吳撼明,張浩浩,高蘭君,沈伯雄,楊 程
1.河北工業(yè)大學(xué)能源與環(huán)境工程學(xué)院,天津 300401;2.南開大學(xué)環(huán)境科學(xué)與工程學(xué)院,天津 300701
V-W-Ti-Si/堇青石催化劑柴油機(jī)脫硝反應(yīng)動(dòng)力學(xué)
吳撼明1,張浩浩1,高蘭君1,沈伯雄1,楊 程2
1.河北工業(yè)大學(xué)能源與環(huán)境工程學(xué)院,天津 300401;2.南開大學(xué)環(huán)境科學(xué)與工程學(xué)院,天津 300701
采用固定床反應(yīng)器,以自制的 V-W-Ti-Si/堇青石為催化劑,在消除內(nèi)外擴(kuò)散影響的基礎(chǔ)上,考察了氨選擇性催化還原反應(yīng)(NH3-SCR)過程,建立了冪指數(shù)型的脫硝反應(yīng)動(dòng)力學(xué)模型,并通過線性擬合確定了模型參數(shù)。結(jié)果表明,在自制的V-W-Ti-Si/堇青石催化劑上,NO,NH3和O2的反應(yīng)級(jí)數(shù)分別為0.93,0,0.24,活化能為25.99 kJ/mol,模型擬合的相對(duì)誤差在10%左右,可用于指導(dǎo)柴油機(jī)尾氣脫硝催化劑反應(yīng)過程研究與開發(fā)。
柴油機(jī)尾氣 脫硝 選擇性催化還原 V-W-Ti-Si/堇青石催化劑
NOx作為電廠鍋爐、汽車和船舶的主要排放污染物之一,越來越受到關(guān)注。選擇性還原反應(yīng)(SCR)是船舶和汽車柴油機(jī)廣泛采用的脫除 NOx的技術(shù)。目前,我國柴油尤其是船用柴油的硫含量較高[1],所以將抗硫性較好的V2O5-WO3-TiO2負(fù)載在堇青石上的涂層式催化劑,是柴油機(jī)SCR裝置最為常用的催化劑[2]。為了提高商業(yè)V2O5-WO3-TiO2催化劑的性能,很多學(xué)者通過選擇新的活性組分或新的載體[3]、尋找新的制備方法[4]、催化劑改性[5]等方式,對(duì)催化劑的性能進(jìn)行提升。部分研究表明SiO2的加入有助于催化劑更好的負(fù)載在堇青石上[6],以解決催化劑脫落等問題。
柴油機(jī) NH3-SCR反應(yīng)比較普遍的動(dòng)力學(xué)模型有以下四種:Eley-Rideal(E-R)機(jī)理模型[7,8],Langmuir-Hinshelwood(L-H)機(jī)理模型[9],一級(jí)反應(yīng)模型[10,11]和冪指數(shù)模型[12]。普遍接受的是E-R機(jī)理模型。目前大多數(shù)動(dòng)力學(xué)研究是針對(duì)于催化劑本身,本工作將采用實(shí)驗(yàn)室自制的V2O5-WO3-TiO2-SiO2/堇青石負(fù)載型催化劑作為柴油機(jī)NH3-SCR反應(yīng)催化劑,考察其反應(yīng)動(dòng)力學(xué),為工業(yè)化應(yīng)用提供基礎(chǔ)數(shù)據(jù)。
采用自制催化劑[13]。催化劑負(fù)載前先將堇青石超聲處理30 min,然后120 ℃干燥3 h,550 ℃煅燒4 h,以去除吸附的各種雜質(zhì)。再用質(zhì)量分?jǐn)?shù)為26%的硝酸沸煮一段時(shí)間后,用蒸餾水洗滌至洗滌液pH值為中性,將載體于120 ℃下干燥3 h,550 ℃煅燒4 h,以去除催化劑表面吸附的雜質(zhì)并改造催化劑表面形貌。將催化劑成分V2O5,WO3和(TiO2+SiO2)質(zhì)量比為1:8:91,Ti和Si的物質(zhì)的量之比為8:2,涂覆到預(yù)處理好的堇青石上,水平放置120 ℃干燥3 h。然后重復(fù)上述浸漬過程直到達(dá)到
圖3 不同反應(yīng)條件下的動(dòng)力學(xué)數(shù)據(jù)Fig.3 Kinetic data under different reaction conditions
由于反應(yīng)物氣體組分中O2的濃度較高,達(dá)到了5%,柴油機(jī)尾氣中的NOx主要以NO的形式存在,柴油機(jī)SCR反應(yīng)主要按反應(yīng)式(1)進(jìn)行[15]。
NO的反應(yīng)速率方程采用冪函數(shù)形式:
式中:rNO為NO反應(yīng)速率;CNO為NO的濃度;CNH3為NH3的濃度;CO2為O2的濃度;a,b和c是各反應(yīng)物的反應(yīng)級(jí)數(shù);k為反應(yīng)速率常數(shù),可由阿累尼烏斯(Arrhenius)方程求解。
