劉進(jìn)寶,鄭 炫,趙 巖,陳學(xué)庚,劉興愛,葛士林
?
殘膜撿拾壓縮車及其作業(yè)工藝設(shè)計(jì)與試驗(yàn)
劉進(jìn)寶1,鄭 炫2※,趙 巖2,陳學(xué)庚2,劉興愛1,葛士林3
(1. 新疆科神農(nóng)業(yè)裝備科技開發(fā)股份有限公司,石河子 832000;2. 新疆農(nóng)墾科學(xué)院機(jī)械裝備研究所,石河子 832000;3. 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083)
為解決殘膜回收時(shí)撿拾率低、機(jī)具集膜箱存儲(chǔ)量小、機(jī)械化作業(yè)過程不連續(xù)等問題,研制了一種棉田殘膜撿拾壓縮車,該機(jī)主要由清雜機(jī)構(gòu)、撿膜機(jī)構(gòu)、脫膜輸送機(jī)構(gòu)、壓縮機(jī)構(gòu)等組成,可同時(shí)完成殘膜雜質(zhì)分離、殘膜撿拾、脫膜輸送和壓縮作業(yè)。通過對(duì)樣機(jī)關(guān)鍵作業(yè)部件的設(shè)計(jì),確定了清雜輥、撿膜機(jī)構(gòu)和脫膜輸送裝置的結(jié)構(gòu)及工作參數(shù),并分析了機(jī)具作業(yè)過程。樣機(jī)分別在3種殘膜分段回收工藝:摟集—撿壓、秸稈還田—摟集—撿壓、秸稈還田—撿壓中進(jìn)行試驗(yàn),田間試驗(yàn)表明,機(jī)具作業(yè)速度在5~7 km/h,清雜輥轉(zhuǎn)速為240 r/min,撿膜機(jī)構(gòu)轉(zhuǎn)速為90 r/min,脫膜輥轉(zhuǎn)速為1 000 r/min時(shí),在回收工藝一摟膜距離≤40 m,回收工藝二摟膜距離≤60 m時(shí),膜堆殘膜撿拾率大于80%,清雜率大于78%;在回收工藝三中,棉桿殘留根茬高度≤80 mm時(shí),未集堆地表殘膜撿拾率達(dá)到88.21%,機(jī)具纏膜率小于2%,機(jī)具可一次性撿拾壓縮回收8 hm2田間殘膜。
農(nóng)業(yè)機(jī)械;設(shè)計(jì);試驗(yàn);殘膜;回收工藝;清理雜質(zhì);膜堆撿拾;液壓壓縮
目前殘膜回收機(jī)具主要由殘膜撿拾機(jī)構(gòu)和卸膜輸送機(jī)構(gòu)組成,按撿拾機(jī)構(gòu)的結(jié)構(gòu)形式可分為彈齒式、摟齒式、鏈耙式、氣吸式等結(jié)構(gòu),其中摟齒式結(jié)構(gòu)能將地膜摟集呈堆狀,摟集殘膜時(shí)將部分棉桿、棉葉等雜質(zhì)一同摟起,因此其清雜能力差;彈齒式結(jié)構(gòu)采用伸縮齒相對(duì)于滾筒往復(fù)伸縮的運(yùn)動(dòng)形式,具有較好的清雜能力;鏈耙式結(jié)構(gòu)采用排列密度大的耙齒,其撿拾率較高,但殘膜纏繞較為嚴(yán)重[1-5]。
殘膜回收機(jī)按有無(wú)集膜箱又可分為:殘膜撿拾回收機(jī)和摟膜集條機(jī)2種機(jī)型,其中,殘膜撿拾回收機(jī)設(shè)置有集膜箱,利用撿膜機(jī)構(gòu)撿拾田間殘膜,利用中間脫膜輸送裝置,將撿拾殘膜輸送至集膜箱,一次性實(shí)現(xiàn)殘膜撿拾裝箱作業(yè)[6-10]。此類機(jī)型由于整機(jī)尺寸的限制,集膜箱容積有限,由于殘膜堆積時(shí)呈虛狀,導(dǎo)致集膜箱殘膜裝載量有限,作業(yè)過程需要頻繁停機(jī)卸膜,限制了作業(yè)效率[11-15]。摟膜集條機(jī)無(wú)集膜箱,作業(yè)時(shí)利用弧形彈齒將地表殘膜摟起,弧形彈齒可臨時(shí)存儲(chǔ)一定量的殘膜,作業(yè)一段距離后利用卸膜桿將殘膜卸落至地表,通過摟集作業(yè)后,形成集條成堆的地表膜堆[16-19],然后通過人工將集條膜堆中殘膜與雜質(zhì)分離,并清理裝車;此類機(jī)型無(wú)法一次性將殘膜回收,需要進(jìn)行膜堆二次撿拾回收作業(yè)[20]。
