焦 劍,宋伯巖,王世雷,王奮忠,張 婷
?
基于改進(jìn)徑流曲線數(shù)模型的北京密云坡地徑流估算
焦 劍1,宋伯巖2,王世雷2,王奮忠2,張 婷1
(1. 中國水利水電科學(xué)研究院,北京 100048;2. 北京市密云區(qū)水土保持工作站,密云101500)
密云區(qū)是北京重要的地表飲用水源地,準(zhǔn)確模擬地表徑流量,對于分析泥沙和污染物的運(yùn)移十分重要。近年來,學(xué)者們運(yùn)用徑流曲線數(shù)(soil conservation service curve number,SCS-CN)模型計算本區(qū)地表徑流量,但預(yù)報精度不理想;未考慮降雨過程和雨強(qiáng)對于產(chǎn)流過程的影響,可能是造成預(yù)報誤差的重要原因。該文利用密云石匣小流域5個坡面徑流小區(qū)共201場降雨產(chǎn)流資料,提出次產(chǎn)流徑流曲線數(shù)計算方法,以改進(jìn)SCS-CN模型并分析改進(jìn)后模型模擬效果。結(jié)果表明,次產(chǎn)流徑流曲線數(shù)與多年平均徑流曲線數(shù)的比值和最大30 min降雨量與次雨量的比值之間呈顯著冪函數(shù)遞增關(guān)系,據(jù)此提出計算次產(chǎn)流徑流曲線數(shù)的冪函數(shù)方程,以改進(jìn)SCS-CN模型。當(dāng)曲線數(shù)為0.02時,改進(jìn)后模型模擬效果最好,效率系數(shù)為0.693,明顯高于未改進(jìn)的SCS-CN模型。改進(jìn)后模型對裸地和耕地的產(chǎn)流模擬效果較好,但對林地的產(chǎn)流模擬效果不理想。今后需在深入分析產(chǎn)流機(jī)理的基礎(chǔ)上,進(jìn)一步提出與土壤特性有關(guān)的模型參數(shù)優(yōu)化方法。
徑流;模型;土地利用;徑流曲線數(shù)模型;徑流曲線數(shù);密云
土壤侵蝕是世界范圍的環(huán)境問題之一。土壤侵蝕預(yù)報是評價土壤流失狀況及其對環(huán)境影響的有效技術(shù)和方法。由于降雨徑流是引起土壤侵蝕的主要動力[1],因此在土壤侵蝕預(yù)報中,地表徑流計算不僅是水文計算的重要組成部分,也是泥沙運(yùn)移計算的基礎(chǔ)。目前常見的徑流計算方法有Green-Ampt入滲曲線[2]、Philip入滲曲線[3]、Horton入滲曲線[4]等,但這些方法涉及參數(shù)多,且不易獲取,故限制了其廣泛應(yīng)用。美國農(nóng)業(yè)部根據(jù)美國氣候特征和水文徑流資料研發(fā)的徑流曲線數(shù)(soil conservation service curve number,SCS-CN)模型結(jié)構(gòu)簡單、所需參數(shù)少,被廣泛應(yīng)用于降雨地表徑流預(yù)測中[5-6]。
SCS-CN模型中有2個重要參數(shù):1)產(chǎn)生地表徑流之前的初損率,包括地面填洼、截流和下滲;2)徑流曲線數(shù)CN,反映不同土壤-覆被組合地表產(chǎn)流能力的綜合指標(biāo)。中國學(xué)者自20世紀(jì)80年代開始利用SCS- CN模型預(yù)報徑流量以來,依據(jù)徑流小區(qū)降雨產(chǎn)流觀測資料,結(jié)合中國的土壤特征,對模型的和CN進(jìn)行了修訂和優(yōu)化,以提高模型模擬精度。在取值研究方面,F(xiàn)u等[7-8]提出了黃土高原地區(qū)取值;Shi等[9]計算了長江三峽庫區(qū)變化范圍;陳正維等[10]提出紫色土坡地取值;賀寶根等[11]提出上海地區(qū)取值。在CN取值方面,羅利芳等[12]計算了黃土高原地區(qū)不同下墊面的CN值;Huang等[13-14]分析了黃土高原地區(qū)坡度和不同土層深度土壤含水率對CN值的影響;符素華等[15]提出了北京地區(qū)不同水文土壤組和土地利用下的CN值;夏立忠等[16]建立淺層紫色土坡面降雨量與CN值的二次函數(shù)回歸方程。
