陳俊英,劉 暢,張 林,向友珍,Leionid Gillerman,柴紅陽
?
斥水程度對(duì)脫水土壤水分特征曲線的影響
陳俊英1,劉 暢1,張 林2※,向友珍1,Leionid Gillerman3,柴紅陽1
(1. 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室,楊凌 712100;2. 西北農(nóng)林科技大學(xué)水土保持研究所,楊凌 712100;3. 本古里安大學(xué)Blaustein沙漠研究所,以色列思德博克84990)
為研究斥水程度對(duì)土壤水分特征曲線的影響,該文基于滴水穿透時(shí)間法,人工配置7種斥水程度的黏壤土(L0~L6)和6種斥水程度的砂土(S0~S5),用高速離心機(jī)測(cè)定其土壤水分特征曲線,應(yīng)用van Genuchten-Mualem(VG)模型進(jìn)行擬合,得出VG模型水力參數(shù)。結(jié)果表明:在同一吸力條件下,斥水黏壤土的含水率比斥水砂土的高;隨著斥水程度增加,在相同吸力情況下,土壤含水率隨斥水程度增大而減小;斥水黏壤土的殘余含水率隨著斥水程度增加而減小,斥水砂土S0~S3的殘余含水率沒有差異,S4、S5的殘余含水率顯著減??;斥水黏壤土和砂土進(jìn)氣值的對(duì)數(shù)與斥水劑添加量呈負(fù)線性相關(guān);隨著斥水程度增加,田間持水率減小,凋萎系數(shù)沒有明顯差異,重力水增加,有效水和易有效水減小,易利用水比例隨著斥水程度增加而減小;對(duì)于斥水黏壤土,微孔隙(0.3~<5m)和小孔隙(5~<30m)含量隨著斥水程度的增加明顯減小,土壤空隙(≥100m)隨著斥水程度的增加急劇增加;對(duì)于斥水砂土,中等孔隙(30~<75m)的含量隨斥水程度的增加明顯增加。該研究成果可為斥水土壤的入滲、蒸發(fā)和數(shù)值模擬提供理論支持。
土壤水分;孔隙;脫水;水分特征曲線;斥水
土壤斥水性是土壤中普遍存在的現(xiàn)象,幾乎所有的土壤都存在不同程度的斥水性[1-2],土壤斥水性表現(xiàn)為水滴在斥水土壤表面不能迅速入滲或鋪展的現(xiàn)象,斥水土壤的斥水持續(xù)時(shí)間可以從幾秒到數(shù)天[3-4],甚至更長(zhǎng)時(shí) 間[5],斥水土壤厚度可達(dá)幾十厘米[6],斥水性改變了土壤水分的三維分布和動(dòng)力學(xué)特性,這就使得斥水土壤入滲能力降低[7],土壤水分分布不均勻,容易形成優(yōu)先流[4];土壤持水能力降低,最終導(dǎo)致農(nóng)作物減產(chǎn)[8]。對(duì)于灌溉時(shí)間較短,但頻率較高的灌溉方式,如大流量滴灌等,斥水土壤的研究就很有必要,因?yàn)檫@種方式下,由于斥水土壤的存在,就會(huì)導(dǎo)致土壤入滲性能發(fā)生變化,可能形成地表積水使得蒸發(fā)量加大,或者形成指流現(xiàn)象,導(dǎo)致深層滲漏發(fā)生,使得灌溉水利用效率降低,因此更快更準(zhǔn)確的試驗(yàn)和模擬斥水土壤的水分運(yùn)動(dòng)特性具有重要的理論意義。
土壤水分特征曲線(簡(jiǎn)稱土-水曲線)表征土壤水的能量(土壤水吸力)和數(shù)量(土壤含水率)之間的關(guān)系,反映土壤水分基本特性,常被用于研究土壤水分保持和運(yùn)動(dòng),對(duì)評(píng)價(jià)土壤水分的有效性和持水性具有重要意 義[9-10],土-水曲線主要受土壤質(zhì)地和土壤結(jié)構(gòu)的影響[11]。目前關(guān)于斥水土壤的研究主要集中在斥水土壤的水分?jǐn)U散[12]、田間1D和2D水流運(yùn)動(dòng)[13-14]、斥水土壤的入滲過程[15-18]、含水率對(duì)斥水土壤的影響[19-20]等方面,關(guān)于斥水土壤水分特征曲線影響因素方面研究成果較少。已有研究表明,在相同吸力的情況下斥水土壤與親水土壤的土壤含水率是不同的[21]。Bauters等[22]對(duì)4種人工配置的斥水土壤進(jìn)行入滲試驗(yàn),發(fā)現(xiàn)濕潤(rùn)鋒受斥水程度的影響,土壤進(jìn)水值隨斥水程度的增加而增加。