目前殘膜回收普遍存在的問題是,由于機(jī)具無(wú)集膜箱或集膜箱裝載量小的限制,不僅降低機(jī)具作業(yè)效率,而且使田間存在大量的回收膜堆,目前還未研制出較為成熟的撿拾膜堆的機(jī)具,作業(yè)過程需要消耗大量人力物力,并且膜堆無(wú)法及時(shí)回收處理容易造成二次污染;回收后的殘膜含有大量的棉桿、葉、雜土等,導(dǎo)致回收后的殘膜雜質(zhì)含有量較高,給回收殘膜再利用帶來(lái)了很大的不便[15]。針對(duì)上述問題,設(shè)計(jì)了配合殘膜分段回收作業(yè)模式的一種棉田殘膜撿拾壓縮車,以期為高效的殘膜回收機(jī)械化連續(xù)作業(yè)提供參考。
棉田殘膜撿拾壓縮車是根據(jù)殘膜分段回收工藝模式,為殘膜清雜撿拾壓縮作業(yè)環(huán)節(jié)設(shè)計(jì)的一種新機(jī)型,殘膜撿拾壓縮車主要由機(jī)架、清雜機(jī)構(gòu)、撿膜機(jī)構(gòu),脫膜輸送機(jī)構(gòu)、殘膜壓縮機(jī)構(gòu)和液壓控制系統(tǒng)組成。清雜機(jī)構(gòu)主要由清雜輥組成,撿膜機(jī)構(gòu)由伸縮桿齒滾筒式撿拾機(jī)構(gòu)組成,清雜輥在圓周上按規(guī)律排列有多組弧形彈齒,在清雜輥的后上方安裝有伸縮桿齒滾筒式撿拾機(jī)構(gòu)。在伸縮桿齒滾筒式撿拾機(jī)構(gòu)的上方安裝有脫膜輸送機(jī)構(gòu),脫膜輸送機(jī)構(gòu)主要由脫膜輥、脫膜平皮帶、護(hù)罩組成。殘膜壓縮機(jī)構(gòu)主要由壓縮液壓缸、推膜板、壓縮箱體、卸膜后門、后門開關(guān)液壓缸和翻斗液壓缸組成。殘膜撿拾壓縮車整機(jī)結(jié)構(gòu)如圖1所示。
1. 牽引架 2. 齒輪箱 3. 機(jī)架 4. 清雜輥 5. 偏心滾筒 6. 桿齒 7. 防護(hù)罩 8. 壓縮液壓缸 9. 推膜板 10. 地輪 11. 翻斗液壓缸 12. 壓縮箱體 13. 卸膜后門 14. 后門開關(guān)液壓缸 15. 脫膜輥?zhàn)o(hù)罩 16. 脫膜輥
機(jī)具作業(yè)時(shí),由拖拉機(jī)牽引前進(jìn),由清雜輥4將膜堆向前上方挑起,將殘膜從莖稈、雜土等雜質(zhì)中挑出,一部分殘膜被挑至雜質(zhì)表層,另一部分殘膜被清雜輥彈齒挑起,這時(shí)轉(zhuǎn)動(dòng)的伸縮桿齒6將地表殘膜撿起,同時(shí)還可以將彈齒上的殘膜挑起,通過伸縮桿齒6與偏心滾筒5的圓周運(yùn)動(dòng)配合,在偏心滾筒5的頂部將桿齒6上的殘膜脫落至滾筒表面,然后由脫膜平皮帶將殘膜刮起,通過脫膜輥16的回轉(zhuǎn)運(yùn)動(dòng)與脫膜輥?zhàn)o(hù)罩15的共同作用下,將殘膜運(yùn)送至殘膜壓縮箱體12中;當(dāng)殘膜落入壓縮箱體12后,由往復(fù)動(dòng)作的壓縮液壓缸8推動(dòng)楔形推膜板9將殘膜壓縮至箱體后方;通過連續(xù)的殘膜撿拾、雜質(zhì)清理、脫膜、壓縮作業(yè),最后將殘膜裝滿壓縮箱體后,后門開關(guān)液壓缸14動(dòng)作,將卸膜后門13打開,然后翻斗液壓缸11動(dòng)作,將壓縮后的殘膜卸出。
根據(jù)殘膜回收國(guó)家標(biāo)準(zhǔn)和棉花種植農(nóng)藝要求,并結(jié)合新疆平作區(qū)棉花種植特點(diǎn),殘膜撿拾壓縮車主要技術(shù)指標(biāo)如下表1所示。
表1 主要技術(shù)指標(biāo)
由于集條后的膜堆中含有大量的秸稈、雜土等雜質(zhì),大量殘膜被雜質(zhì)覆蓋,在殘膜撿拾之前,需要先將殘膜從雜質(zhì)中分離,因此設(shè)計(jì)了一種清雜輥,其結(jié)構(gòu)如圖2所示。
1. 擋盤 2. 彈齒 3. 鋼管 4. 半軸
1. Back plate 2.Spring tooth 3. Steel pipe 4. Axles
注:為彈齒末端回轉(zhuǎn)半徑,mm;為彈齒安裝折彎角,(°);為機(jī)具作業(yè)速度,m·s–1;1為清雜輥轉(zhuǎn)動(dòng)角速度,rad·s–1。
Note:is the radius of gyration at the end of spring tooth, mm;is the install bend angle of spring tooth, (°);is the machine forward speed, m·s–1;1is the angular velocity of the separating roller, rad·s–1.
