李家冬,王弘
?
重組蛋白正確折疊與修飾的提高策略
李家冬,王弘
華南農(nóng)業(yè)大學(xué)食品學(xué)院廣東省食品質(zhì)量與安全重點(diǎn)實(shí)驗(yàn)室畜禽產(chǎn)品精準(zhǔn)加工與安全控制技術(shù)國家地方聯(lián)合工程研究中心 (廣東),廣東廣州 510642
隨著分子生物學(xué)的研究和不斷發(fā)展,基因表達(dá)技術(shù)有了很大的進(jìn)步。到目前為止,人們已經(jīng)研究出多種表達(dá)系統(tǒng)用以生產(chǎn)重組蛋白,但沒有一種表達(dá)系統(tǒng)能夠完全滿足當(dāng)前需要,各種活性肽和蛋白質(zhì)類藥物的需求逐年攀升,不僅對表達(dá)量有要求,更需要正確的翻譯后折疊、修飾,使表達(dá)蛋白和天然構(gòu)象更加接近,具有更高的活性和穩(wěn)定性。結(jié)合目前的研究工作從表達(dá)系統(tǒng)與宿主、分泌表達(dá)、共表達(dá)、融合表達(dá)和培養(yǎng)條件等方面綜述了其對重組蛋白正確折疊以及翻譯后修飾的影響,并提出可能改進(jìn)的策略。
重組蛋白,表達(dá)系統(tǒng),折疊,翻譯后修飾
在過去的研究中,科學(xué)家發(fā)現(xiàn)真核生物蛋白質(zhì)組的復(fù)雜性遠(yuǎn)勝其基因組,蛋白質(zhì)結(jié)構(gòu)的多樣性和翻譯后修飾使蛋白質(zhì)組的復(fù)雜性進(jìn)一步增加。同一編碼基因的蛋白質(zhì)可能因?yàn)檎郫B后結(jié)構(gòu)的不同而體現(xiàn)出不同的生物活性。同樣,蛋白質(zhì)翻譯后不同化學(xué)基團(tuán)的修飾也是影響其發(fā)揮正常生物學(xué)功能的重要原因[1]。因此,在利用基因工程技術(shù)進(jìn)行各種生物活性蛋白的獲取、改造進(jìn)程中,如何保證目的蛋白正確折疊結(jié)構(gòu),如何獲得翻譯后目標(biāo)蛋白的有效修飾,一直是蛋白質(zhì)工程領(lǐng)域持續(xù)研究的熱點(diǎn)。本文將從表達(dá)系統(tǒng)及宿主的選擇、表達(dá)方式以及表達(dá)條件等方面,分析其對外源蛋白正確折疊以及翻譯后修飾的影響,并提出可能改進(jìn)的策略。
目前,常用四大表達(dá)系統(tǒng)的表達(dá)特點(diǎn)已經(jīng)比較明確,因此,當(dāng)針對外源蛋白的基本特點(diǎn)確定好表達(dá)系統(tǒng)后,表達(dá)宿主的選擇就顯得十分重要。常用宿主如表1所示。在采用不同的大腸桿菌進(jìn)行青霉素酰胺酶表達(dá)時(shí)發(fā)現(xiàn),以經(jīng)過改造的lon和ompT蛋白酶缺陷菌BL21(DE3)替代普通宿主大腸桿菌ATCC 11105,可溶活性蛋白具有明顯優(yōu)勢,其得到的產(chǎn)物活性是在ATCC 11105菌株中表達(dá)時(shí)的10倍[2]。當(dāng)然,表達(dá)載體和表達(dá)宿主的匹配也需要根據(jù)外源蛋白的特點(diǎn)進(jìn)行試驗(yàn)篩選。比方說在避免包涵體的形成[3-4]方面,Suryanarayana等[5]把構(gòu)建的3種質(zhì)粒PA-pPROEXHTa、PA-pQE30和PA-pET32c分別轉(zhuǎn)入不同的宿主DH5α、BL21-DE3、DE3-pLysS、M15和XL-1 blue,最終發(fā)現(xiàn)只有PA-pQE30-XL-1 blue中的重組蛋白以可溶形式存在,其他重組株均有包涵體產(chǎn)生。
表1 常用表達(dá)宿主
Table 1 Frequently-used hosts for expression
Expression systemHosts Prokaryotic expression systemE. coli (BL21 series[9], Rosetta 2 series, Origami 2 series), Bacillus subtilis, Streptomyces Yeast expression systemPichia pastoris[10],Saccharomyces cerevisiae Baculovirus expression vector systemHigh Five[11], Sf9[12], Sf21[13], Tn-368, SFSWT-1, TN5B1-4, Ea4, Tn4h Mammalian expression systemCHO[14], 293[15], Myeloma cell[16], COS, MDCK