密云區(qū)位于北京市東北部,是北京市重要的地表飲用水源地。雖然市政府在生態(tài)建設(shè)和環(huán)境保護(hù)方面做了大量工作,但在部分地區(qū),由于農(nóng)業(yè)生產(chǎn)和基本建設(shè)活動較為集中,地表坡度較大,土壤流失問題仍非常突 出[17-18],直接威脅包括密云水庫等地表飲用水源水質(zhì)[19]。因此,準(zhǔn)確模擬徑流量,對于分析泥沙和水體污染物的運(yùn)移十分重要。近年來,學(xué)者們開始嘗試?yán)肧CS-CN模型預(yù)測本區(qū)的地表徑流量。符素華等[15]利用64個坡面徑流小區(qū)的降雨徑流資料,計算出不同水文土壤組及地表覆蓋下的CN值。但是,運(yùn)用SCS-CN模型計算本區(qū)地表徑流量,其預(yù)報精度并不理想[20-21]。已有研究表明,CN是SCS-CN模型中最敏感的參數(shù), 10%的CN值變化,可能造成計算結(jié)果出現(xiàn)45%~55%的誤差[22]。在模型應(yīng)用中,學(xué)者們發(fā)現(xiàn)在同一土壤-覆被條件下的不同降雨產(chǎn)流事件中,CN值差別很大[20];而現(xiàn)有研究在北京山區(qū)應(yīng)用SCS-CN模型時,并未考慮降雨過程和特征對其影響。實際上,地表徑流量不僅受降雨量影響,還受雨強(qiáng)、雨型等因素影響;密云區(qū)地貌以山地為主,局地強(qiáng)對流和鋒面活動均為引起暴雨的重要原因,如果不考慮降雨過程對產(chǎn)流的影響,可能造成模型預(yù)報的誤差。鑒于此,本文在充分考慮降雨過程和特征對地表產(chǎn)流影響的基礎(chǔ)上,提出次產(chǎn)流徑流曲線數(shù)CN計算方法,從而改進(jìn)徑流曲線數(shù)模型,以提高其預(yù)報精度,使之適用于北京地表飲用水源地保護(hù)區(qū),為本區(qū)水土資源評價提供技術(shù)支持。
密云縣高嶺鎮(zhèn)石匣小流域位于密云水庫東北部,位處117°01¢~117°07¢E、47°32¢~47°38¢N之間,流域面積33 km2,處于潮河流域下游。該流域地貌為土石淺山丘陵,海拔160~353 m。流域內(nèi)巖石類型主要為片麻巖,主要土壤類型為褐土。氣候類型為暖溫帶季風(fēng)氣候,多年平均降水量660 mm,降雨集中于夏季,6—9月降雨量占全年降水總量約75%。
為改進(jìn)徑流曲線數(shù)模型[23],并評價改進(jìn)后模型的應(yīng)用效果,從1994—2015年22 a密云石匣小流域22個徑流小區(qū)中選取土地利用和管理方式保持不變的5個小區(qū),搜集各小區(qū)實測的降雨過程和徑流量資料進(jìn)行研究。各小區(qū)基本情況和土壤基本性質(zhì)見表1。其中,采用各小區(qū)1994—2000年共127場降雨徑流資料改進(jìn)徑流曲線數(shù)模型;采用各徑流小區(qū)2013—2015年共74場降雨徑流資料分析改進(jìn)后模型的模擬效果。
表1 密云石匣小流域徑流小區(qū)基本情況
1.3.1 徑流曲線數(shù)模型介紹
徑流曲線數(shù)法是以水量平衡(式(1))和2個基本假定為基礎(chǔ)建立的。第1個假定:直接徑流與潛在最大徑流的比等于入滲和潛在最大保持量的比(式(2));第2個假定:初損量與潛在最大保持量成比例(式(3))。
=I++(1)
/ (–I) =/(2)
I=·(3)
式中為降雨量,mm;I為初損,mm;為實際保持量,mm;為地表徑流量,mm;為潛在蓄水能力,mm;為初損率。結(jié)合式(1)~(3)可得的表達(dá)式:
=(–)2/(+(1–)) (>)
=0 (≤) (4)
為了實際應(yīng)用方便,可采用徑流曲線數(shù)CN計算:
= 254 00/CN―254, 0≤CN≤100 (5)
利用觀測資料,在獲得次降雨和的情況下,可利用式(4)和式(5)分別反推出式(6)和式(7),以計算出CN值。