圖2 清雜輥結(jié)構(gòu)示意圖
Fig.2 Structure diagram of separating impurity roller
清雜輥圓周表面排列有多組彈齒,機(jī)具前進(jìn)作業(yè)時(shí),通過清雜輥的回轉(zhuǎn)運(yùn)動(dòng),彈齒將膜堆中殘膜與雜質(zhì)一同挑起,由于離心力的作用,雜土、秸稈等雜質(zhì)被清雜輥離心拋出,而質(zhì)量較輕的殘膜被挑起時(shí),一部分殘膜掉落在地面,另一部分殘膜纏繞在彈齒上。
雜質(zhì)被彈齒挑起時(shí)應(yīng)做離心運(yùn)動(dòng),滿足如下條件:
式中0為雜質(zhì)質(zhì)量,kg;為彈齒末端回轉(zhuǎn)半徑,mm;1為清雜輥轉(zhuǎn)動(dòng)角速度,rad/s;0為雜質(zhì)與彈齒之間的摩擦力,N;為彈齒安裝折彎角,(°)。
其中摩擦力0=00sin,0為雜質(zhì)與彈齒的摩擦因數(shù),取0.43。得出
經(jīng)過清理雜質(zhì)試驗(yàn)驗(yàn)證,彈齒安裝折彎角 取20°,清雜效果較好,通過測(cè)量集條膜堆尺寸,膜堆高度在150~400 mm之間,因此彈齒末端回轉(zhuǎn)半徑取225 mm,得出1>6.88 rad/s。
殘膜撿拾機(jī)構(gòu)主要包括滾筒、偏心支撐座、連桿、桿齒總成,其結(jié)構(gòu)如圖3所示。桿齒與轉(zhuǎn)軸盤構(gòu)成桿齒總成,并通過連桿與滾筒相連,偏心支撐座將滾筒與桿齒總成鉸接在機(jī)架上,當(dāng)桿齒在做回轉(zhuǎn)運(yùn)動(dòng)時(shí),桿齒可相對(duì)于滾筒上的柵縫進(jìn)行往復(fù)伸縮,當(dāng)桿齒伸出滾筒柵縫最長(zhǎng)時(shí)進(jìn)行挑膜作業(yè),當(dāng)桿齒伸出滾筒柵縫長(zhǎng)度不斷減小時(shí),滾筒將桿齒上附著的殘膜逐漸脫至桿齒齒尖處,最后將殘膜附著在滾筒外表面上,然后進(jìn)行下一道脫膜輸送作業(yè),達(dá)到了既能撿拾殘膜又能將殘膜脫落的作用。
2.2.1 桿齒排列結(jié)構(gòu)設(shè)計(jì)
桿齒總成作為撿拾殘膜的主要部件,由6組桿齒圓周均布排列在轉(zhuǎn)軸盤上組成,通過卡子將桿齒方鋼固定在轉(zhuǎn)軸盤上,為了減小桿齒入土挑膜時(shí)的阻力,將桿齒末端切為尖角狀。
1. 偏心支撐座 2. 滾筒法蘭盤 3. 連桿銷 4. 連桿 5. 轉(zhuǎn)軸盤 6. 滾筒
桿齒與清雜輥彈齒安裝時(shí)采取交錯(cuò)排列,排列方式見圖4,其中在圓周方向,桿齒設(shè)為6組,彈齒設(shè)為4組,桿齒中心處于相鄰兩彈齒中心線上,桿齒與相鄰彈齒之間的間隙為2,設(shè)置桿齒與彈齒排列間距相等,即2=0.51。為保證桿齒與彈齒的強(qiáng)度,清雜輥彈齒受力較大,設(shè)計(jì)1=16 mm,2=25 mm,使兩者既不相互干涉,又能滿足撿拾分布的密度,桿齒外圓面與彈齒外圓面安裝間隙距離取12 mm,得出排列間距1=32.5 mm。
1. 桿齒 2. 彈齒
1. Pole teeth 2. Spring teeth
注:1為相鄰彈齒排列間距,mm;2為桿齒與相鄰彈齒之間的安裝間隙,mm;1為桿齒直徑,mm;2為彈齒直徑,mm。
Note:1is the spacing between adjacent spring teeth, mm;2is the installation clearance between pole teeth and adjacent spring teeth, mm;1is diameter of pole teeth, mm;2is diameter of spring teeth, mm.