Ustohal等[23]通過測(cè)定斥水土壤的粒徑分布及土壤水分特征的吸濕和脫濕曲線,由粒徑分布和土壤質(zhì)地預(yù)測(cè)了斥水土壤水力性質(zhì)。Czachor[24]測(cè)定了不同斥水土壤類型和斥水程度土壤的吸濕和脫濕土壤水分特征曲線,得出斥水程度對(duì)吸濕曲線比脫濕曲線的影響大。Lamparter[25]測(cè)定了人工配置的3種斥水程度砂土和1種親水砂土的土-水曲線和接觸角,得出土壤水力特性與接觸角相關(guān)性很高,進(jìn)氣值和飽和導(dǎo)水率與接觸角呈線性相關(guān)。Diamantopoulos等[26]測(cè)定了人工配置的3種斥水程度砂土和1種親水砂土的土-水曲線,得出斥水程度對(duì)土壤水力特性影響較大。盡管有關(guān)斥水程度對(duì)土壤水分特征曲線影響的研究已經(jīng)取得一些成果,但多數(shù)都只是研究了3~4種斥水程度的砂土土壤水分曲線,并沒有對(duì)斥水程度對(duì)土-水曲線的影響以及土壤進(jìn)氣值、土壤水分常數(shù)和孔徑詳細(xì)研究?;诖?,本文選用了人工配置的7種斥水黏壤土和6種斥水砂土,測(cè)定其土壤水分曲線,應(yīng)用van Genuchten-Mualem(VG)模型[27]進(jìn)行擬合,得出VG模型水力參數(shù),分析斥水程度對(duì)土壤水分特征曲線、土壤進(jìn)氣值、土壤水分常數(shù)和土壤孔徑分布的影響,以期為深入理解斥水土壤水分運(yùn)移機(jī)制提供參考。
本試驗(yàn)供試土壤取自陜西楊凌渭河一級(jí)階地和三級(jí)階地0~30 cm的耕作土壤,土壤經(jīng)風(fēng)干、去雜,過2 mm標(biāo)準(zhǔn)孔篩篩子,采用MS2000型激光粒度儀(馬爾文,英國(guó))對(duì)試驗(yàn)土壤顆粒組成進(jìn)行測(cè)定:一級(jí)階地土壤粒徑<0.002 mm、0.002~<0.02 mm和0.02~2 mm的土壤顆粒占比(質(zhì)量分?jǐn)?shù))分別為3.03%、7.19%和89.78%,三級(jí)階地分別為17.25%、44.38%和38.37%,根據(jù)國(guó)際質(zhì)地三角形可知,一級(jí)階地供試土壤為砂土,三級(jí)階地供試土壤為黏壤土。
土壤產(chǎn)生斥水性的原因有很多,實(shí)驗(yàn)室斥水土壤一般采用向親水土壤中加入斥水材料的方法得到[4,28]。根據(jù)Doerr[29]提出的滴水穿透時(shí)間(water drop penetration time,WD)法分類標(biāo)準(zhǔn),將土壤劃分為:親水(滴水穿透時(shí)間WD<5 s)、弱斥水(5≤WD<60 s)、強(qiáng)斥水(60≤WD<600 s)、嚴(yán)重斥水(600≤WD<3 600 s)和極度斥水 (WD≥3 600 s)5個(gè)斥水程度。供試的黏壤土和砂土取回后均表現(xiàn)為親水性質(zhì),通過向這2種土壤中添加不同質(zhì)量的斥水性材料,即可得到不同斥水程度的土壤。配置過程為,研磨一定質(zhì)量的斥水性材料(十八烷基伯胺)至極細(xì)顆粒,均勻撒入2 kg土樣中拌合均勻,放置3 d后,測(cè)定土樣的滴水穿透時(shí)間(取10滴水測(cè)定的平均值),將供試土壤的斥水性材料添加量(1 kg土壤添加斥水劑的克數(shù))、斥水程度和處理詳列于表1。
表1 供試土壤斥水劑添加量、斥水程度和處理
將配制好的土壤樣品按預(yù)設(shè)容重1.33 g/cm3裝入容積為100 cm3的環(huán)刀,各處理均重復(fù)4次(離心機(jī)每次只能測(cè)4個(gè)樣品)。為計(jì)算土壤含水率,試驗(yàn)前將環(huán)刀置于蒸餾水中浸泡至飽和,試驗(yàn)后將環(huán)刀置于105 ℃烘箱內(nèi)干燥至質(zhì)量恒定,土壤含水率最終結(jié)果取4個(gè)重復(fù)的均值。