CN= 254 00/(254+) (7)
根據(jù)前5 d降雨量將土壤前期濕度條件(antecedent soil moisture condition,AMC)劃分為3個等級[23](表2):AMCⅠ為干旱情況,AMCⅡ為一般情況,AMC Ⅲ為濕潤情況,其劃分界限對應(yīng)土壤凋萎濕度和田間持水量;其中,AMCⅠ對應(yīng)的土壤濕度接近、達(dá)到或低于凋萎濕度,AMC Ⅲ對應(yīng)的土壤濕度接近或達(dá)到田間持水量,AMCⅡ則介于兩者之間[23-24]。AMCⅠ、AMCⅡ和AMC Ⅲ對應(yīng)的CN值分別為CN1,CN2和CN3。CN值的確定首先由水文土壤組定義指標(biāo)確定土壤類型,然后查SCS手冊得到不同土地利用狀況下的CN值。根據(jù)查得的CN2利用SCS手冊提供的方程計算CN1和CN3。美國土壤保持局將土壤劃分為A、B、C、D 4大類型,其土壤入滲能力依次減弱[23]。北京山區(qū)主要水文土壤組為B類,降雨產(chǎn)流前期濕度條件以干旱居多[15],為使結(jié)果更具有實用性,研究采用干旱條件下的徑流曲線數(shù)值即CN1作為徑流預(yù)報參數(shù)。
表2 土壤前期濕度條件分類
1.3.2 次產(chǎn)流徑流曲線數(shù)計算方法
在降雨過程中,最大30 min雨強(qiáng)對于地表產(chǎn)流和土壤侵蝕具有重要影響[24-25],可見降雨在時間上集中程度對于地表產(chǎn)流過程的影響不容忽視。本文擬采用最大 30 min降雨量與次雨量的比值(30/)反映次降雨在時間上集中程度。根據(jù)已有的研究成果[7-11],本文設(shè)定SCS-CN模型中取值范圍為0~0.30,以0.01為步長,利用式(6)和式(7),可計算各小區(qū)多年平均徑流曲線數(shù)的值,即CN1。同時,分析次產(chǎn)流的徑流曲線數(shù)CN與CN1的比值(CN/CN1)與(30/)之間的函數(shù)關(guān)系(式(8)),進(jìn)而提出利用降雨在時間上集中程度計算CN的方法,以改進(jìn)徑流曲線數(shù)模型。
(CN/CN1)=(30/) (8)
式中和30分別為次雨量和該次降雨過程中最大30 min雨量,mm。
1.3.3 改進(jìn)后模型的初損率確定和模擬效果分析
為了應(yīng)用方便,模型中統(tǒng)一賦值。將不同取值下模型的模擬效果進(jìn)行比較,模型取模擬效果最佳時的值。
采用Nash模型效率系數(shù)E[26]、相關(guān)系數(shù)和平均相對誤差(mean relative error,MRE)對預(yù)測和實測徑流深做比較,檢驗改進(jìn)后模型的模擬效果。
依據(jù)小區(qū)實測降雨徑流資料可發(fā)現(xiàn),CN/CN1與30/之間呈顯著的冪函數(shù)遞增關(guān)系,兩者擬合的冪函數(shù)方程決定系數(shù)因小區(qū)下墊面和取值不同而有所差異(圖1)。對于1、4和18號小區(qū),擬合的冪函數(shù)方程決定系數(shù)R均大于0.4(<0.001);對于2和5號小區(qū),擬合的冪函數(shù)方程R變化于0.2~0.3(=0.006~0.026);利用全部樣本擬合的冪函數(shù)方程2在0.4附近變化(< 0.001)。對于同一小區(qū),不同取值下冪函數(shù)方程2差別并不明顯:1號小區(qū)2最大值和最小值之差為0.14;其他小區(qū)2最大值和最小值之差均小于0.08。為提高預(yù)報精度,本文分不同小區(qū)擬合冪函數(shù)方程,得出式(9)中和的取值。
CN= CN1··(30/)(9)
注:CNt為次產(chǎn)流的徑流曲線數(shù);CN1為多年平均徑流曲線數(shù);P30為該次降雨過程最大30 min降雨量(mm);Pr為次雨量(mm)。