式中:A為指前因子;R為氣體常數(shù),8.314 (J·mol)/K;E為反應(yīng)的活化能,J/mol;T為溫度,K。
反應(yīng)物濃度變化時(shí),反應(yīng)速率計(jì)算公式為[19]:
式中:XNO為NO的轉(zhuǎn)化效率;CNO,in為NO進(jìn)口濃度;m/F為質(zhì)量流量比,(g·min)/mL。根據(jù)圖3的實(shí)驗(yàn)數(shù)據(jù)可計(jì)算出不同反應(yīng)條件下的反應(yīng)速率。
固定O2和NH3的入口濃度時(shí),在同一溫度下,反應(yīng)速率僅是NO入口濃度的函數(shù),lnrNO對(duì)lnCNO作圖可得圖4的結(jié)果,其斜率即為NO的反應(yīng)級(jí)數(shù),a為0.93。
圖4 NO反應(yīng)級(jí)數(shù)回歸直線Fig.4 NO reaction order regression line
圖5 NH3反應(yīng)級(jí)數(shù)回歸直線Fig.5 NH3 reaction order regression line
同理,O2和NO的入口濃度固定時(shí),在同一溫度下,反應(yīng)速率僅是NH3入口濃度的函數(shù),將lnrNO對(duì)lnCNH3作圖(見圖5),求得NH3反應(yīng)級(jí)數(shù)b為-0.11。通過相關(guān)系數(shù)R2(0.05)值可以看出,擬合出的NH3的反應(yīng)級(jí)數(shù)并不合理。根據(jù)文獻(xiàn)[16]和[17]的研究結(jié)果可知,NH3濃度對(duì)NO反應(yīng)速率幾乎無影響,因此,確定NH3的反應(yīng)級(jí)數(shù)為0。
固定NO濃度和氨氮比,改變O2入口濃度,可得圖6所示的結(jié)果,得到O2反應(yīng)級(jí)數(shù)c為0.24。擬合結(jié)果的相關(guān)系數(shù)R2大于0.99。
圖6 O2反應(yīng)級(jí)數(shù)回歸直線Fig.6 O2 reaction order regression line
圖7 擬合直線Fig.7 Fitting straight line
將上述結(jié)果代入動(dòng)力學(xué)方程式(2)中,考察溫度對(duì)反應(yīng)速率rNO的影響,由對(duì)數(shù)阿累尼烏斯(Arrhenius)方程得到斜率-E/R為-3126.28(見圖7),即活化能E為25.99 kJ/mol,指前因子A為2.76×109mL/(g·s)。NO的冪指數(shù)模型反應(yīng)速率方程式為:
目前商用釩鈦催化劑的活化能 40~94 kJ/mol[15],姜燁等[18]報(bào)道的 V2O5/TiO2催化劑的活化能為41.9 kJ/mol。甘麗娜等[19]自制的涂覆型整體式催化劑活化能為30 kJ/mol。本研究自制的催化劑有更低的活化能。
在NO和O2的體積分?jǐn)?shù)為0.05%和5%,氨氮比為1,溫度為423~673 K的條件下進(jìn)行的實(shí)驗(yàn)結(jié)果與采用公式(5)計(jì)算出的反應(yīng)速率比較如圖8所示,相對(duì)誤差均小于等于10%,說明計(jì)算結(jié)果較好的反應(yīng)實(shí)際轉(zhuǎn)化率的趨勢(shì),得到的動(dòng)力學(xué)公式可以在一定程度上對(duì)自制 V-W-Ti-Si/堇青石催化劑的應(yīng)用提供依據(jù)。
圖8 模型驗(yàn)證Fig.8 Model validation
以自制的 V-W-Ti-Si/堇青石為催化劑,在空速大于20 000 h-1,催化劑粒徑小于0.18 mm的條件下,可以消除內(nèi)外擴(kuò)散對(duì)該反應(yīng)的影響。用冪指數(shù)模型來描述V-W-Ti-Si/堇青石催化劑柴油機(jī)NH3-SCR反應(yīng)是可行的,其NO、NH3和O2的反應(yīng)級(jí)數(shù)分別為0.93,0,0.24,該反應(yīng)的活化能為25.99 kJ/mol。對(duì)比商業(yè)催化劑有更低的活化能。