將飽和環(huán)刀樣品置于CR21GⅡ型高速恒溫冷凍離心機(jī)(日立,日本)內(nèi)測(cè)定土壤水分特征曲線(簡(jiǎn)稱土-水曲線),測(cè)定時(shí)機(jī)內(nèi)恒溫4 ℃,將待測(cè)樣品放入離心機(jī)裝置中,選定離心機(jī)的轉(zhuǎn)速分別為900、1 700、2 200、2 800、3 100、5 300、6 900和8 100 r/min,與其對(duì)應(yīng)的平衡時(shí)間分別為30、45、60、60、60、90、90和90 min,對(duì)應(yīng)的吸力分別為88.8、316.6、530.3、859、1 053、3 018、5 216和7 189 cm。每次離心結(jié)束后,采用電子天平(ES-3002H型)稱量質(zhì)量,獲得土壤質(zhì)量含水率,再將其轉(zhuǎn)換為體積含水率。
常用土壤水分曲線模型有VG模型、Brooks-Corey模型、對(duì)數(shù)正態(tài)(lognormal distribution)模型和雙重孔隙度(dual-porosity)模型等。通?;趯?shí)測(cè)吸力和土壤含水率數(shù)據(jù),采用模型擬合水力參數(shù),評(píng)價(jià)土壤持水性能。本文選取應(yīng)用最為廣泛的VG模型[27,30]。
式中()為土壤體積含水率,cm3/cm3;θ為土壤殘余體積含水率,cm3/cm3;θ為土壤飽和體積含水率,cm3/cm3;為壓力水頭(負(fù)壓),cm;近似為進(jìn)氣值的倒數(shù),cm–1;為形狀參數(shù),與土壤孔徑分布有關(guān),1–1/,是影響土壤水分特征曲線形態(tài)的經(jīng)驗(yàn)參數(shù)。
采用Excel2007進(jìn)行函數(shù)計(jì)算,SPSS20.0進(jìn)行統(tǒng)計(jì)分析,Sigmplot12.0進(jìn)行圖表繪制。
圖1為試驗(yàn)測(cè)得的不同斥水程度土壤土水分特征曲線。從圖1可以看出,對(duì)于斥水黏壤土和砂土,在不同斥水程度條件下,隨著吸力增加,土壤含水率減小, 這與Bauters等[22]和Czachor[24]研究的變化趨勢(shì)一樣,但是Bauters的土壤吸力是測(cè)定的,而且其吸力非常小(≤20 cm)。從圖1可以看出在低吸力(≤1 000 cm)時(shí),各處理土-水曲線變化平緩,說明在此吸力范圍內(nèi),隨吸力增加,土壤含水率變化較大,可能由于該階段土體通過大孔隙進(jìn)行排水,即使吸力變化不大,土壤含水率也會(huì)發(fā)生明顯改變;當(dāng)吸力較高(>1 000 cm)時(shí),各處理的土-水曲線呈陡直狀,說明此時(shí)土壤含水率下降速度較慢,這是因?yàn)樵诟呶﹄A段,隨著吸力增加,斥水土壤只有較小的孔隙能保留水分,土體對(duì)其吸持力較大,因此這一階段的土壤含水率隨吸力增加無顯著變化。同時(shí)從圖1還可以看出,同一吸力條件下,斥水黏壤土的含水率比斥水砂土的高,而且斥水砂土的土-水曲線在高吸力階段比斥水黏壤土的土-水曲線陡直,低吸力階段比斥水黏壤土的土-水曲線平緩。這是因?yàn)槌馑と劳林械耐寥鲤ちY|(zhì)量分?jǐn)?shù)(17.25%)比斥水砂土的高(3.03%),土壤黏粒含量增多,使得土壤中的細(xì)小孔隙發(fā)育,斥水黏壤土的孔徑分布比斥水砂土的分布均勻,因此隨著吸力增加,含水率呈緩慢減小趨勢(shì),而對(duì)于斥水砂土而言,由于其砂粒含量較多,土壤中的大孔隙數(shù)量較多,因此當(dāng)吸力達(dá)到一定值后,這些大孔隙中的水分首先排出,土壤中僅有少量的水存留,因此,斥水砂土的土-水曲線在低吸力階段緩平,在高吸力階段陡直。
從圖1a可以看出,隨著黏壤土斥水程度增加,其土-水曲線明顯向左推移,即在相同吸力情況下,斥水程度越大,土壤含水率越小,這是因?yàn)槌馑潭仍礁?,土壤?duì)水的排斥性越大,因此在相同吸力時(shí),斥水程度較大的土壤脫水相對(duì)較多,含水率也就變小。從圖1b可以看出,隨著砂土斥水程度增加,其土-水曲線在低吸力階段,明顯向左推移,在高吸力階段,其土-水曲線變化不大明顯。說明斥水程度在低吸力階段對(duì)斥水黏壤土和砂土的影響都比較大,而在高吸力階段,斥水程度對(duì)黏壤土影響明顯,對(duì)斥水砂土影響不大。這是因?yàn)槌馑巴恋男】紫斗浅I伲诟呶﹄A段,斥水砂土的小孔隙內(nèi)可儲(chǔ)存的水量已經(jīng)非常少,因此斥水程度對(duì)其影響不明顯,而對(duì)于黏壤土,還存在很多細(xì)小孔隙,斥水程度則對(duì)其影響明顯。