另外,二硫鍵的形成是某些外源蛋白的正確折疊和活性所必需時(shí)[6-8],能促進(jìn)二硫鍵形成的宿主菌,也可提高活性蛋白的表達(dá)。K-12衍生菌的Origami 2系列屬于硫氧還蛋白還原酶(Thioredoxin reductase, trxB) 和谷胱甘肽還原酶(Glutathione reductase, gor) 兩條主要還原途徑雙突變菌株,可顯著提高細(xì)胞質(zhì)中二硫鍵形成幾率,促進(jìn)活性蛋白的可溶性表達(dá)。Nikolaivits等[17]在BL21和Origami 2中分別表達(dá)角質(zhì)酶,發(fā)現(xiàn)在Origami 2細(xì)胞質(zhì)中表達(dá)的產(chǎn)物熱穩(wěn)定性比BL21細(xì)胞中高73%。同樣地,Xu等[8]在表達(dá)南極擬酵母lipase B (Pal B) 時(shí)也發(fā)現(xiàn)在Origami B(DE3) 中的重組脂肪酶活性是BL21(DE3) 中的3倍,其原因可能就是由于Origami細(xì)胞質(zhì)中的氧化環(huán)境更利于二硫鍵的形成,促進(jìn)了表達(dá)產(chǎn)物正確折疊。與此同時(shí),利用定向進(jìn)化,通過分離分子伴侶或折疊因子的變異體,可以實(shí)現(xiàn)宿主細(xì)胞對外源重組蛋白的特異性折疊。該策略被用于分離大腸桿菌GroEL突變株,并證明其對綠色熒光蛋白的折疊效率提高了8倍[18]。
不同的昆蟲細(xì)胞完成蛋白糖基化的能力不同。Sf9細(xì)胞一般只能產(chǎn)生高甘露糖或寡甘露糖型糖蛋白,High five細(xì)胞則比Sf9細(xì)胞更為復(fù)雜,甚至能完成一些末端唾液酸化[19-20]。TN5B1-4、Ea4和Tn4h細(xì)胞能產(chǎn)生復(fù)雜的半乳糖型多糖[21-22]。
另外,對昆蟲細(xì)胞進(jìn)行糖基化改造,將哺乳動(dòng)物糖基轉(zhuǎn)移酶基因插入野生桿狀病毒載體中,使昆蟲細(xì)胞能穩(wěn)定表達(dá)哺乳動(dòng)物糖基化修飾酶類,已成為新的提高昆蟲表達(dá)系統(tǒng)糖蛋白表達(dá)能力的有效手段。Juliant等[23]將 N-乙酰氨基葡萄糖轉(zhuǎn)移酶Ⅰ(GNT-Ⅰ)基因、GNT-Ⅱ基因和β-1,4-半乳糖轉(zhuǎn)移酶基因(β-1,4-GalTⅠ)添加至桿狀病毒基因組中,成功得到了具有半乳糖基化的抗體。此外,也有研究者通過構(gòu)建攜帶哺乳動(dòng)物表達(dá)原件的重組病毒,使其能夠在哺乳動(dòng)物細(xì)胞中表達(dá)[24]。
常用的幾種用于表達(dá)重組蛋白的哺乳動(dòng)物細(xì)胞株有CHO細(xì)胞、COS細(xì)胞和293細(xì)胞等。不同的細(xì)胞對重組蛋白的修飾可能會(huì)稍有差別,如人CHO細(xì)胞在表達(dá)人白血病抑制因子時(shí)會(huì)出現(xiàn)N端氨基酸缺失,表達(dá)人組織因子旁路抑制劑時(shí),會(huì)出現(xiàn)C端氨基酸的缺失,而這些情況在另外的一些細(xì)胞株中并未出現(xiàn)[25-26]。
大腸桿菌細(xì)胞質(zhì)的還原性環(huán)境可能因?yàn)橐种频鞍锥蜴I的形成,進(jìn)而對外源表達(dá)蛋白的正確折疊和活性造成不利影響[6]。除了采用如前所述的改造宿主方式,為促進(jìn)分泌型外源蛋白的可溶表達(dá)和正確折疊,可以嘗試將被表達(dá)的蛋白質(zhì)分泌到周質(zhì)腔或胞外,以減少還原性環(huán)境造成的不利影響[27]。當(dāng)前體肽通過翻譯后Sec途徑進(jìn)行運(yùn)輸時(shí),信號識別粒子 (SRP) 依賴途徑被證明有助于促進(jìn)胞內(nèi)易聚集前體肽的分泌,避免包涵體的形成[28]。也有研究表明,細(xì)胞被膜上的Dsb蛋白酶家族可以促進(jìn)蛋白的正確折疊[7],從而提高外源蛋白的活性、穩(wěn)定性和可溶性[29]。許多因素,包括信號肽的類型、外源蛋白的大小及氨基酸組成等都會(huì)對蛋白轉(zhuǎn)運(yùn)造成影響。研究表明,大腸桿菌分泌蛋白主要是分泌至周質(zhì)腔,這些蛋白的N端一般含有一段富含疏水氨基酸殘基的信號肽,能幫助蛋白穿過細(xì)胞膜進(jìn)入周質(zhì)腔,信號肽被信號肽酶切除后,產(chǎn)生成熟的蛋白質(zhì)[30]。目前使用比較廣泛的有周質(zhì)腔蛋白pel B、外膜蛋白o(hù)mp A和omp F、枯草芽胞桿菌木聚糖酶等多種天然分泌蛋白的信號肽。Cui等[31]用放線菌信號肽Kp-SP促進(jìn)地衣桿菌α淀粉酶的分泌表達(dá),得到的α淀粉酶活性是未分泌表達(dá)的10倍。同樣地,Mohajeri等[32]利用pelB使人內(nèi)皮抑素直接分泌到BL21(DE3) 周質(zhì)腔中,得到的可溶蛋白含量占細(xì)胞總蛋白的35%,避免了大量包涵體的產(chǎn)生。此外,不同的信號肽分泌能力不同,要根據(jù)目的蛋白的不同進(jìn)行試驗(yàn)篩選。Zhao等[9]在BL21(DE3) 中分別過表達(dá)由TorA和PelB引導(dǎo)的GadB,發(fā)現(xiàn)TorA促GadB分泌表達(dá)的效果比PelB好,得到的GadB活性更高。