本文將不同取值下,改進(jìn)的徑流曲線數(shù)模型預(yù)測的徑流量和實測徑流量做了比較。改進(jìn)后模型的效率系數(shù)E隨著增加而降低,從0.708遞減至0.067(圖2a)。徑流量預(yù)測值和實測值相關(guān)系數(shù)在=0.02時值最大,為0.859,此后隨增加而逐步降低(圖2b)。模型MRE則隨增加而遞增(圖2c),從1.55%遞增至25.62%。整體而言,改進(jìn)后模型的模擬效果在取值為0.01和0.02時,均較為理想。在保證獲得較高E值的基礎(chǔ)上,考慮預(yù)測值和實測值相關(guān)程度盡可能密切,故本文選擇0.02作為改進(jìn)后模型的取值。此時模型的E為0.693,為0.859,MRE為4.21%;各小區(qū)CN1、和的取值見表3。美國的農(nóng)業(yè)小流域在應(yīng)用SCS-CN模型時,取值一般為 0.20,這主要因為其降雨年內(nèi)分布較均勻,約70%的降雨通過入滲進(jìn)入土壤;而在季風(fēng)氣候顯著的地區(qū),降雨季節(jié)變化較大,且雨季多暴雨,降雨通過入滲進(jìn)入土壤的比例明顯降低。因此,在運(yùn)用SCS-CN模型時,取值多不超過0.05[27-28]。
圖2 改進(jìn)后和未改進(jìn)的SCS-CN模型模擬效果比較
表3 改進(jìn)的徑流曲線數(shù)模型參數(shù)取值
本文將沒有改進(jìn)的徑流曲線數(shù)模型預(yù)測徑流量和實測徑流量做了比較(圖2)。相對于改進(jìn)的徑流曲線數(shù)模型,其模擬精度有明顯差距:E最大值僅為0.253;且當(dāng)≥0.05時,E均小于0;也明顯降低,MRE變化于–16.51%~–5.29%。圖3為=0.02時,改進(jìn)后(圖3a)和未改進(jìn)(圖3b)模型預(yù)測值和實測值比較。整體而言,未改進(jìn)的模型預(yù)測值與1∶1線相比有明顯偏差??梢娫诒本┥絽^(qū)預(yù)測地表徑流量時,若不考慮降雨過程特征和雨強(qiáng)的影響,會造成較大的預(yù)測誤差。
注:λ=0.02。
對影響改進(jìn)后的SCS-CN模型模擬效果的主要因素進(jìn)行了分析。首先,分析了改進(jìn)后的模型對于不同土壤前期濕度條件下產(chǎn)流事件的模擬效果。對2013—2015年小區(qū)產(chǎn)流事件按前期土壤濕度條件進(jìn)行劃分,條件為AMCⅠ、AMCⅡ和AMCⅢ的產(chǎn)流次數(shù)分別占總產(chǎn)流次數(shù)的73%、23%和4%??梢姰a(chǎn)流前小區(qū)土壤濕度條件以干旱居多,AMCⅠ條件下坡面產(chǎn)流方式以超滲產(chǎn)流為主,降雨強(qiáng)度是影響徑流量多寡的重要因素。改進(jìn)后的模型考慮了最大30 min雨強(qiáng)對于產(chǎn)流的影響,但未將雨強(qiáng)直接作為模型變量,因此對于AMCⅠ條件下徑流量模擬精度有所降低,其E= 0.508,=0.747,MRE =10.94%(圖4a)。但改進(jìn)后的模型對于AMCⅡ和Ⅲ條件下徑流量模擬精度相對較高,其E=0. 794,=0.916,MRE=0.33%。這種條件下土壤含水率相對增加,產(chǎn)流過程中土壤含水率易在較短時間內(nèi)達(dá)到田間持水量,超滲產(chǎn)流和蓄滿產(chǎn)流皆有發(fā)生,與前期土壤濕度條件為干旱的產(chǎn)流事件相比,降雨量對徑流量多寡的影響更為顯著。
圖4 改進(jìn)后SCS-CN模型在不同土壤前期濕度條件和土地利用下預(yù)測和實測徑流比較
本文分析了改進(jìn)后的模型對于不同土地利用類型下產(chǎn)流事件的模擬效果(圖4b)。該模型對于裸地(4號小區(qū))和耕地(1、18號小區(qū))的產(chǎn)流模擬效果相對較好。裸地的E=0.713,= 0.870,MRE=13.67%;耕地的E=0.735,= 0.880,MRE =–0.16%。在雨滴打擊和水滴擊濺作用下,裸露地表上易產(chǎn)生許多微小洼地;在多次降雨產(chǎn)流過程的進(jìn)一步擊濺和沖刷作用下,微小的洼地會被貫通形成細(xì)溝。而種植玉米的小區(qū)由于耕作管理中采用除草措施,使得地表除玉米莖稈外,裸露面積較大,為細(xì)溝侵蝕的形成和發(fā)展創(chuàng)造條件。坡面地表裸露程度較高,其整體糙度也相應(yīng)降低,隨著細(xì)溝數(shù)量和長度、寬度的增加,易形成較為穩(wěn)定的匯流路徑。