圖1 斥水程度不同的土壤的水分特征曲線
RETC軟件[30]由美國(guó)鹽改中心(US Salinity Laboratory)開發(fā),可采用不同土壤水分特征曲線模型擬合實(shí)測(cè)試驗(yàn)數(shù)據(jù),分析非飽和土壤水力性質(zhì),本文采用VG模型,非飽和導(dǎo)水率采用Mualem模型(1–1/),擬合各處理的VG模型參數(shù)見表2。
表2 不同斥水程度土壤水分特征曲線VG模型擬合參數(shù)
注:同列不同小寫字母表示差異顯著(<0.05)。
Note: Values followed by different letters are significantly different (<0.05).
從表2可以看出,對(duì)于斥水黏壤土,各處理殘余含水率差異顯著,即隨著斥水程度增加,殘余含水率呈減小趨勢(shì),殘余含水率是土壤水分特征曲線導(dǎo)數(shù)為0時(shí)的土壤含水率,說明隨著斥水程度增加,其土壤水分特征曲線的導(dǎo)數(shù)逐漸減?。伙柡秃式朴谖?時(shí)的土壤含水率,各處理飽和含水率沒有差異,變化不明顯,這是因?yàn)楦魈幚碓O(shè)定容重一樣,對(duì)于相同的容重,土壤所占的體積一樣,其飽和含水率一樣;各處理的參數(shù)值差異顯著,黏壤土的值隨著斥水程度增加而迅速增加;各處理的參數(shù)值差異顯著,值隨斥水程度增加而減小,對(duì)于同一類型土壤參數(shù)值大時(shí),曲線變化較緩,這也與圖1a的變化趨勢(shì)一致。
同時(shí)從表2還可以看出,對(duì)于斥水砂土,處理S0~S3的殘余含水率沒有差異,而極度斥水的處理S4、S5與S0~S3之間差異顯著,殘余含水率減小;飽和含水率與斥水黏壤土的一樣,沒有差異,原因也相同。各處理的參數(shù)值差異顯著,值隨著斥水程度增加而增加,但變化程度較斥水黏壤土??;各處理的參數(shù)值差異顯著,變化規(guī)律隨斥水程度先減小再增加。
進(jìn)氣值(air entry value,s)是指空氣開始進(jìn)入土體邊界的土顆?;蝾w粒集合體的孔隙時(shí)所對(duì)應(yīng)基質(zhì)吸力值[9],是研究土壤水分保持和運(yùn)動(dòng)的重要參數(shù)。VG模型中參數(shù)值可近似視為進(jìn)氣值的倒數(shù),土壤的斥水程度可以由斥水劑的添加量(R)來表示,分析進(jìn)氣值(令s=1/)的對(duì)數(shù)與斥水程度的關(guān)系見圖2。從圖2可以看出隨著斥水程度增加,土壤進(jìn)氣值的對(duì)數(shù)減小,其關(guān)系符合線性模型,即
式中sa為進(jìn)氣值,cm;Rx為斥水劑添加量,g/kg;b、c為模型參數(shù)。
從圖2可以看出對(duì)于斥水黏壤土和斥水砂土的進(jìn)氣值對(duì)數(shù)(logs)與斥水劑添加量(R)回歸的關(guān)系擬合度很高,2分別為0.92和0.93(<0.01)。這是因?yàn)槌馑潭仍礁?,土壤?duì)水分的排斥性越大,即土壤對(duì)水的吸附力越小,就使得斥水程度高的土樣在較小的吸力條件下就開始并且快速失水。這與Lamparter[25]研究得出的砂土進(jìn)氣值隨斥水程度增加而減小的趨勢(shì)是一樣的,但他只研究了3種斥水程度的砂土的進(jìn)氣值與斥水程度的關(guān)系,不能得出進(jìn)氣值與斥水程度的定量關(guān)系;與Bauters等[22]得出的結(jié)論正好相反,原因可能是他的進(jìn)水值和吸力是測(cè)定的,測(cè)量的范圍非常小(吸力值小于20 cm,進(jìn)水值小于4 cm),在極小吸力下,容易產(chǎn)生測(cè)量誤差,同時(shí)其觀測(cè)的吸力和土壤樣品偏少,影響結(jié)果的分析。