圖4 桿齒與彈齒排列
Fig.4 Arrangement of pole teeth and spring teeth
2.2.2 滾筒結(jié)構(gòu)設(shè)計(jì)與運(yùn)動(dòng)分析
滾筒結(jié)構(gòu)主要由滾筒和滾筒法蘭盤組成,機(jī)構(gòu)簡(jiǎn)圖如圖5所示。
滾筒由2.5 mm厚的鋼板卷制而成,滾筒表面圓周均布排列有6組柵縫,滾筒法蘭盤為幅板型,幅板將滾筒法蘭盤分成3等份,滾筒法蘭盤幅板上設(shè)有連桿鉸接安裝孔。桿齒伸入滾筒柵縫中與之配合。由于滾筒中心與桿齒軸中心之間存在偏心距,兩者之間再次用連桿相連,連桿中心距與偏心距相等。
簡(jiǎn)化桿齒滾筒運(yùn)動(dòng)模型,其中點(diǎn)為桿齒轉(zhuǎn)軸中心,1點(diǎn)為滾筒軸心,點(diǎn)為連桿1與桿齒轉(zhuǎn)軸盤2的鉸接點(diǎn),點(diǎn)為連桿1與滾筒3的鉸接點(diǎn),點(diǎn)為桿齒末端,桿齒滾筒機(jī)構(gòu)由平行四桿機(jī)構(gòu)演變而來(lái),短桿1作為機(jī)架、長(zhǎng)桿作為主動(dòng)曲柄的平行四桿機(jī)構(gòu)運(yùn)動(dòng)。
1. 滾筒 2. 滾筒法蘭盤 3. 桿齒 4. 轉(zhuǎn)軸盤 5. 連桿
1. Roller 2. Roller flange 3. Pole teeth 4. Rotation shaft flange 5.Connecting rod
注:點(diǎn)為桿齒轉(zhuǎn)軸中心,1點(diǎn)為滾筒軸心,點(diǎn)為連桿與桿齒轉(zhuǎn)軸盤的鉸接點(diǎn),點(diǎn)為連桿與滾筒的鉸接點(diǎn),點(diǎn)為桿齒末端。為連桿力,N;1為鉸接點(diǎn)距滾筒圓心的半徑,mm;為偏心距,mm;為滾筒法蘭盤幅板等分角,(°);為連桿傳動(dòng)角,(°);v為點(diǎn)線速度,m·s–1;2為桿齒轉(zhuǎn)動(dòng)角速度,rad·s–1。
Note:is the center of rotation shaft;1is the center of roller;is the hinge point of the rotation shaft flange and the connecting rod;is the hinge point of the connecting rod and the roller;is the end of pole teeth;is connecting rod force, N;1is the radius of the hinge pointfrom the center of the roller, mm;is eccentricity, mm;is the roller flange plate equal angle, (°);is the connecting rod drive angle, (°);vis thepoint line speed, m·s–1;2is the angular velocity of the pole teeth, rad·s–1.
圖5 桿齒運(yùn)動(dòng)示意圖
Fig.5 Structure diagram of pole teeth motion
機(jī)構(gòu)轉(zhuǎn)動(dòng)時(shí),拖拉機(jī)動(dòng)力輸出軸通過齒輪箱、皮帶傳動(dòng),帶動(dòng)轉(zhuǎn)軸盤轉(zhuǎn)動(dòng),桿齒轉(zhuǎn)軸盤作為主動(dòng)件,通過連桿帶動(dòng)滾筒一起轉(zhuǎn)動(dòng),由桿齒通過沿著連桿的方向傳遞的力,在滾筒上產(chǎn)生一個(gè)主動(dòng)力矩,從而驅(qū)動(dòng)滾筒轉(zhuǎn)動(dòng)。6組桿齒與3等分的滾筒法蘭盤幅板通過2組連桿連接,2組連桿安裝位置如圖5中所示。其中,連桿產(chǎn)生的主動(dòng)力矩為:
兩組連桿產(chǎn)生的主動(dòng)力矩值為:
式中為主動(dòng)力矩,N·m;為連桿力,N;1為滾筒法蘭盤連桿鉸接點(diǎn)距滾筒圓心的半徑,mm;為滾筒法蘭盤幅板等分角,取120°;為連桿傳動(dòng)角,(°)。
從式中可以看出,當(dāng)其中一組連桿11傳動(dòng)角=90°時(shí),連桿處于機(jī)構(gòu)的死點(diǎn)位置,連桿驅(qū)動(dòng)的有效分力為零,此時(shí)由另一組連桿提供有效分力
當(dāng)兩組連桿傳動(dòng)角≠90°時(shí),由兩組連桿共同提供有效分力,使機(jī)構(gòu)穩(wěn)定可靠做回轉(zhuǎn)運(yùn)動(dòng)。
2.2.3 桿齒撿膜及防纏繞參數(shù)確定
機(jī)具以圖6a中速度方向作業(yè)時(shí),清雜輥以1的角速度順時(shí)針轉(zhuǎn)動(dòng),桿齒以2的角速度逆時(shí)針轉(zhuǎn)動(dòng)。
清雜輥彈齒末端在坐標(biāo)系中的運(yùn)動(dòng)方程為:
式中為機(jī)具作業(yè)速度,m/s;為桿齒中心與清雜輥中心水平距離,取490 mm;為桿齒中心與清雜輥中心豎直距離,取245 mm;為機(jī)具前進(jìn)作業(yè)時(shí)間,s。
注:點(diǎn)為桿齒轉(zhuǎn)軸中心,2點(diǎn)為清雜輥軸中心,為桿齒與清雜輥彈齒轉(zhuǎn)動(dòng)的重疊區(qū)域,為桿齒末端運(yùn)動(dòng)軌跡與2連線的交點(diǎn);0為轉(zhuǎn)軸盤半徑,mm;為桿齒末端回轉(zhuǎn)半徑,mm;為桿齒長(zhǎng)度,mm;為桿齒中心與清雜輥中心水平距離,mm;為桿齒中心與清雜輥中心豎直距離,mm;為桿齒接觸地面時(shí)彈齒入土深度,mm;為桿齒安裝角,(°);v為桿齒末端在點(diǎn)相對(duì)彈齒的運(yùn)動(dòng)速度,m·s–1。
Note:is the center of rotation shaft;2is the center of separating roller;is the overlapping region of the pole teeth and the rotation of the spring teeth of the cleaning compound roller;is the intersection of the end of the pole teeth and the2line;0is the radius of rotation shaft flange, mm;is the radius of gyration at the end of pole teeth, mm;is the length of pole teeth, mm;is the horizontal distance between the center of the pole teeth and the spring teeth, mm;is the erect distance between the center of the pole teeth and the spring teeth, mm;is depth into earth of spring teeth when pole teeth touching ground, mm;is the installation angle of pole teeth, (°);vis the speed at which the end of the pole teeth at the a point relative to the projectile, m·s–1.
