Environmental Microbiology, 1997(63): 162-168.
[23] 湯宏,沈健林,張楊珠,等. 秸稈還田與水分管理對(duì)稻田土壤微生物量碳、氮及溶解性有機(jī)碳、氮的影響[J]. 水土保持學(xué)報(bào),2013,27(1):240-246.Tang Hong, Shen Jianlin, Zhang Yangzhu, et al. Effect of rice straw incorporation and water management on soil microbial biomass carbon, nitrogen and dissolved organic carbon, nitrogen in a rice paddy field[J]. Journal of Soil and Water Conservation, 2013, 27(1): 240-246. (in Chinese with English abstract)
[24] 侯翠翠,宋長(zhǎng)春,李英臣,等. 不同水分條件沼澤濕地土壤輕組有機(jī)碳與微生物活性動(dòng)態(tài)[J]. 中國(guó)環(huán)境科學(xué) 2012,32(1): 113-119.Hou Cuicui, Song Changchun, Li Yingchen, et al. Light fractions of soil organic carbon and microbial activity dynamics in marshes under different water conditions[J].China Environmental Science, 2012, 32(1): 113-119.(in Chinese with English abstract)
[25] 周衛(wèi). 低產(chǎn)水稻土改良與原理[M]. 北京:科學(xué)出版社,2015.
[26] 陳溢,鄭亭,樊高瓊,等. 不同土壤水分條件下拖拉機(jī)行走對(duì)四川丘陵旱地土壤特性及小麥生長(zhǎng)的影響[J]. 水土保持學(xué)報(bào),2013,27(6):147-151.Chen Yi, Zheng Ting, Fan Gaoqiong, et al. Effects of tractor traffic on soil properties and wheat growth in Sichuan Hilly areas under different soil moisture content[J]. Journal of Soil and Water Conservation, 2013, 27(6): 147-151. (in Chinese with English abstract)
[27] 古漢虎,向萬(wàn)勝,李玲.濕地農(nóng)田低產(chǎn)土壤改良利用研究[J].長(zhǎng)江流域資源與環(huán)境,1997(11):334-339.Gu Hanhu, Xiang Wansheng, Li Ling. A study on wetland low-yield soil and its improvement[J]. Resources and Environment in the Yangtze Basin, 1997(11): 334-339. (in Chinese with English abstract)
[28] 李凱,竇森,張慶聯(lián),等. 暗管排水技術(shù)及其在蘇打鹽堿土改良上的應(yīng)用[J]. 吉林農(nóng)業(yè)科學(xué),2012,37(1):41-43.Li Kai, Dou Sen, Zhang Qinglian, et al. Subsurface pipe drainage technology and its application on improvement of soda-saline soil[J]. Journal of Jilin Agricultural Sciences,2012, 37(1): 41-43. (in Chinese with English abstract)
[29] 王秋菊. 黑龍江地區(qū)土壤肥力和積溫對(duì)水稻產(chǎn)量、品質(zhì)影響研究[D]. 沈陽(yáng):沈陽(yáng)農(nóng)業(yè)大學(xué),2012.Wang Qiuju. Effect of Soil Fertility and Temperature on Rice Yield and Quality in Heilongjiang Area[D]. Shenyang:Shenyang Agricultural University, 2012. (in Chinese with English abstract)
[30] 農(nóng)林水産省構(gòu)造改善局整備課監(jiān)修. 暗渠排水の設(shè)計(jì)と施工[M]. 東京:畑地農(nóng)業(yè)振興會(huì),昭和58年.