基于擬合的土壤水分特征曲線參數(shù),計(jì)算田間持水率、凋萎系數(shù)、重力水、有效水、易有效水、無效水及易利用水比例。田間持水率是吸力為0.2×105Pa時(shí)含水率,凋萎系數(shù)是吸力為15×105Pa時(shí)的含水率,重力水是飽和含水率與田間持水率的差,有效水是田間持水率與凋萎系數(shù)之差,易有效水是田間持水率與毛管斷裂持水量(約為田間持水率的65%)之差,易利用水比例是指易利用水占飽和含水率的比值。從表3可以看出對(duì)于斥水黏壤土和斥水砂土,隨著斥水程度增加,田間持水率減小,說明對(duì)于斥水土壤,隨著斥水程度的增加,土壤毛管懸著水量的最大值降低。各處理之間的凋萎系數(shù)差異不大(0.172~0.200、0.037~0.044 cm3/cm3),說明斥水程度對(duì)土壤的凋萎系數(shù)影響不大。從表3還可以看出,對(duì)于斥水黏壤土和斥水砂土,重力水隨著斥水程度的增加而增加,重力水是當(dāng)土壤的含水率超過了田間持水量,多余的水分不能為毛管力所吸持,在重力作用下將沿著非毛管孔隙下滲,說明斥水程度的增加,減小了毛管力,使得土壤的重力水增加。同時(shí)從表3還可以看出,對(duì)于斥水黏壤土和斥水砂土,有效水和易有效水隨著斥水程度的增加而減小,因此易利用水比例隨著斥水程度增加而減小。綜上,斥水程度的增加導(dǎo)致田間持水量、易利用水比例降低,使得作物可吸收和利用的水分減少,不利于農(nóng)作物的生長(zhǎng),將會(huì)導(dǎo)致農(nóng)作物減產(chǎn),因此應(yīng)該盡量避免土壤的斥水程度增加。
表3 不同斥水程度下土壤水分常數(shù)值
根據(jù)試驗(yàn)得到的土壤水分特征曲線,計(jì)算出斥水黏壤土和斥水砂土的當(dāng)量孔徑分布曲線,結(jié)合本研究測(cè)定范圍,參考土壤學(xué)百科全書[31],將土壤孔隙當(dāng)量孔徑分為極微孔隙(<0.3m)、微孔隙(0.3~<5m)、小孔隙(5~<30m)、中等孔隙(30~<75m)、大孔隙(75~<100m)、土壤空隙(≥100m)6個(gè)孔徑段,可以直觀展現(xiàn)斥水程度對(duì)土壤孔隙分布的影響,斥水黏壤土和砂土的分段統(tǒng)計(jì)結(jié)果見圖3。
從圖3a可以看出,對(duì)于斥水黏壤土,斥水程度對(duì)于極微孔隙影響不明顯,其占總孔隙體積比例均在30%左右;斥水黏壤土的微孔隙和小孔隙占總孔隙體積比例隨著斥水程度的增加明顯減小,中等孔隙為弱斥水處理的L2最大,強(qiáng)斥水、嚴(yán)重斥水、親水、極度斥水處理逐漸降低;各處理的大孔隙相差不大,占比都低于2%;由圖3a可以明顯看出,土壤空隙隨著斥水程度的增加急劇增加,極度斥水處理L6占比達(dá)57%,而親水處理L0只有2%,弱斥水處理L1和L2土壤空隙占比也小于6%,強(qiáng)斥水處理L3和L4土壤空隙占比在37%左右,而嚴(yán)重斥水處理L5的土壤空隙占比在50%左右。從圖3b可以看出,對(duì)于斥水砂土,各處理均沒有極微孔隙存在,微孔隙的占比除了極度斥水的處理S5低于1%之外,其余處理微孔隙占比均在5%左右,而且差異不大;親水處理S0的小孔隙(85%)明顯高于其他處理,強(qiáng)斥水、嚴(yán)重斥水和極度斥水的小孔隙占比差異不大,均在60%左右;從圖3b還可以明顯看出,中等孔隙的占比隨斥水程度的增加明顯增加,其中極度斥水處理S5的中等孔隙占比達(dá)40%,而親水處理S0的中等孔隙占比僅有7%;各處理的大孔隙和土壤空隙占比均比較小,都小于2%。這些都進(jìn)一步說明,斥水程度明顯減小了土壤的持水能力。這個(gè)與Lamparter[25]研究的砂土的孔隙分布分布基本一樣,但他給出的是孔隙變化的累積圖,不能得出不同當(dāng)量孔隙的含量。
圖3 不同土壤斥水程度對(duì)當(dāng)量孔隙分布的影響
1)隨著斥水程度增加,在相同吸力情況下,黏壤土土-水曲線明顯向左推移,土壤含水率減??;砂土土-水曲線在低吸力階段,明顯向左推移,在高吸力階段,其土-水曲線變化不大明顯。
2)對(duì)于斥水黏壤土,隨著斥水程度增加,殘余含水率減?。粚?duì)于斥水砂土,嚴(yán)重斥水以下等級(jí)的殘余含水率沒有差異,極度斥水的殘余含水率明顯小于其他斥水等級(jí)。隨著斥水程度的增加,土壤進(jìn)氣值對(duì)數(shù)減小,進(jìn)氣值對(duì)數(shù)與斥水劑添加量呈極顯著負(fù)線性相關(guān)(<0.01),相關(guān)系數(shù)較高(2≥0.92);隨著斥水程度增加,斥水黏壤土和砂土的田間持水率減小,凋萎系數(shù)沒有明顯差異,重力水增加,有效水和易有效水減小,易利用水比例也減小。