改進(jìn)后的模型對于林地的產(chǎn)流模擬效果不理想。2013—2015年,喬木(2號小區(qū))和灌木林地(5號小區(qū))總計產(chǎn)流12次,模型模擬的E僅為–4.53。由于喬木和灌木林小區(qū)產(chǎn)流次數(shù)少,僅占所有產(chǎn)流事件的16.2%;且次產(chǎn)流平均徑流深僅為3.68 mm,為其他小區(qū)平均值的47.3%,因此喬木和灌木林小區(qū)的模擬誤差對于所有產(chǎn)流事件的整體模擬效果影響不十分顯著。需要注意的是,本文采用1994—2000年的降雨徑流資料改進(jìn)模型,用2013—2015年的降雨徑流資料分析其模擬效果;而在這2段時期內(nèi),2個小區(qū)產(chǎn)流的徑流系數(shù)存在顯著差異。2號小區(qū)由1994—2000年的0.057降至2013—2015年的0.032,5號小區(qū)則由0.058增至0.140。植物根系的生長發(fā)育過程及枯枝落葉層的形成分解過程有助于土壤理化性質(zhì)逐步改善,其有機(jī)質(zhì)和腐殖質(zhì)含量、根系活動可使土壤孔隙度增加,使剖面上滲透能力提高。而植物冠層的年際變化也是影響地表徑流量變化的重要原因。植被覆蓋度越低,地表徑流量越大[23]。實際上,林地的產(chǎn)流機(jī)制較為復(fù)雜,在特定降雨條件下可能形成超滲超持的產(chǎn)流過程,即超滲產(chǎn)生地表徑流,且土壤蓄水量超過田間持水量產(chǎn)生壤中流和地下徑流。今后需在深入分析產(chǎn)流機(jī)理的基礎(chǔ)上,合理選擇土壤數(shù)據(jù),提出模型參數(shù)優(yōu)化方法[29-30]。
在改進(jìn)SCS-CN模型時,本文考慮了降雨過程對于地表產(chǎn)流的影響,采用最大30 min降雨量30與次雨量的比值(30/)反映次降雨在時間上集中程度。研究區(qū)次降雨產(chǎn)流過程徑流曲線數(shù)CN與多年平均徑流曲線數(shù)CN1的比值(CN/CN1)和(30/)之間呈顯著的冪函數(shù)遞增關(guān)系。因此,本文提出了計算CN的冪函數(shù)方程,并提出不同土地利用類型下該方程的參數(shù)CN1取值,以改進(jìn)SCS-CN模型。采用Nash模型效率系數(shù)E、相關(guān)系數(shù)和平均相對誤差MRE對預(yù)測徑流深和實測徑流深做比較,分析不同取值下改進(jìn)后SCS-CN模型的模擬效果。結(jié)果表明,=0.02時模型模擬效果最好,此時E= 0.693,= 0.859,MRE = 4.21%;而未改進(jìn)的SCS-CN模型在=0.02時,E僅為0.151,可見改進(jìn)后模型模擬精度顯著提高。
改進(jìn)后模型對于裸地和耕地的產(chǎn)流模擬效果相對較好,裸地的E=0.713,= 0.870,MRE=13.67%;耕地的E=0.735,= 0.880,MRE=–0.16%。但模型對于林地的產(chǎn)流模擬效果不理想。林地的產(chǎn)流機(jī)制較復(fù)雜,在特定降雨條件下可能形成超滲超持的產(chǎn)流過程。今后需在深入分析產(chǎn)流機(jī)理的基礎(chǔ)上,進(jìn)一步提出與土壤特性有關(guān)的模型參數(shù)優(yōu)化方法。
[1] Wischmeier W H, Smith D D. Rainfall energy and its relationship to soil loss[J]. Transactions American Geophysical Union, 1958, 39(2): 285-291.