真核細(xì)胞的分泌途徑是一個(gè)涉及多細(xì)胞器的復(fù)雜系統(tǒng),參與前體肽的運(yùn)輸和翻譯后修飾,因此,提高其分泌途徑中的各個(gè)環(huán)節(jié)能在一定程度上促進(jìn)其翻譯后修飾,如N端信號肽能夠引導(dǎo)前體肽到內(nèi)質(zhì)網(wǎng),使其在內(nèi)質(zhì)網(wǎng)中進(jìn)行修飾,而促進(jìn)前體肽在內(nèi)質(zhì)網(wǎng)和高爾基體之間的轉(zhuǎn)移對于成熟蛋白的形成具有很大的幫助[33]。
畢赤酵母有兩類信號肽可供選擇:外源蛋白自身具有的信號肽和來源于酵母的信號肽。外源信號肽引導(dǎo)表達(dá)的重組蛋白容易降解,而且效率較低,因此通常選擇酵母本身的分泌信號肽來指導(dǎo)外源蛋白的分泌,主要有蔗糖酶 (SUCZ)、酸性磷酸脂酶 (PHO1)、Killer毒素和α因子 (MFα1) 等[34]。同樣地,針對不同外源蛋白,不同信號肽其分泌能力不同。Zhang等[35]在畢赤酵母中分別用α因子和天然信號肽引導(dǎo)黑曲霉QU10的果糖基轉(zhuǎn)移酶分泌表達(dá),3 d后發(fā)現(xiàn)α因子引導(dǎo)表達(dá)的產(chǎn)物活性是天然信號肽的6倍。
一般情況下,由于強(qiáng)啟動(dòng)子的調(diào)控,外源蛋白在大腸桿菌中的表達(dá)水平往往會(huì)比較高,而宿主自身的促折疊因子無法滿足外源蛋白正確折疊的需要時(shí),易形成包涵體。分子伴侶本身不是功能蛋白的組成部分,但是與外源蛋白共表達(dá)時(shí)能夠阻止分子內(nèi)和分子間不正確的相互作用,進(jìn)而幫助蛋白質(zhì)正確折疊,在一定程度上能克服包涵體的形成[36]。
目前大腸桿菌表達(dá)系統(tǒng)中用于共表達(dá)以促進(jìn)外源蛋白正確折疊并增加其可溶性的輔助蛋白主要有 Gro EL/ES、Dna K/Dna J/Grp E、硫氧還蛋白(Thioredoxin)、折疊酶(Foldase) 和引發(fā)因子(Trigger factor) 等,應(yīng)根據(jù)外源蛋白的特點(diǎn)選擇不同的分子伴侶或折疊酶。例如在大腸桿菌中共表達(dá)Gro EL/ES能增加某些蛋白(人乙醛脫氫酶3A1[37]、腈水合酶[38]、人乳頭瘤病毒衣殼蛋白L1[39]和磷酸合成酶[40]等) 的可溶性,卻對其他一些蛋白(人酸性富含胱氨酸分泌型蛋白[41]、噬菌體P22結(jié)構(gòu)蛋白[42]) 無增溶效果。同樣地,Xu等[8]在大腸桿菌BL21(DE3) 和Origami B(DE3)中共表達(dá)Pal B (Trigger factor, Gro EL/ES, Dna K/J-Grp E和Dsb A),發(fā)現(xiàn)只有共表達(dá)Dsb A時(shí)才能促進(jìn)表達(dá)產(chǎn)物的活性。此外,當(dāng)包涵體在周質(zhì)腔中形成時(shí),共表達(dá)周質(zhì)腔蛋白酶可以提高周質(zhì)腔對外源蛋白的加工能力,促進(jìn)外源蛋白折疊,減少包涵體的形成[27,43]。
二硫鍵外源蛋白正確折疊的限制因素之一就是二硫鍵的形成,而分子伴侶如PDI等能很好幫助二硫鍵的形成,從而防止蛋白聚合、減緩折疊速率等[44-45]。如Inan等[46]用畢赤酵母表達(dá)重組Na-ASP1蛋白(含20個(gè)半胱氨酸) 時(shí)發(fā)現(xiàn),Na-ASP1基因與PDI基因共表達(dá)時(shí)可減少不可溶Na-ASP1的形成,且明顯提高其分泌水平,說明Na-ASP1在胞內(nèi)的折疊過程和可溶表達(dá)得到提高[47-48]。如果將幾種促折疊蛋白分子同時(shí)共表達(dá),有可能獲得比單獨(dú)表達(dá)一種時(shí)更好的效果。Chen等[49]在畢赤酵母中將灰蓋鬼傘過氧化物酶與Erol-PDI共表達(dá),得到的產(chǎn)物活性比單一共表達(dá)Erol或PDI高很多倍。