圖6 桿齒與彈齒挑膜運(yùn)動(dòng)示意圖
Fig.6 Structure diagram of sketch map of film movement of pole teeth and spring teeth
桿齒末端運(yùn)動(dòng)軌跡方程為:
式中2為桿齒轉(zhuǎn)動(dòng)角速度,rad/s;為桿齒末端回轉(zhuǎn)半徑,mm。
其中
式中0為桿齒轉(zhuǎn)軸盤半徑,取210 mm;為桿齒長(zhǎng)度,取245 mm;為桿齒安裝角,取45°。計(jì)算得出=427.5 mm。
同時(shí)為保證清雜與撿拾充分,避免出現(xiàn)漏挑區(qū)域,清雜輥彈齒和桿齒末端運(yùn)動(dòng)軌跡應(yīng)呈余擺線,即速度比滿足以下條件:
式中1為清雜輥速度比,2為桿齒速度比。
綜合考慮作業(yè)效率和效果,取1=3,2=2,根據(jù)機(jī)具作業(yè)速度范圍在5~7 km/h,為保證機(jī)具撿拾率及機(jī)具運(yùn)行的穩(wěn)定性,經(jīng)過多次試驗(yàn)論證,得到機(jī)具最大作業(yè)速度為1.9 m/s,因此取=1.9 m/s,取=225 mm,=427.5 mm,計(jì)算得出清雜輥轉(zhuǎn)速1=25.3 rad/s,桿齒轉(zhuǎn)速2=8.9 rad/s,通過MATLAB軟件繪制桿齒末端和彈齒末端的運(yùn)動(dòng)軌跡曲線,如圖6b所示。
清雜輥彈齒和桿齒的安裝位置相對(duì)于地面高度不相同,當(dāng)桿齒末端接觸到地面時(shí),清雜輥彈齒需入土深度=45 mm。由于膜堆底部存有大量殘膜,為保證清雜與撿拾充分,作業(yè)時(shí)桿齒入土深度為10 mm,則清雜輥彈齒入土深度為55 mm。
清雜輥彈齒在清雜膜堆時(shí),容易使殘膜纏繞在彈齒以及清雜輥上,為了使清雜輥上纏繞的殘膜能被及時(shí)回收,設(shè)置伸縮桿齒與清雜輥相互配合作業(yè),圖中陰影區(qū)域?yàn)闂U齒與清雜輥彈齒轉(zhuǎn)動(dòng)的重疊區(qū)域,在此區(qū)域中,桿齒可將接觸到清雜輥彈齒上纏繞的殘膜。
在重疊區(qū)域中,桿齒中心與清雜輥中心2連心線的切線方向,桿齒末端線速度與清雜輥彈齒末端線速度同向,在接近清雜輥彈齒根部相交點(diǎn)處的相對(duì)速度v為:
將=490 mm,=245 mm代入公式(10),計(jì)算得出v=0.8 m/s。桿齒和清雜輥之間具有相對(duì)運(yùn)動(dòng)速度,因此可將清雜輥彈齒上纏繞的殘膜挑起,有效防止清雜輥纏膜現(xiàn)象。
根據(jù)轉(zhuǎn)速與角速度關(guān)系:
最終確定清雜輥轉(zhuǎn)速1=301/p=240 r/min,桿齒轉(zhuǎn)速2=302/p=90 r/min。
在撿膜機(jī)構(gòu)的正上方設(shè)置有脫膜輸送機(jī)構(gòu),脫膜輸送機(jī)構(gòu)采用類似風(fēng)機(jī)結(jié)構(gòu)[21-22],主要由脫膜輥和脫膜護(hù)罩組成,脫膜輥圓周表面均布排列有8組脫膜葉片,脫膜葉片采用寬度=150 mm的平皮帶,脫膜滾筒采用半徑2=120 mm、壁厚為3 mm的鋼管,其中鋼管外壁設(shè)置有8組直徑為60 mm的氣流通道孔,脫膜護(hù)罩正下方為開口狀,為殘膜輸送的入口,脫膜護(hù)罩斜上方開口為殘膜輸送出口,結(jié)構(gòu)如圖7所示。
2.3.1 脫膜輸送過程分析
1)刮膜提升作業(yè):通過脫膜葉片的刮取作用,將撿拾滾筒上的殘膜刮起,殘膜臨時(shí)存儲(chǔ)在相鄰脫膜葉片之間,通過脫膜輥的轉(zhuǎn)動(dòng)將殘膜運(yùn)送至脫膜輥上方,作業(yè)過程中脫膜輥轉(zhuǎn)向與撿膜機(jī)構(gòu)轉(zhuǎn)向相反。
2)拋送作業(yè):當(dāng)殘膜在脫膜輥上方,脫膜輥將殘膜拋出,同時(shí)脫膜輥轉(zhuǎn)動(dòng)產(chǎn)生的氣流,使其做離心運(yùn)動(dòng),在拋送作業(yè)時(shí),殘膜沿著脫膜葉片向外運(yùn)動(dòng),假設(shè)殘膜集中在脫膜葉片質(zhì)點(diǎn)處,受力情況須滿足:
式中c為離心力,N;w為氣流作用力,N;為脫膜葉片摩擦力,N;為脫膜葉片工作偏轉(zhuǎn)角,(°);為氣流作用力與脫膜葉片夾角,(°)。
其中
式中3為脫膜輥角速度,rad/s;t為脫膜葉片末端距中心半徑,取270 mm。
1. 脫膜護(hù)罩 2. 脫膜葉片 3. 脫膜滾筒 4. 仿形彈簧 5. 定位板 6. 緩沖彈簧 7. 機(jī)架 8. 撿膜機(jī)構(gòu) 9. 彈簧螺桿 10. 定位螺母