[1]胡付祥, 楊國華, 向 紅, 等. 緊湊型SCR催化劑在船舶柴油機(jī)上的脫硝性能 [J]. 環(huán)境工程學(xué)報(bào), 2016, 10(6):1-5.Hu Fuxiang, Yang Guohua, Xiang Hong, et al. DeNOxperformance of a compact SCR catalyst on marine diesel engine [J].Environmental Engineering Journal, 2016, 10(6):1-5.
[2]Lee C H. Modeling urea-selective catalyst reduction with vanadium catalyst based on NH3temperature programming desorption experiment [J]. Fuel, 2016, 173:155-163.
[3]黃海鳳, 張 峰, 盧晗鋒, 等. 制備方法對(duì)低溫 NH3-SCR脫硝催化劑 MnOx/TiO2結(jié)構(gòu)與性能的影響 [J]. 化工學(xué)報(bào), 2010,61(1):80-85.Huang Haifeng, Zhang Feng, Lu Hanfeng, et al. Effect of preparation methods on structures and performance of MnOx/TiO2catalyst for low-temperature NH3-SCR [J]. CIESC Journal, 2010, 61(1):80-85.
[4]郭 鳳, 余 劍, 初 茉, 等. 溶膠-凝膠原位合成寬活性溫度V2O5/TiO2脫硝催化劑 [J]. 化工學(xué)報(bào), 2014, 65(6):2099-2105.Guo Feng, Yu Jian, Chu Mo, et al. Preparation of V2O5/TiO2 catalyst with in-situ sol-gel method for denitration in wide temperature window [J]. CIESC Journal, 2014, 65(6):2099-2105.
[5]劉建華, 楊曉博, 張 琛, 等. Fe2O3對(duì)V2O5-WO3/TiO2催化劑表面性質(zhì)及其性能的影響 [J]. 化工學(xué)報(bào), 2016, 67(4):1288-1293.Liu Jianhua, Yang Xiaobo, Zhang Chen, et al. Effect of Fe2O3on surface properties and activities of V2O5-WO3/TiO2catalysts [J].CIESC Journal, 2016, 67(4):1288-1293.
[6]Gan L, Guo F, Yu J, et al. Improved low-temperature activity of V2O5-WO3/TiO2for denitration using different vanadium precursors [J].Catalysts, 2016, 6(2): 25.
[7]Kamata H, Takahashi K, Odenbrand C U I. Kinetics of the selective reduction of NO with NH3over a V2O5(WO3)/TiO2commercial SCR catalyst [J]. J Catal, 1999, 185(1):106-113.
[8]Beeckman J W, Hegedus L L. Design of monolith catalysts for power plant NOxemission control [J]. Ind Eng Chem Res, 1991,30(5):969-978.
[9]Pinoy L J, Hosten L H. Experimental and kinetic modelling study of De-NOxon an industrial V2O5-WO3/TiO2catalyst [J]. Catal Today,1993, 17(1-2): 151-158.
[10]Willi R, Maciejewski M, Gobel U, et al. Selective reduction of NO by NH3over chromia on titania catalyst: Investigation and modeling of the kinetic behavior [J]. J Catal, 1997, 166(2): 356-367.