在昆蟲桿狀病毒表達(dá)系統(tǒng)中仍然可以通過共表達(dá)提高外源蛋白的折疊修飾和可溶表達(dá)。細(xì)胞質(zhì)分子伴侶Hsp70不僅能促進(jìn)胞內(nèi)前體肽的易位,而且能夠防止胞內(nèi)非特異性的分子內(nèi)疏水作用從而抑制前體肽的聚集,使前體肽能夠順利進(jìn)入內(nèi)質(zhì)網(wǎng)進(jìn)行翻譯后加工[33]。內(nèi)質(zhì)網(wǎng)分子伴侶BiP是一種免疫球蛋白重鏈結(jié)合蛋白,能幫助前體肽進(jìn)入內(nèi)質(zhì)網(wǎng)進(jìn)行修飾,從而促進(jìn)其可溶性和分泌水平[50]。
哺乳動(dòng)物內(nèi)質(zhì)網(wǎng)固有蛋白在蛋白的折疊和分泌進(jìn)程中起到重要的作用,許多研究證實(shí),提高細(xì)胞內(nèi)翻譯后修飾過程中相關(guān)蛋白的表達(dá),如PDI、XBP-1、GRP78/BIP、ERp57、GRP94、CRT、CNX、GADD34、ATF4和CypB等,有助于提高外源蛋白的折疊修飾[51-52]。當(dāng)內(nèi)質(zhì)網(wǎng)中未折疊或者不正確折疊蛋白積累時(shí),會(huì)誘導(dǎo)XBP-1的生成,從而促進(jìn)內(nèi)質(zhì)網(wǎng)分子伴侶的產(chǎn)生,提高內(nèi)質(zhì)網(wǎng)、高爾基體對蛋白的加工能力,進(jìn)而提高外源蛋白的折疊修飾和分泌表達(dá)水平[16,53]。此外,Haredy等[14]發(fā)現(xiàn)在CHO細(xì)胞中過表達(dá)未折疊蛋白反應(yīng)中的中心因子ATF4可以使IgG表達(dá)提高2.4倍,就是由于ATF4的過表達(dá)使外源蛋白在胞內(nèi)的折疊修飾得到增強(qiáng),造成其表達(dá)量的提高。
親和標(biāo)簽多用于重組蛋白的檢測和純化,除此之外,有研究發(fā)現(xiàn),當(dāng)親和標(biāo)簽以融合蛋白的形式與外源蛋白一起表達(dá)時(shí),能夠發(fā)揮分子伴侶的作用,促進(jìn)外源蛋白折疊,提高外源蛋白的可溶性和穩(wěn)定性。常用的多聚組氨酸與外源蛋白融合后能給外源蛋白的分離純化帶來極大便利,但組氨酸的數(shù)目與融合部位對融合蛋白的表達(dá)水平及其溶解性有顯著影響[54]。其他可供選擇的融合蛋白還有谷胱甘肽-S-轉(zhuǎn)移酶(GST)、泛素蛋白、DsbA和麥芽糖結(jié)合蛋白 (MBP) 等。
有研究表明,胞內(nèi)抗體的穩(wěn)定性比親和性更能影響其性能[55],由于胞內(nèi)還原性環(huán)境不利于二硫鍵的形成,導(dǎo)致scFV不穩(wěn)定,異源表達(dá)scFV時(shí),為了提高其穩(wěn)定性,很多研究者采用融合表達(dá)的方式。Bach等[56]在大腸桿菌中表達(dá)多種scFV,發(fā)現(xiàn)即使選用強(qiáng)啟動(dòng)子,在trxB-菌株中表達(dá),scFV的可溶表達(dá)水平依然很低,主要以包涵體形式存在,當(dāng)在scFV的C端融合MBP時(shí),MBP-scFvs的可溶性和穩(wěn)定性有了很大提高,且具有活性。Shaki-Loewenstein等在哺乳動(dòng)物細(xì)胞內(nèi)表達(dá)scFV時(shí)也得到相同的結(jié) 論[57]。Xu等[8]把7種N端標(biāo)簽 (GST, MBP, NusA, TRX, T7PK, Skp和Dsb A) 和PalB融合表達(dá)時(shí),發(fā)現(xiàn)MBP和T7PK能顯著提高PalB的可溶性,而DsbA不僅能顯著提高表達(dá)產(chǎn)物可溶性,也提高了其活性。均說明了融合表達(dá)是一種促外源蛋白折疊的有效方法。
不同融合蛋白的促折疊效果不同,D?lken等[58]發(fā)現(xiàn)未融合表達(dá)時(shí),畢赤酵母中人顆粒酶B (GrB) 大部分滯留在胞內(nèi),形成不正確的折疊,當(dāng)融合表達(dá)時(shí),GrB能夠有效分泌至胞外,形成正確的折疊,且MBP的促折疊效果比GST要強(qiáng)。同樣地,Wang等[59]在畢赤酵母中構(gòu)建了4種蛋白融合MPHs:CHBD-MPH、GST-MPH、MBP-MPH和CBD-MPH,發(fā)現(xiàn)CHBD-MPH和GST-MPH表達(dá)產(chǎn)物的活性是未融合蛋白的13.6倍和11.9倍,而與CBD和MBP融合表達(dá)的MPH活性沒有明顯變化。