1. Residual film shedding shield 2. Residual film removing blade 3. Residual film shedding roller 4. Copying spring 5. Locating plate 6. Buffer spring 7. Frame 8. Pickup mechanism 9. Spring screw 10. Locating nut
注:3點(diǎn)為脫膜滾筒軸心,4為脫膜護(hù)罩與機(jī)架鉸接點(diǎn);為脫膜葉片寬度,mm;2為脫膜滾筒半徑,mm;為脫膜護(hù)罩與滾筒間隙,mm;為脫膜葉片工作偏轉(zhuǎn)角,(°);為氣流作用力與脫膜葉片夾角,(°);為殘膜質(zhì)量,kg;3為脫膜輥角速度,rad·s–1;c為離心力,N;w為氣流作用力,N;為脫膜葉片摩擦力,N;n為脫膜葉片對(duì)殘膜的支持力,N。
Note:3is the center of the residual film shedding roller;4is the residual film shedding shield and frame hinge joint;is the width of the residual film removing blade, mm;2is the radius of residual film shedding roller, mm;is clearance between residual film shedding shield and roller, mm;is residual film removing blade work deflection angle, (°);is the angle between the air force and the residual film removing blade, (°);is residual film quality, kg;3is the angular velocity of the residual film shedding roller, rad·s–1;cis centrifugal force, N;wis the air force, N;is the frictional force of the residual film removing blade, N;nis supporting force of residual film removing blade on residual film, N.
圖7 脫膜機(jī)構(gòu)結(jié)構(gòu)示意圖
Fig.7 Structure diagram of residual film shedding mechanism
其中脫膜葉片摩擦力
式中為脫膜葉片摩擦因數(shù),取0.6。得出:
本設(shè)計(jì)中,為保證脫膜順利不產(chǎn)生擁堵,假設(shè)在不考慮氣流作用力w的情況下,殘膜依靠離心力便可被脫膜輥拋出,即滿足:
當(dāng)=20°,得出脫膜輥角速度3>6.5 rad/s。
3)氣流輸送作業(yè):當(dāng)殘膜被拋出脫膜葉片后,殘膜被拋出的瞬間具有離心運(yùn)動(dòng)速度v,并且依靠風(fēng)機(jī)產(chǎn)生的氣體流速v將其從脫膜護(hù)罩中吹出,殘膜脫離脫膜葉片時(shí)瞬時(shí)合速度為v與v的矢量和:
其中殘膜懸浮速度在0.3~1.2 m/s之間[23],短莖稈懸浮速度在2.8~4.4 m/s之間[24-25]。由于殘膜在拋送過程中含有少量的短莖稈,因此氣體流速v須大于殘膜和短莖稈的懸浮速度,才能將殘膜吹送出脫膜護(hù)罩。通過試驗(yàn)測(cè)得當(dāng)脫膜輥轉(zhuǎn)速為1 000 r/min時(shí),出口的風(fēng)速接近10 m/s,轉(zhuǎn)速滿足脫膜作業(yè)要求。
2.3.2 防擁堵結(jié)構(gòu)設(shè)計(jì)
由于殘膜在摟集成堆時(shí),堆放尺寸及含雜率不規(guī)律,使得撿拾時(shí)喂入量不均勻,當(dāng)撿拾量過大時(shí),脫膜護(hù)罩與撿拾滾筒之間容易產(chǎn)生擁堵,因此將脫膜護(hù)罩右端與機(jī)架采用鉸接連接方式,脫膜護(hù)罩左端焊接有定位板,定位板上設(shè)有彈簧螺桿伸縮孔,定位板與機(jī)架之間設(shè)有2組彈簧,彈簧套裝在彈簧螺桿上,上端為仿形彈簧,當(dāng)擁堵殘膜對(duì)脫膜護(hù)罩施加載荷時(shí),脫膜護(hù)罩相對(duì)于鉸接點(diǎn)以較小角度向上轉(zhuǎn)動(dòng),此時(shí)仿形彈簧被壓縮,脫膜護(hù)罩與撿拾滾筒之間間隙變大,擁堵的殘膜及雜質(zhì)從間隙間被拋出,當(dāng)擁堵消除后,仿形彈簧復(fù)位,脫膜護(hù)罩恢復(fù)初始狀態(tài),下端緩沖彈簧起到緩沖作用,其中間隙初始值為25 mm。