Soil physiochemical properties and subsurface pipe drainage effect of paddy field in low wetland of Sanjiang plain
Wang Qiuju1, Liu Feng2, Chang Benchao1, Han Donglai3, Sui Yugang3,Yang Xingyu3, Chen Hailong3, Ken Araya4, Liu Yanxia5, Jiao Feng6※
(1.Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Harbin150086,China;2.Management Department of Scientific Research of Heilongjiang Academy of Agricultural Sciences, Harbin150086,China;3.The859Farm of Jiansanjiang Management Bureau,Heilongjiang Province Agricultural Reclamation Administration, Heilongjiang,156326,China; 4.NICH Laboratory, Hokkaido Sapporo079-01,Japan; 5.Remote Sensing Technique Centre, Heilongjiang Academy ofAgricultural Science, Harbin150086,China; 6.Heilongjiang Bayi Agricultural University, Daqing163319,China)
Sanjiang plain is located in the east of Heilongjiang Province. Sanjiang plain is the low plains formed from confluence and alluvial of Heilongjiang, Songhua River and Wusuli River. Problems often occur in low wetlands such as low-lying, clay, concentrated rainfall, flooding, resulting in crop production reduction. In addition, in the harvest season, the soil is too wet, agricultural machinery is difficult to operate in the wet soil. This study investigated the soil physiochemical properties of low farmland and introduced subsurface drainage technique widely used in the Southern China to the field in order to solve the problems above. The study was carried out in Sanjiang 859 Farm in Heilongjiang. The rice was planted for 15 years. The soil organic matter content (58.14 g/kg) in 0-15 cm was higher than the other places (30 g/kg). However, the alkaline N, available P and K were low. In the experimental field, we set up a plot buried with subsurface pipe. The spacing of pipe was 10 m and the buried depth was 70 cm. The slope gradient was 1/1000. The pipe diameter was 25 cm. The experiment started from the spring of 2016. A plot without subsurface pipe was designed with the same size with that with subsurface pipe.The irrigation in both plots was same: shallow period with surface water depth of 3-5 cm and irrigation when the surface was dry. At the end of tillering stage of rice, the surface was dried and at the initial maturing stage the soil was drained. The soil was samples for physiochemical property measurement. The rice yield was determined. The results showed that the soil texture was clay. The clay content was more than 40%, the effective porosity was low (6.40%-7.81%). Soil aeration and water permeability were poor, especially the parent material where was almost airtight and watertight. The soil water content was high, and in the natural state it was more than 40%. The soil bulk density was low and the topsoil was 0.93 g/cm3. The soil hardness was low and the liquid index was 0.38-0.61. The whole soil was in the plastic state, and the mechanical bearing capacity was poor. It was possible to improve the permeability of the soil by setting up the subsurface pipe in the meadow marsh soil. The distance from the subsurface pipe had an effect on the soil drainage effect, and the closer the distance from the subsurface pipe, the better the effect of soil drainage, the more obvious the decrease of water content. In the rice field with subsurface pipe at tillering stage, the soil surface was dry while the control without pipe was still wet. The yield of rice treated with subsurface pipe was 8.06% higher than that without subsurface pipe. This study provides technical support for improving soil condition in the low plains.
soils; physichemical properties; drainage; subsurface pipe; yield; Sanjiang Plain; paddy field
10.11975/j.issn.1002-6819.2017.14.019
S152.7
A
1002-6819(2017)-14-0138-06
王秋菊,劉 峰,常本超,韓東來(lái),隋玉剛,楊興玉,陳海龍,新家憲,劉艷霞,焦 峰. 三江平原低濕地水田土壤理化特性及暗管排水效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(14):138-143.
10.11975/j.issn.1002-6819.2017.14.019 http://www.tcsae.org
Wang Qiuju, Liu Feng, Chang Benchao, Han Donglai, Sui Yugang, Yang Xingyu, Chen Hailong, Ken Araya, Liu Yanxia, Jiao Feng. Soil physiochemical properties and subsurface pipe drainage effect of paddy field in low wetland of Sanjiang plain[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 138-143. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.14.019 http://www.tcsae.org
2017-01-10
2017-06-10
農(nóng)業(yè)部公益性行業(yè)專(zhuān)項(xiàng)(201503118-04);科技支撐計(jì)劃(2015BAD23B05-03);省博士后基金(LBH-Z13189);省自然科學(xué)基金(D2015005);院創(chuàng)新工程(2014JQ03)
王秋菊,黑龍江依蘭人,副研究員,博士,主要從事低產(chǎn)土壤改良研究。哈爾濱 黑龍江省農(nóng)業(yè)科學(xué)院土壤肥料與資源環(huán)境研究所,150086。Email:bqjwang@126.com。
※通信作者:焦 峰,黑龍江省大慶人,教授,博士,主要從事土壤化學(xué)研究。大慶 黑龍江八一農(nóng)墾大學(xué),163319。Email:jiaofeng1980@163.com。