表達(dá)系統(tǒng)能夠成功得到所需外源蛋白的最重要的條件之一就是合適的培養(yǎng)條件,這些條件主要包括培養(yǎng)基成分、溫度、pH、誘導(dǎo)條件以及培養(yǎng)時(shí)間等。在培養(yǎng)基中添加CaCl2和谷氨酸可以提高某些外源蛋白的活性[60],此外,Chhetri等[61]也發(fā)現(xiàn)在大腸桿菌培養(yǎng)基中加入3%乙醇再進(jìn)行ITPG誘導(dǎo)表達(dá)時(shí)候,可以提高外源蛋白表達(dá)量和穩(wěn)定性。
溫度對大腸桿菌的生長代謝影響很大。不少研究認(rèn)為,低溫條件下蛋白質(zhì)合成的速率降低,疏水作用降低,與溫度相關(guān)的分子伴侶過量表達(dá),多肽折疊的動(dòng)力學(xué)改變,從而使具有正確折疊的蛋白含量增加[62],同時(shí),產(chǎn)生的前蛋白能夠及時(shí)運(yùn)輸?shù)街苜|(zhì)腔或培養(yǎng)基中,以免聚集在內(nèi)膜內(nèi)側(cè),形成包涵體堵塞通道,阻礙蛋白的分泌[63],但是溫度過低則會(huì)影響細(xì)胞膜的流動(dòng)性,不利于胞內(nèi)蛋白的運(yùn)輸。大腸桿菌的最適生長溫度為37 ℃,在該溫度下,雖然細(xì)胞膜流動(dòng)性和蛋白合成速率有所增加,但胞內(nèi)前蛋白過多的堆積使包涵體形成增多,進(jìn)一步影響細(xì)胞生理和蛋白運(yùn)輸[64]。Ujiie等[65]在BL21(DE3)中表達(dá)南極假絲酵母lipase B (CALB)時(shí),發(fā)現(xiàn)在37 ℃和30 ℃下,CALB僅以包涵體形式存在,當(dāng)降低溫度到20 ℃時(shí),活性蛋白主要以可溶形式分泌至胞外。
桿狀病毒表達(dá)系統(tǒng)中,培養(yǎng)基中血清的有無對重組蛋白的表達(dá)具有很大的影響。很多研究對在無血清和有血清條件下,病毒的生長和重組蛋白的表達(dá)進(jìn)行了比較[66-67],Joshi等[19]報(bào)道,血清對于外源蛋白的復(fù)雜糖基化具有促進(jìn)作用。
目前,活性蛋白尤其是真核活性蛋白在哺乳動(dòng)物表達(dá)系統(tǒng)里面成功率較高,表達(dá)的重組蛋白最接近天然構(gòu)象,但是其不足也同樣明顯,如表達(dá)量低、成本高、周期長等。所以研究者一般首先希望能通過大腸桿菌表達(dá)系統(tǒng)進(jìn)行表達(dá),因?yàn)槠涑杀镜土⑴囵B(yǎng)操作簡便等優(yōu)勢是顯而易見的。由于酵母表達(dá)系統(tǒng)兼具兩者部分優(yōu)勢,既有一定的翻譯后修飾,同時(shí)也操作簡便、成本低,所以作者認(rèn)為可以優(yōu)先嘗試酵母表達(dá)系統(tǒng)。構(gòu)建合適的表達(dá)載體——啟動(dòng)子、信號肽、共表達(dá)序列等都是需要考慮的因素,并可以同時(shí)采用多種策略以實(shí)現(xiàn)累加效應(yīng)加強(qiáng)促分泌折疊作用,如同時(shí)添加多個(gè)共表達(dá)元件、分泌表達(dá)和共表達(dá)同時(shí)進(jìn)行等,優(yōu)化表達(dá)條件,進(jìn)行表達(dá)。Su等[68]發(fā)現(xiàn),當(dāng)木聚糖酶在大腸桿菌中單獨(dú)異源表達(dá)時(shí),即使存在信號肽pelB的引導(dǎo),重組酶主要以包涵體形式存在,當(dāng)其與角質(zhì)酶共表達(dá)時(shí),重組酶也是存在于胞內(nèi),且以包涵體形式存在,而當(dāng)木聚糖酶與角質(zhì)酶和信號肽pelB一起共表達(dá)時(shí),在pelB和角質(zhì)酶的雙重作用下,重組酶主要分泌到胞外培養(yǎng)基中且具有活性。本課題組將改造后的與來源于釀酒酵母的錨固蛋白表達(dá)載體pPIC9K (具α因子信號肽),在畢赤酵母GS115表面成功展示了BmAChE,表達(dá)產(chǎn)物具有良好活性[69],隨后又把Bmace與二硫鍵異構(gòu)酶共表達(dá),所得BmAChE的表達(dá)量和活性更高。
外源蛋白的表達(dá)是一個(gè)復(fù)雜的過程,不同的外源蛋白,其表達(dá)過程也不一樣,任何一個(gè)環(huán)節(jié)都可能會(huì)對活性蛋白的表達(dá)產(chǎn)生不良影響,如何提高外源蛋白的翻譯后修飾和折疊是研究者面臨的一大難題,目前沒有一種表達(dá)方式是完全通用、適合所有外源蛋白表達(dá)、滿足人們的所有需求。因此,需要在研究過程中積累經(jīng)驗(yàn),及時(shí)汲取相關(guān)領(lǐng)域最新進(jìn)展,找出關(guān)鍵因素,“對癥下藥”。
[1] Jensen ON. Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol, 2006, 7(6): 391–403.