3)對(duì)于斥水黏壤土,斥水程度對(duì)于極微孔隙和大孔隙含量影響不明顯,而微孔隙和小孔隙隨著斥水程度的增加明顯減小,土壤空隙隨著斥水程度的增加急劇增加;對(duì)于斥水砂土,各處理均沒有極微孔隙存在,斥水程度對(duì)微孔隙、大孔隙和土壤空隙影響不大,親水處理的小孔隙含量明顯高于其他處理,強(qiáng)斥水、嚴(yán)重斥水和極度斥水的小孔隙差異不大,中等孔隙的占比隨斥水程度的增加明顯增加。
綜上所述,斥水程度的增加導(dǎo)致田間持水量和易利用水比例降低、黏壤土的孔隙增加,砂土的小孔隙明顯減小,使得作物可吸收和利用的水分減少,不利于農(nóng)作物的生長(zhǎng),應(yīng)盡量避免土壤的斥水程度增加。
[1] Doerr S H, Shakesby A R A, Dekker A L W, et al. Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate[J]. European Journal of Soil Science, 2006, 57(5): 741-754.
[2] DeBano L F. Water repellency in soils: A historical overview[J]. Journal of Hydrology, 2000, 231-232: 4-32.
[3] DeBano F L. Water Repellent Soils: A State of the art[M]. US. Department of Agriculture, Forest Service, General Technical, Report, 1981, 82.
[4] Doerr S H, Shakesby R A, Walsh R P D. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance[J]. Earth-Science Reviews, 2000, 51: 33-65.
[5] T?umer K, Stoffregen H, Wessolek G. Seasonal dynamics of preferential flow in a water repellent soil[J]. Vadose Zone Journal, 2006, 5(1): 405-411.
[6] Dekker L W, Ritsema C J. Wetting patterns and moisture variabitily in water repellent DuTch soils[J]. Journal of Hydrology, 2000, 231-232: 148-164.
[7] Xiong Y, Furman A, Wallach R. Moment analysis description of wetting and redistribution plumes in wettable and water- repellent soils[J]. Journal of Hydrology, 2012, 422-423: 30-42.
[8] 陳俊英,張智韜,汪志農(nóng),等. 土壤斥水性影響因素及改良措施的研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(7):84-89. Chen Junying, Zhang Zhitao, Wang Zhinong, et al. Influencing factors and amelioration of soil water repellency[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(7): 84-89. (in Chinese with English abstract)
[9] 雷志棟,楊詩秀,謝傳森. 土壤水動(dòng)力學(xué)[M]. 北京:清華大學(xué)出版社,1998:18-24.