壓縮系統(tǒng)主要由壓縮箱體,液壓系統(tǒng)和控制系統(tǒng)組成,其中液壓回路如圖8a所示,液壓回路包括壓縮液壓缸、翻斗液壓缸和后門液壓缸三組獨(dú)立動(dòng)作的液壓缸。
1. 液壓油箱 2. 液壓泵 3. 溢流閥 4. 單向閥 5. 減壓閥 6~8. 三位四通電磁換向閥 9~10. 雙向液壓鎖 11~14. 二位二通電磁換向閥 15~17. 節(jié)流閥 18. 壓力繼電器19. 壓縮液壓缸 20. 翻斗液壓缸 21. 后門液壓缸
每組液壓缸由2個(gè)參數(shù)相同的缸體組成,通過電磁換向閥控制回路液壓油的流向,在翻斗液壓缸回路和后門液壓缸回路中分別設(shè)置雙向液壓鎖,防止液壓缸伸出后由于外界較大載荷迫使液壓缸縮回現(xiàn)象。由于翻斗液壓缸和后門液壓缸在動(dòng)作時(shí),所受載荷在不斷變化,為避免機(jī)構(gòu)之間產(chǎn)生激烈的碰撞,在兩組液壓缸回路中設(shè)置了2條回路,其中第一條回路通過二位二通電磁換向閥控制通斷,回路液壓流量不變;第二條回路由二位二通電磁換向閥和節(jié)流閥組成,由二位二通電磁換向閥控制回路通斷,由節(jié)流閥降低回路液壓流量,從而控制液壓缸動(dòng)作速度;機(jī)構(gòu)運(yùn)動(dòng)時(shí),在沖擊較小的區(qū)間,采用第一條回路,在沖擊較大的區(qū)間,采用第二條調(diào)速回路,降低動(dòng)作速度,避免機(jī)構(gòu)產(chǎn)生較大沖擊。
其中壓縮液壓缸動(dòng)作時(shí),由行程開關(guān)SQ1和壓力繼電器共同控制往復(fù)壓縮動(dòng)作,在壓縮過程中,當(dāng)壓縮液壓缸進(jìn)油腔的壓力達(dá)到減壓閥5設(shè)定值時(shí),壓縮缸停止壓縮作業(yè),并且有桿腔進(jìn)行縮回,當(dāng)有桿腔縮回至行程開關(guān)SQ1處時(shí),電磁換向閥1換向,進(jìn)行下一次壓縮作業(yè)。液壓回路中電磁換向閥的換向動(dòng)作由PLC控制,采用西門子S7-200型PLC進(jìn)行控制,其中輸入信號(hào)由按鈕、行程開關(guān)和壓力繼電器產(chǎn)生,輸出信號(hào)控制液壓回路的電磁換向閥。PLC輸入輸出分配如圖8b所示。
2016年10月5日~2016年10月15日在新疆生產(chǎn)建設(shè)兵團(tuán)石河子149團(tuán)進(jìn)行田間試驗(yàn),作業(yè)地塊為秋后棉花收獲后的平作區(qū)棉田,回收地膜厚度為0.008 mm聚乙烯農(nóng)用地膜,殘膜撿拾壓縮車配套動(dòng)力為雷沃754輪式拖拉機(jī)。
為了使殘膜回收實(shí)現(xiàn)機(jī)械化連續(xù)作業(yè),樣機(jī)分別在3種分段回收工藝:①摟集—撿壓、②秸稈還田—摟集—撿壓、③秸稈還田—撿壓中進(jìn)行試驗(yàn),在試驗(yàn)中配合其他機(jī)具實(shí)現(xiàn)殘膜機(jī)械化分段連續(xù)作業(yè)回收,作業(yè)模式如圖9所示。
1. 棉稈 2. 集條殘膜
1. Cotton stalk 2. Collection strip residual film
注:為集條膜堆幅寬,m;為一次摟膜作業(yè)距離,m;向?yàn)槊藁ǚN行方向;、向?yàn)榇怪庇诿藁ǚN行的方向。
Note:is residual film stack width, m;is once gathering up the residual film distance, m;is cotton planting direction;、is perpendicular to the cotton planting direction
圖9 殘膜回收工藝模式簡(jiǎn)圖
Fig.9 Diagram of residual film recycling method
3.2.1 回收工藝一:摟集—撿壓