[2] Viji R, Prasanna P R, Ilangovan R. Modified SCS-CN and green-ampt methods in surface runoff modelling for the Kundahpallam Watershed, Nilgiris, Western Ghats, India[J]. Aquatic Procedia, 2015, 4: 677-684
[3] Philip J R. The theory of infiltration: 1. the infiltration equation and its solution[J] .Soil Science, 1957, 8(3): 345-357.
[4] Chow V T, Maidment D R, Mays L W. Applied Hydrology[M]. New York: McGraw-Hill Book Company, 1988: 109.
[5] Li Jun, Liu Changming, Wang Zhonggen, et al. Two universal runoff yield models: SCS vs. LCM[J]. Journal of Geographical Science. 2015, 25(3): 311-318.
[6] Lal M, Mishra S K, Pandey A. Physical verification of the effect of land features and antecedent moisture on runoff curve number[J]. Catena, 2015, 133: 318-327.
[7] Fu Suhua, Zhang Guanghui, Wang Nan, et al. Initial abstraction ratio in the SCS-CN method in the Loess Plateau of China[J]. Transactions of the ASABE, 2011, 54(1): 163-169.
[8] Xiao Bo, Wang Qinghai, Fan Jun, et al. Application of the SCS-CN model to runoff estimation in a small watershed with high spatial heterogeneity[J]. Pedosphere, 2011, 21(6): 738-749.
[9] Shi Zhihua, Chen Liding, Fang Nufang, et al. Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China[J]. Catena, 2009, 77(1): 1-7.
[10] 陳正維,劉興年,朱波. 基于 SCS-CN 模型的紫色土坡地徑流預(yù)測[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(7):72-81. Chen Zhengwei, Liu Xingnian, Zhu Bo. Runoff estimation in hillslope cropland of purple soil based on SCS-CN model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 72-81. (in Chinese with English abstract)
[11] 賀寶根,周乃晟,高效江,等. 農(nóng)田非點(diǎn)源污染研究中的降雨徑流關(guān)系:SCS法的修正[J]. 環(huán)境科學(xué)研究,2001,14(3):49-51.He Baogen, Zhou Naisheng, Gao Xiaojiang, et al. Precipitation- runoff relationship in farmland nonpoint source pollution research: Amending coeffcient of SCS hydrologic method[J]. Research of Environmental Sciences, 2001, 14(3): 49-51. (in Chinese with English abstract)
[12] 羅利芳,張科利,符素華. 徑流曲線數(shù)法在黃土高原地表徑流量計算中的應(yīng)用[J]. 水土保持通報,2002,22(3):58-61,68. Luo Lifang, Zhang Keli, Fu Suhua. Application of runoff curve number method on Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2002, 22(3): 58-61, 68. (in Chinese with English abstract)
[13] Huang M B, Gallichand J, Wang Z L, et al. A modification to the Soil Conservation Service curve number method for steep slopes in the Loess Plateau of China[J]. Hydrological Processes. 2006, 20(3): 579-589.
[14] Huang M B, Gallichand J, Dong C Y, et al. Use of soil moisture data and curve number method for estimating runoff in the Loess Plateau of China[J]. Hydrological Processes, 2007, 21(11): 1471-1481.