[10] Ning Lu, William J. Likos. 非飽和土力學(xué)[M]. 北京:高等教育出版社,2012:359.
[11] Gardner W R. Availability and measurement of soil water[J]. Water Deficits and Plant Growth, 1968, 1: 107-135.
[12] Woche S K, Goebel M O, Kirkham M B, et al. Contact angle of soils as affected by depth, texture, and land management[J]. European Journal of Soil Science, 2005, 56(2): 239-251.
[13] Wallach R. Effect of soil water repellency on moisture distribution from a subsurface point source[J]. Water Resources Research, 2010, 46(8): 863-863.
[14] Durner W, Iden S C. Extended multistep outflow method for the accurate determination of soil hydraulic properties near water saturation[J]. Water Resources Research, 2011, 47(8): 427-438.
[15] Wallach R, Graber E R. Infiltration into effluent irrigation- induced repellent soils and the dependence of repellency on ambient relative humidity[J]. Hydrological Processes, 2007, 21(17): 2346-2355.
[16] Robichaud P R, Wagenbrenner J W, Pierson F B, et al. Infiltration and interrill erosion rates after a wildfire in western Montana, USA[J]. Catena, 2016, 142: 77-88.
[17] Bughici T, Wallach R. Formation of soil-water repellency in olive orchards and its influence on infiltration pattern[J]. Geoderma, 2016, 262: 1-11.
[18] 劉春成,李毅,任鑫,等. 四種入滲模型對(duì)斥水土壤入滲規(guī)律的適用性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(5):62-67. Liu Chuncheng, Li Yi, Ren Xin, et al. Applicability of four infiltration models to infiltration characteristics of water repellent soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(5): 62-67. (in Chinese with English abstract)
[19] 陳俊英,吳普特,張智韜,等. 土壤斥水性對(duì)含水率的響應(yīng)模型研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(1):63-67.Chen Junying, Wu Pute, Zhang Zhitao, et al. Response models for soil water repellency and soil moisture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 63-67. (in Chinese with English abstract).
[20] Liu H, Ju Z, Bachmann J, et al. Moisture-dependent wettability of artificial hydrophobic soils and its relevance for soil water desorption curves[J]. Soil Science Society of America Journal, 2012, 76(2): 342-349.
[21] Bauters T W J, Steenhuis T S, Dicarlo D A, et al. Physics of water repellent soils[J]. Journal of Hydrology, 2000, (231-232): 233-243.
[22] Bauters T W J, Steenhuis T S, Parlange J Y, et al. Preferential flow in water-repellent sands[J]. Soil Science Society of America Journal, 1998, 62(5): 1185-1190.
[23] Ustohal P, Stauffer F, Dracos T. Measurement and modeling of hydraulic characteristics of unsaturated porous media with mixed wettability[J]. Journal of Contaminant Hydrology, 1998, 33(98): 5-37.
[24] Czachor H. Water retention of repellent and subcritical repellent soils: new insights from model and experimental investigations[J]. Journal of Hydrology, 2010, 380(1/2): 104-111.
[25] Lamparter A. Applicability of ethanol for measuring intrinsic hydraulic properties of sand with various water repellency levels[J]. Vadose Zone Journal, 2010, 9(2): 45-450.
[26] Diamantopoulos E, Durner W, Reszkowska A, et al. Effect of soil water repellency on soil hydraulic properties estimated under dynamic conditions[J]. Journal of Hydrology, 2013, 486(4): 175-186.
[27] Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(44): 892-898.
[28] Zavala L M, Granged A J P, Jordán A, et al. Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions[J]. Geoderma, 2010, 158(3): 366-374.
[29] Doerr S H. On standardizing the ‘water drop penetration time’ and the ‘molarity of an ethanol droplet’ techniques to classify soil hydrophobicity: A case study using medium textured soils[J]. Earth Surface Processes & Landforms, 2015, 23(7): 663-668.
[30] Van Genuchten M T, Simunek J, Leij F J. RETC software, Version 6.02, Code for quantifying the Hydraulic Functions of www.hydrus3d.com, US Salinity Laboratory, University of California Riverside.
[31] Cameron K C, Buchan G D. Porosity and pore size distribution[M]. Encyclopedia of Soil Science, Boca Raton: CRC Press, 2006, 2: 1350-1353.