[2] Ignatova Z, Mahsunah A, Georgieva M, et al. Improvement of posttranslational bottlenecks in the production of penicillin amidase in recombinantstrains. Appl Environ Microbiol, 2003, 69(2): 1237–1245.
[3] Chou CP, Lin WJ, Kuo BY, et al. Genetic strategies to enhance penicillin acylase production in. Enzyme Microb Technol, 2000, 27(10): 766–773.
[4] Lin WJ, Kuo BY, Chou C. A biochemical engineering approach for enhancing production of recombinant penicillin acylase in. Bioproc Biosyst Eng, 2001, 24(4): 239–247.
[5] Suryanarayana N, Vanlalhmuaka, Mankere B, et al. Soluble expression and characterization of biologically activeprotective antigen in. Mol Biol Int, 2016, 2016: 4732791.
[6] Bessette PH, ?slund F, Beckwith J, et al. Efficient folding of proteins with multiple disulfide bonds in thecytoplasm. Proc Natl Acad Sci USA, 1999, 96(24): 13703–13708.
[7] Kadokura H, Beckwith J. Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid Redox Signal, 2010, 13(8): 1231–1246.
[8] Xu YL, Yasin A, Tang R, et al. Heterologous expression of lipase inis limited by folding and disulfide bond formation. Appl Microbiol Biotechnol, 2008, 81(1): 79–87.
[9] Zhao AQ, Hu XQ, Li Y, et al. Extracellular expression of glutamate decarboxylase B into improve gamma-aminobutyric acid production. AMB Express, 2016, 6(1): 55.
[10] Yang H, Li SH, Li FH, et al. Recombinant expression of a modified shrimp anti-lipopolysaccharide factor gene inGS115 and its characteristic analysis. Mar Drugs, 2016, 14(8): 152.
[11] Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol, 2013, 4: 217.
[12] Yazdani Y, Azari S, Kalhor HR. Expression of functional recombinant human tissue transglutaminase (TG2) using the bac-to-bac baculovirus expression system. Adv Pharm Bull, 2016, 6(1): 49–56.
[13] Shi YL, Xiang JH, Zhou GZ, et al. The pacific white shrimp β-actin promoter: functional properties and the potential application for transduction system using recombinant baculovirus. Mar Biotechnol, 2016, 18(3): 349–358.
[14] Haredy AM, Nishizawa A, Honda K, et al. Improved antibody production in Chinese hamster ovary cells byoverexpression. Cytotechnology, 2013, 65(6): 993–1002.
[15] Aydin H, Azimi FC, Cook JD, et al. A convenient and general expression platform for the production of secreted proteins from human cells. J Vis Exp, 2012, (65): 4041.
[16] Ku SCY, Ng DTW, Yap MGS, et al. Effects of overexpression of X-box binding protein 1 on recombinant protein production in chinese hamster ovary and NS0 myeloma cells. Biotechnol Bioeng, 2008, 99(1): 155–164.
[17] Nikolaivits E, Kokkinou A, Karpusas M, et al. Microbial host selection and periplasmic folding inaffect the biochemical characteristics of a cutinase from fusarium oxysporum. Protein Expr Purif, 2016, 127: 1–7.
[18] Wang JD, Herman C, Tipton KA, et al. Directed evolution of substrate-optimized GroEL/S chaperonins. Cell, 2002, 111(7): 1027–1039.
[19] Taticek RA, Choi C, Phan SE, et al. Comparison of growth and recombinant protein expression in two different insect cell lines in attached and suspension culture. Biotechnol Progr, 2001, 17(4): 676–684.
[20] Wilde M, Klausberger M, Palmberger D, et al.38, high five and9-evaluation of host-virus interactions in three different insect cell lines: baculovirus production and recombinant protein expression. Biotechnol Lett, 2014, 36(4): 743–749.
[21] Joshi L, Davis TR, Mattu TS, et al. Influence of baculovirus-host cell interactions on complex N-linked glycosylation of a recombinant human protein. Biotechnol Progr, 2000, 16(4): 650–656.
[22] Joshi L, Shuler ML, Wood HA. Production of a sialylated N-linked glycoprotein in insect cells. Biotechnol Progr, 2001, 17(5): 822–827.
[23] Juliant S, Lévêque M, Cérutti P, et al. Engineering the baculovirus genome to produce galactosylated antibodies in lepidopteran cells//Beck A, Ed. Glycosylation Engineering of Biopharmaceuticals. New York: Humana Press, 2013: 59–77.
[24] Belzhelarskaia SN. Baculovirus expression systems for recombinant protein production in insect and mammalian cells. Mol Biol, 2011, 45(1): 142–159.
[25] Geisse S, Kocher HP. Protein expression in mammalian and insect cell systems. Methods Enzymol, 1999, 306: 19–42.
[26] Hippenmeyer PJ, Pegg LE. Enhancing expression of recombinant proteins in mammalian cells using the herpesvisu VP16 transactivator. Curr Opin Biotechnol, 1995, 6(5): 548–552.
[27] Choi JH, Lee SY. Secretory and extracellular production of recombinant proteins using. Appl Microbiol Biotechnol, 2004, 64(5): 625–635.