[15] 符素華,王紅葉,王向亮,等. 北京地區(qū)徑流曲線數(shù)模型中的徑流曲線數(shù)[J]. 地理研究,2013,32(5):797-807. Fu Suhua, Wang Hongye, Wang Xiangliang, et al. The runoff curve number of SCS-CN method in Beijing[J]. Geographical Research, 2013, 32(5): 797-807. (in Chinese with English abstract)
[16] 夏立忠,李運(yùn)東,馬力,等. 基于SCS模型的淺層紫色土柑桔園坡面徑流的計算參數(shù)確定[J]. 土壤,2010,42(6):1003-1008.Xia Lizhong, Li Yundong, Ma Li, et al. Parameters calibration of SCS method for calculation of surface rainfall runoff from slope citrus land with thin layer of sandy loam purple soil[J]. Soils, 2010, 42(6): 1003-1008. (in Chinese with English abstract)
[17] 劉寶元,畢小剛,符素華,等. 北京土壤流失方程[M]. 北京:科學(xué)出版社,2010.
[18] Li Xiaosong, Wu Bingfang, Zhang Lei. Dynamic monitoring of soil erosion for upper streams of Miyun Reservoir in the last 30 years[J]. Journal of Mountain Science, 2013, 10(5): 801-811.
[19] Jiao Jian, Du Pengfei, Lang Cong. Nutrients concentrations and fluxes in the upper catchment of the Miyun Reservoir, China, and potential nutrient reduction strategies[J]. Environmental Monitoring and Assessment, 2015, 187(3): 110-124.
[20] 符素華,王向亮,王紅葉,等. SCS-CN徑流模型中CN值確定方法研究[J]. 干旱區(qū)地理,2012,35(3):415-421. Fu Suhua, Wang Xiangliang, Wang Hongye, et al. Method of determining CN value in the SCS-CN method [J]. Arid Land Geography, 2012, 35(3): 415-421. (in Chinese with English abstract)
[21] 何楊洋,王曉燕,段淑懷. 密云水庫上游流域徑流曲線模型的參數(shù)修訂[J]. 水土保持學(xué)報,2016,30(6):134-138,146. He Yangyang, Wang Xiaoyan, Duan Shuhuai. Revision of CN value and initial abstract ratio in the SCS-CN model in upper reaches of Miyun Reservoir[J]. Journal of Soil and Water Conservation. 2016, 30(6): 134-138, 146. (in Chinese with English abstract)
[22] Boughton W C. A review of the USDA SCS curve number method[J]. Australian Journal of Soil Research, 1989, 27 (3): 511-523.
[23] U S Department of Agriculture-Soil Conservation Service. SCS National Engineering Handbook, Section 4: Hydrology [M]. Washington D C: U S Department of Agriculture, 1972.
[24] Neitsch S L, Arnold J G, Kiniry J R, et al. Soil and water assessment tool: Theoretical documentation, version 2005[M]. Temple, Texas: Grassland, Soil and Water Research Laboratory, Agriculture Research Service & Blackland Research Centre, Texas Agriculture Experiment Station, 2005: 252-255.
[25] Wischmeier W H, D D Smith. Predicting rainfall erosion losses: A guide to conservation planning[M]//Agriculture Handbook. No.537. Washington D C: U S Department of Agriculture, 1978.
[26] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models Part I: A discussion of principles[J]. Journal of Hydrology. 1970, 10(3): 282–290.
[27] 蔣尚明,金菊良,許滸,等. 基于徑流曲線數(shù)模型的江淮丘陵區(qū)塘壩復(fù)蓄次數(shù)計算模型[J]. 農(nóng)業(yè)程學(xué)報,2013,29(18):117-124.
Jiang Shangming, Jin Juliang, Xu Hu, et al. Computational model of pond re-storage times in Jianghuai hilly area based on SCS model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 117-124. (in Chinese with English abstract)
[28] Ajmal M, Moon G W, Ahn J H, et al. Investigation of SCS- CN and its inspired modified models for runoff estimation in South Korean watersheds[J]. Journal of Hydro-environment Research 2015, 9(4): 592-603.
[29] Sorooshian S, Hsu K L, Coppola E, et al. Hydrological modeling and the water cycle: Coupling the atmospheric and hydrological models[M]. Berlin: Springer Berlin Heidelberg, 2008.
[30] Durán-Barroso P, González J, Valdés J B. Improvement of the integration of soil moisture accounting into the NRCS- CN model[J]. Journal of Hydrology, 2016, 542: 809-819.