陳俊英,劉 暢,張 林,向友珍,Leionid Gillerman,柴紅陽. 斥水程度對(duì)脫水土壤水分特征曲線的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(21):188-193. doi:10.11975/j.issn.1002-6819.2017.21.022 http://www.tcsae.org
Chen Junying, Liu Chang, Zhang Lin, Xiang Youzhen, Leionid Gillerman, Chai Hongyang. Impact of repellent levels on drainage soil water characteristic curve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 188-193. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.21.022 http://www.tcsae.org
Impact of repellent levels on drainage soil water characteristic curve
Chen Junying1, Liu Chang1, Zhang Lin2※, Xiang Youzhen1, Leionid Gillerman3, Chai Hongyang1
(1.712100,; 2.712100,; 3.84990,)
Water repellency is a widespread phenomenon in soils. Almost every soil shows water repellency to some degree. It may reduce the infiltration in soil and is easy to form finger flow. Therefore, the soil holding capacity of moisture and the yield of crops are reduced. It’s very important to study the soil water characteristic curve in repellency soils. In this study, we aimed to explore the impact of repellent levels on soil hydraulic characteristics, clay loam of 7 repellent levels (treatment L0 to L6) and sand of 6 repellent levels (treatment S0 to S5) made by adding octadecyl primary amine collected from Yangling, Shaanxi. The experiment was conducted in the Key Laboratory of Agricultural Soil and Water Engineering, Ministry of Education, at Northwest A&F University in August 2016. Each of the 13 treatments had 4 replicates. Soils were mixed with octadecyl primary amine which varied from 0 as control and 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 g/kg respectively for clay loam and 0.06, 0.08, 0.09, 0.115, 0.12 g/kg respectively for sand. The repellency level of treatment L0 and S0 was wettable, L1, L2 and S1 was slight repellent, L3, L4 and S2 were moderate, L5 and S3 were severe, and L6, S4 and S5 were extreme. The soil moisture characteristic curves were measured with a high speed centrifuge. The van Genuchten (VG) model was fitted to obtain the hydraulic parameters with RETC software. The results showed that under the same suction, the soil moisture of repellent clay loam was higher than that of repellent sand and the soil moisture decreased with the increase of repellent levels. The residual moisture and the shape parameterdecreased and the reciprocal of air entry value increased rapidly with increasing the repellent levels for repellent clay loam. There was no difference in residual moisture of treatment of S0 to S3 for sand, but the residual moisture of treatment S4 and S5 was lower than the other treatments for repellent sand. The reciprocal of air entry valueincreased with increasing the repellent levels for repellent sand. The air entry value decreased with increasing the repellent levels for both repellent clay loam and sand. There was a significant negative linear correlation between logarithm of air entry value and the amount of octadecyl primary amine, and the determination coefficient was 0.92 and 0.93 for repellent clay loam and sand, respectively. There was no difference in wilting coefficient between the treatments for repellent clay loam and sand respectively. The field capacity, effective water and easily available water decreased with the increase of the repellent levels for both repellent clay loam and sand. Meanwhile, the gravity water showed a decreasing trend. The results also showed that there was no difference in the proportion of micropore and macropore while the micro-porosity and porosity decreased with the increase of water repellency, with increasing the repellent levels for repellent clay loam. The soil voids increased sharply with the increase of repellent level for repellent clay loam. The micropore did not exist in repellent sand. There was no difference in the proportion of micropores, macropores and soil voids with the repellent level for repellent sand. The proportion of small pore of S0 was significantly higher than the other treatments but there’s no difference between S1 to S5. The proportion of medium porosity increased obviously with the increase of repellent levels for sand. Therefore with the repellency increase, field capacity, easily available water and micropore of sand decreased, and soil porosity of clay loam increased. It led the water that crop can absorb reduced. Repellency was unconducive to crops growth. We should try to avoid the increase in soil water repellency level. This study can provide valuable information for the infiltration, evaporation and numerical simulation of repellent soil.
soil moisture; porosity; drainage; soil water characteristic curve; repellency
10.11975/j.issn.1002-6819.2017.21.022
S152.7
A
1002-6819(2017)-21-0188-06
2017-02-27
2017-10-10
國(guó)家自然科學(xué)基金資助項(xiàng)目(51409221、51349001);西北農(nóng)林科技大學(xué)基本科研業(yè)務(wù)費(fèi)(2452017116);中央高校基本科研業(yè)務(wù)費(fèi)青年培育專項(xiàng)
陳俊英,陜西咸陽人,副教授,主要從事節(jié)水農(nóng)業(yè)和水土資源高效利用方面的研究。Email:cjyrose@126.com
※通信作者:張 林,湖北隨州人,研究員,主要從事節(jié)水灌溉裝備與理論研究。Email:zl0211wy@163.com