[28] Georgiou G, Segatori L. Preparative expression of secreted proteins in bacteria: status report and future prospects. Curr Opin Biotechnol, 2005, 16(5): 538–545.
[29] Jong WSP, Saurí A, Luirink J. Extracellular production of recombinant proteins using bacterial autotransporters. Curr Opin Biotechnol, 2010, 21(5): 646–652.
[30] Dong ZX, Zhang J, Lee BH, et al. Secretory expression and characterization of a bile salt hydrolase from lactobacillus plantarum in. J Mol Catal B: Enzym, 2013, 93: 57–64.
[31] Cui YB, Meng YW, Zhang J, et al. Efficient secretory expression of recombinant proteins inwith a novel actinomycete signal peptide. Protein Expr Purif, 2017, 129: 69–74.
[32] Mohajeri A, Pilehvar-Soltanahmadi Y, Pourhassan-Moghaddam M, et al. Cloning and expression of recombinant human endostatin in periplasm ofexpression system. Adv Pharml Bull, 2016, 6(2): 187–194.
[33] Ailor E, Betenbaugh MJ. Modifying secretion and post-translational processing in insect cells. Curr Opin Biotechnol, 1999, 10(2): 142–145.
[34] Wang QH, Gao LL, Liang HC, et al. Research advances of the influence factors of high level expression of recombinant protein in. Acta Pharm Sin, 2014, 49(12): 1644–1649 (in Chinese). 王慶華, 高麗麗, 梁會(huì)超, 等. 影響畢赤酵母高效表達(dá)重組蛋白的主要因素及其研究進(jìn)展. 藥學(xué)學(xué)報(bào), 2014, 49(12): 1644–1649.
[35] Zhang GQ, Yang J, Shi JJ, et al. Molecular cloning and over-expression of a fructosyltransferase fromQU10. Chin J Biotechnol, 2015, 31(4): 512–522 (in Chinese).
[36] Sahdev S, Khattar SK, Saini KS. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem, 2008, 307(1/2): 249–264.
[37] Voulgaridou GP, Mantso T, Chlichlia K, et al. Efficient.expression strategies for production of soluble human crystallin ALDH3A1. PLoS ONE, 2013, 8(2): e56582.
[38] Pei XL, Wang QY, Meng LJ, et al. Chaperones-assisted soluble expression and maturation of recombinant co-type nitrile hydratase into avoid the need for a low induction temperature. J Biotechnol, 2015, 203: 9–16.
[39] Pan D, Zha X, Yu XH, et al. Enhanced expression of soluble human papillomavirus L1 through coexpression of molecular chaperonin in. Protein Expr Purif, 2016, 120: 92–98.
[40] Ma N, Wei LJ, Fan YX, et al. Heterologous expression and characterization of soluble recombinant3-deoxy-D-arabino-heptulosonate-7-phosphate synthase fromssp. Auranticum ATCC31565 through co-expression with chaperones in. Protein Expr Purif, 2012, 82(2): 263–269.
[41] Schneider EL, Thomas JG, Bassuk JA, et al. Manipulating the aggregation and oxidation of human sparc in the cytoplasm of. Nat Biotechnol, 1997, 15(6): 581–585.
[42] Gordon CL, Sather SK, Casjens S, et al. Selectiverescue by GroEL/ES of thermolabile folding intermediates to phage p22 structural proteins. J Biol Chem, 1994, 269(45): 27941–27951.
[43] Lin YH, Fang WL, Lin WJ, et al. Improving production of penicillin acylase inefficient DegP-mediated processing of precursors in periplasm. Proc Biochem, 2001, 37(1): 23–30.
[44] van Vliet C, Thomas EC, Merino-Trigo A, et al. Intracellular sorting and transport of proteins. Progr Biophys Mol Biol, 2003, 83(1): 1–45.
[45] Robinson AS, Hines V, Wittrup KD. Protein disulfide isomerase overexpression increases secretion of foreign proteins in. Nat Biotechnol, 1994, 12(4): 381–384.
[46] Inan M, Aryasomayajula D, Sinha J, et al. Enhancement of protein secretion inby overexpression of protein disulfide isomerase. Biotechnol Bioeng, 2006, 93(4): 771–778.
[47] Gething MJ, Sambrook J. Protein folding in the cell. Nature, 1992, 355(6355): 33–45.
[48] Helenius A, Marquardt T, Braakman I. The endoplasmic reticulum as a protein-folding compartment. Trends Cell Biol, 1992, 2(8): 227–231.
[49] Chen F, Hu MR, Jiang XZ, et al. Enhancement ofperoxidase inby co-expression chaperone PDI and Ero1. Chin J Biotech, 2015, 31(12): 1682–1689 (in Chinese). 陳飛, 胡美榮, 江賢章, 等. 共表達(dá)分子伴侶 PDI 和 Ero1 對灰蓋鬼傘過氧化物酶在畢赤酵母中表達(dá)的影響. 生物工程學(xué)報(bào), 2015, 31(12): 1682–1689.
[50] Hsu TA, Betenbaugh MJ. Coexpression of molecular chaperone Bip improves immunoglobulin solubility and IgG secretion frominsect cells. Biotechnol Progr, 1997, 13(1): 96–104.
[51] Cain K, Peters S, Hailu H, et al. A CHO cell line engineered to express XBP1 and ERO1-Lαhas increased levels of transient protein expression. Biotechnol Progr, 2013, 29(3): 697–706.