焦 劍,宋伯巖,王世雷,王奮忠,張 婷. 基于改進(jìn)徑流曲線數(shù)模型的北京密云坡地徑流估算[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(21):194-199. doi:10.11975/j.issn.1002-6819.2017.21.023 http://www.tcsae.org
Jiao Jian, Song Boyan, Wang Shilei, Wang Fenzhong, Zhang Ting. Runoff estimation for hillslope land in Miyun based on improved model of soil conservation service curve number[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 194-199. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.21.023 http://www.tcsae.org
Runoff estimation for hillslope land in Miyun based on improved model of soil conservation service curve number
Jiao Jian1, Song Boyan2, Wang Shilei2, Wang Fenzhong2, Zhang Ting1
(1.100048,;2.101500,)
Miyun District is in the region for drinking water source for Beijing, which is a mountainous region. Because of steep slopes there, there may be severe soil erosion during storms. To analyze the movement of sediments and nutrients, accurate estimation of surface runoff is important. In recent years, the soil conservation service curve number (SCS-CN) model has been used in the mountainous region of Beijing, but model accuracy is unsatisfactory. In various storm events, the parameter–runoff curve number varied over a wide range. If the influence of rainfall processes and characteristics is not considered, simulation error for the surface runoff can be large. In the present study, data observed for rainfall and runoff depth during 201 rainfall-runoff events from experimental plots with various land cover and management were used to improve the SCS-CN model and test modeling accuracy. The 5 experimental plots were in the Shixia watershed, northeast of Miyun Reservoir, covering117°01¢-117°07¢E, 47°32¢-47°38¢NObserved runoff depth data for 127 rainfall-runoff events were used to improve the SCS-CN model; the other runoff depth data for 74 events were used to test modeling accuracy. Based on analyses of the influence of rainfall processes and intensity on the runoff and curve number for each rainfall event, a method for calculating curve number for each rainfall eventwas proposed. This indicated that the ratio of curve number for each rainfall event to the annual mean curve number increased with the ratio of maximum 30-minute rainfall to total rainfall for the event, with a power function relationship. The power function for curve number for each rainfall eventcalculation improved SCS-CN modeling accuracy. Nash-Sutcliffe efficiency, correlation coefficient, and mean relative error (MRE) were used in the examination of simulation results. To achieve optimum modeling accuracy, a range of initial abstraction ratio values from 0.01 to 0.30 was tested for the improved model. An initial abstract ratio 0.02 was used in the improved SCS-CN model so that Nash-Sutcliffe efficiency was 0.693,was 0.859, and MRE was 4.21%. The Nash-Sutcliffe efficiencyfor the SCS-CN model without improvement was only 0.151. Because the study area is dominated by a monsoon climate, in the rainy season, storms with relatively high rainfall intensity were common. The ratio for rainfall that infiltrated was smaller, so the initial abstract ratio value was smaller than that in the USA. Simulation results for different antecedent moisture conditions (AMCs) were as follows. For dry conditions, instead of total rainfall amount, rainfall intensity may be more important to the process of infiltration excess runoff. For humid conditions with greater soil moisture contents, rainfall amount may be more important to surface runoff formation. Simulation results for various land uses were different with the Nash-Sutcliffe efficiency of 0.713 and 0.735 for the improved SCS-CN model used for bare land and cropland, respectively. On the surface of the bare land with little vegetation and cropland with low vegetation cover (except for corn stems), from the effect of rainfall splashing and surface runoff scouring, rills formed provided runoff paths. The Nash-Sutcliffe efficiency was low for woodland because the formation mechanism of surface runoff was complex, and excess infiltration–saturation runoff may occur during certain rainfall events. Moreover, interannual variability of vegetation cover for shrubland and woodland may alter the runoff coefficient. In 1994 and 2000, the runoff coefficients for shrubland and woodland were 0.058 and 0.057 respectively; in 2013 and 2015, the runoff coefficients were 0.140 and 0.032 respectively. Optimization of parameters related to soil properties is needed in future research on the improved model.
runoff; models; land use; soil conservation service-curve number model; curve number; Miyun District
10.11975/j.issn.1002-6819.2017.21.023
TV121+.2
A
1002-6819(2017)-21-0194-06
2017-07-15
2017-10-10
國家自然科學(xué)基金項目(41401560)
焦 劍,陜西西安人,高級工程師,博士,主要從事土壤侵蝕和非點(diǎn)源污染研究。Email:68283847@qq.com