[11]Amiridis M D, Puglisi F, Dumesic J A, et al. Kinetic and infrared spectroscopic studies of Fe-Y Zeolites for the selective catalytic reduction of nitric oxide by ammonia [J]. J Catal, 1993, 142(2):572-584.
[12]Long R Q, Yang R T. FTIR and kinetic studies of the mechanism of Fe3+Exchanged TiO2-Pillared clay catalyst for selective catalytic reduction of NO with ammonia [J]. J Catal, 2000, 190(1):22-31.
[13]Li F K, Shen B X, Tian L H, et al. Enhancement of SCR activity and mechanical stability on cordierite supported V2O5-WO3/TiO2catalyst by substrate acid pretreatment and addition of silica [J]. Powder Technol, 2016, 297:384-391.
[14]彭建升, 王 棟, 張信莉, 等. 磁性γ-Fe2O3催化劑NH3-SCR脫硝反應(yīng)動(dòng)力學(xué)研究 [J]. 中國電機(jī)工程學(xué)報(bào), 2015, 35(18):4690-4696.Peng Jiansheng, Wang Dong, Zhang Xinli, et al. Kinetic study of selective catalytic reduction of NOx by NH3on magneticγ-Fe2O3catalyst [J]. Chinese Journal of Electrical Engineering, 2015, 35(18): 4690-4696.
[15]Lei Z G, Long A B, Jia M R, et al. Experimental and kinetic study of selective catalytic reduction of NO with NH3over CuO/Al2O3/Cordierite catalyst [J]. Chin J Chem Eng, 2010, 18(5):721-729.
[16]Kamata H, Takahashi K, Odenbrand C U I. Kinetics of the selective reduction of NO with NH3over a V2O5(WO3)/TiO2commercial SCR catalyst [J]. J Catal, 1999, 185(1):106-113.
[17]Delahay G, Kieger S, Tanchoux N, et al. Kinetics of the selective catalytic reduction of NO by NH3on a Cu-faujasite catalyst[J]. App Catal B: Environ, 2004, 52(4): 251-257.
[18]姜 燁, 高 翔, 吳衛(wèi)紅, 等. V2O5/TiO2催化劑上NH3選擇性催化還原NO反應(yīng)動(dòng)力學(xué)研究 [J]. 應(yīng)用化工, 2012, 41(12):2047-2049.Jiang Ye, Gao Xiang, Wu Weihong, et al. Kinetics study on selective catalytic reduction of NO with NH3over V2O5/TiO2catalysts[J].Applied Chemical Industry, 2012, 41(12): 2047-2049.
[19]甘麗娜. 低溫V2O5-WO3/TiO2脫硝催化劑開發(fā)與應(yīng)用研究 [D]. 北京: 中國科學(xué)院研究生院(過程工程研究所), 2016.
Intrinsic Kinetics of V-W-Ti-Si/ Cordierite Catalyst for Diesel Engine Denitrification
Wu Hanming1, Zhang Haohao1, Gao Lanjun1, Shen Boxiong1, Yang Cheng2
1. School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China;2. College of Environmental Science & Engineering, Nankai University, Tianjin 300701, China
The V-W-Ti-Si/cordierite self-made catalyst were using to study the NH3-SCR(NH3-selective catalytic reduction)process of diesel engine on the basis of eliminating the influence of internal and external diffusion by using a fixed-bed reactor. The power exponential denitrations reaction kinetic model was established, and the model parameters were determined by linear fitting method. The results showed that the reaction order of NO, NH3and O2in the NH3-SCR reaction were 0.93, 0, 0.24 respectively. The activation energy of the catalyst was 25.99 kJ/mol. The relative error of the model fitting was around 10%. It can be used to guide diesel engine exhaust denitrification catalyst reaction process research and development.
diesel engine exhaust; denitration; selective catalytic reduction; V-W-Ti-Si/cordierite catalyst
X511
A
1001—7631 ( 2017 ) 03—0199—06
10.11730/j.issn.1001-7631.2017.03.0199.06
2017-02-17;
2017-03-23。
吳撼明(1993—),男,碩士研究生;沈伯雄(1971—),男,教授,通訊聯(lián)系人。E-mail:shenboxiong0722@sina.com。
國家自然科學(xué)基金(51541602);河北省重點(diǎn)基金(E2016202361)。