[52] Pybus LP, Dean G, West NR, et al. Model-directed engineering of "difficult-to-express" monoclonal antibody production by Chinese hamster ovary cells. Biotechnol Bioeng, 2014, 111(2): 372–385.
[53] Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol, 2003, 23(21): 7448–7459.
[54] Mohanty AK, Wiener MC. Membrane protein expression and production: effects of polyhistidine tag length and position. Protein Expr Purif, 2004, 33(2): 311–325.
[55] W?rn A, Auf der Maur A, Escher D, et al. Correlation betweenstability andperformance of anti-GCN4 intrabodies as cytoplasmic inhibitors. J Biol Chem, 2000, 275(4): 2795–2803.
[56] Bach H, Mazor Y, Shaky S, et al.maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single-chain antibodies. J Mol Biol, 2001, 312(1): 79–93.
[57] Shaki-Loewenstein S, Zfania R, Hyland S, et al. A universal strategy for stable intracellular antibodies. J Immunol Methods, 2005, 303(1/2): 19–39.
[58] D?lken B, Jabulowsky RA, Oberoi P, et al. Maltose-binding protein enhances secretion of recombinant human granzyme B accompanied byprocessing of a precursor MBP fusion protein. PLoS ONE, 2010, 5(12): e14404.
[59] Wang P, Huang L, Jiang H, et al. Enhanced secretion of a methyl parathion hydrolase inusing a combinational strategy. Microb Cell Fact, 2015, 14: 123.
[60] Liu H, Zhang WB, Liu D, et al. High expression of agarase Aga D in. Acta Microbiol Sin, 2015, 55(9): 1171–1176 (in Chinese). 劉歡, 張偉賓, 劉丹, 等. 瓊膠酶 Aga D在大腸桿菌中的高效表達(dá). 微生物學(xué)報(bào), 2015, 55(9): 1171–1176.
[61] Chhetri G, Kalita P, Tripathi T. An efficient protocol to enhance recombinant protein expression using ethanol in. MethodsX, 2015, 2: 385–391.
[62] Schumann W. Function and regulation of temperature-inducible bacterial proteins on the cellular metabolism//Schügerl K, Kretzmer G, Henzler HJ, et al, Eds. Influence of Stress on Cell Growth and Product Formation. Berlin Heidelberg: Springer, 2000: 1–33.
[63] Li ZF, Su LQ, Wang L, et al. Novel insight into the secretory expression of recombinant enzymes in. Proc Biochem, 2014, 49(4): 599–603.
[64] Cheng J, Wu D, Chen S, et al. High-level extracellular production of α-cyclodextrin glycosyltransferase with recombinantBL21 (DE3). J Agric Food Chem, 2011, 59(8): 3797–3802.
[65] Ujiie A, Nakano H, Iwasaki Y. Extracellular production of()lipase B with genuine primary sequence in recombinant. J Biosci Bioeng, 2016, 121(3): 303–309.
[66] Morais VA, Serpa J, Palma AS, et al. Expression and characterization of recombinant human α-3/4-fucosyltransferase III from(Sf9) and(Tn) cells using the baculovirus expression system. Biochem J, 2001, 353(3): 719–725.
[67] Taticek RA, Shuler ML. Effect of elevated oxygen and glutamine levels on foreign protein production at high cell densities using the insect cell-baculovirus expression system. Biotechnol Bioeng, 1997, 54(2): 142–152.
[68] Su LQ, Xu CH, Woodard RW, et al. A novel strategy for enhancing extracellular secretion of recombinant proteins in. Appl Microbiol Biotechnol, 2013, 97(15): 6705–6713.
[69] Dong JX, Xie X, He YS, et al. Surface display and bioactivity ofacetylcholinesterase on. PLoS ONE, 2013, 8(8): e70451.
(本文責(zé)編 陳宏宇)
Strategies to improve the folding and modification of recombinant proteins: a review
Jiadong Li, and Hong Wang
National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products (Guangdong), Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
Gene expression technology has made great progress with the continuous developments and researches of molecular biology. Though many systems to produce recombinant proteins have been studied, none of them is available so far to satisfy the needs completely. With the increasing demands of bioactive peptides and protein drugs, expression quantity and correct posttranslational folding and modifications are also needed under the circumstance which can make proteins more close to native conformation and higher activity and stability. Based on our previous work, we summarized the factors affecting the folding and modifications of recombinant proteins correctly from five aspects, including expression system and hosts, secretory expression, coexpression, fusion expression, and the culture conditions, as well as improvement strategies.
recombinant proteins, expression systems, folding, posttranslational modification
Supported by:National Natural Science Foundation of China (No. 31271866), Province Natural Science Foundation of Guangdong Province (No. 2014A030311043), Science and Technology Planning Project of Guangdong Province (No. 2014A050503059), Science and Technology Planning Project of Guangzhou (No. 2014J4100185).
國家自然科學(xué)基金 (No. 31271866),廣東省自然科學(xué)基金 (No. 2014A030311043),廣東省科技計(jì)劃項(xiàng)目 (No. 2014A050503059),廣州市科技計(jì)劃項(xiàng)目 (No. 2014J4100185) 資助。
September 5, 2016; Accepted: December 27, 2016
Hong Wang. Tel: +86-20-85288279; Fax: +86-20-85280270; E-mail: gzwhongd@163.com