作業(yè)過程:秸稈還田機(jī)開設(shè)卸膜集條區(qū)?立桿摟膜機(jī)摟膜集條?殘膜撿拾壓縮車撿拾膜堆;作業(yè)特點(diǎn):首先利用秸稈還田機(jī)在垂直于棉花種行的方向上,每間隔一段距離開設(shè)一定寬度的卸膜區(qū),其次立桿摟膜機(jī)進(jìn)行田間摟膜作業(yè),并且將摟起的殘膜堆積在卸膜區(qū)域,最后利用殘膜撿拾壓縮車將卸膜區(qū)的集條殘膜進(jìn)行清雜撿拾裝箱壓縮作業(yè)。目前,在殘膜回收機(jī)市場(chǎng)中,立桿摟膜機(jī)占有率較大,回收工藝一技術(shù)應(yīng)用推廣較為成熟。
為了便于各回收工序之間高效銜接作業(yè),應(yīng)滿足以下參數(shù)要求:①集條膜堆幅寬小于殘膜撿拾壓縮車作業(yè)幅寬;②一次摟膜作業(yè)距離不宜過大,避免集條膜堆含雜率高導(dǎo)致集條殘膜的膜堆尺寸過大;③秸稈還田機(jī)作業(yè)幅寬應(yīng)與集條膜堆區(qū)域幅寬相近。
3.2.2 回收工藝二:秸稈還田—摟集—撿壓
作業(yè)過程:秸稈還田殘膜集條機(jī)作業(yè)?殘膜撿拾壓縮車撿拾膜堆;作業(yè)特點(diǎn):首先利用秸稈還田殘膜集條聯(lián)合作業(yè)機(jī)作業(yè),棉桿粉碎還田作業(yè)的同時(shí)利用摟膜機(jī)構(gòu)將殘膜摟集成條成堆,然后利用殘膜撿拾壓縮車將集條殘膜進(jìn)行清雜撿拾裝箱壓縮作業(yè)。近年來(lái)秸稈還田殘膜回收聯(lián)合作業(yè)技術(shù)發(fā)展較快,隨著聯(lián)合作業(yè)技術(shù)的不斷成熟[23-26],回收工藝二正逐步推廣使用。
3.2.3 回收工藝三:秸稈還田—撿壓
作業(yè)過程:秸稈還田機(jī)進(jìn)行秸稈還田作業(yè)/拔棉桿機(jī)回收棉桿作業(yè)?殘膜撿拾壓縮車撿拾田間地表殘膜;作業(yè)特點(diǎn):首先利用秸稈還田機(jī)將棉桿粉碎還田,或者利用拔棉桿回收機(jī)回收棉桿,然后利用殘膜撿拾壓縮車將秸稈還田后地表殘膜清雜撿拾裝箱壓縮作業(yè),兩道工序作業(yè)方向均沿著棉花種行方向。隨著棉桿造紙技術(shù)的不斷提升、電廠燃料的需求、以及秸稈還田技術(shù)的日益成熟[27-30],回收工藝三具有較好的應(yīng)用前景。
3.2.4 試驗(yàn)參數(shù)測(cè)定方法
在作業(yè)工藝一和作業(yè)工藝二的前期摟膜作業(yè)時(shí),摟膜作業(yè)距離依次設(shè)置為30、40、50、60、70 m,然后利用殘膜撿拾壓縮車撿拾集條殘膜膜堆,測(cè)得膜堆相關(guān)數(shù)據(jù),以及殘膜撿拾壓縮車作業(yè)的相關(guān)數(shù)據(jù)。
在5組摟膜作業(yè)距離中,隨機(jī)選取測(cè)試區(qū),每一組選取5個(gè)測(cè)試點(diǎn),測(cè)試點(diǎn)的作業(yè)面積相等,分別稱質(zhì)量每個(gè)測(cè)試點(diǎn)的膜堆總質(zhì)量、回收后殘膜毛質(zhì)量,并且對(duì)回收后的殘膜和未收回殘膜進(jìn)行清洗稱質(zhì)量,測(cè)得其凈質(zhì)量。其中,清雜率、膜堆質(zhì)量、膜堆中所含殘膜質(zhì)量c、回收殘膜毛質(zhì)量1、回收殘膜凈質(zhì)量2之間的關(guān)系為:
撿拾率、回收殘膜凈質(zhì)量2、未收回殘膜凈質(zhì)量a之間的關(guān)系為:
其中一定面積內(nèi)集條膜堆中殘膜凈質(zhì)量所占占有率為:
根據(jù)作業(yè)對(duì)象可分為兩大類,第一類為回收膜堆殘膜,即工藝一和工藝二,前2種回收工藝根據(jù)摟膜距離做比較試驗(yàn);第二類為回收秸稈還田后未集堆殘膜,即為回收工藝三,因此不考慮膜堆殘膜占有率與清雜率,主要測(cè)其撿拾率、裝載量和壓縮效果。
分段回收作業(yè)配套機(jī)具選用科神公司研制的應(yīng)用較為廣泛的1LM-6.6型立桿摟膜機(jī)(收膜部件為弧形彈齒,作業(yè)方式為單一摟集作業(yè),作業(yè)幅寬為6.6 m),和4JLM- 2.0型秸稈還田彈齒摟膜機(jī)(收膜部件為弧形彈齒,作業(yè)方式為秸稈還田殘膜摟集聯(lián)合作業(yè),作業(yè)幅寬為2 m)進(jìn)行前期摟膜集條作業(yè),2種方式摟集后的膜堆堆放尺寸、雜質(zhì)含量均不相同,摟膜作業(yè)結(jié)果如圖10所示。
a. 立桿摟膜集條膜堆 a. Setting heap of gathering up residual film before cotton stalk smashingb. 秸稈還田彈齒摟膜集條膜堆 b. Setting heap of gathering up residual film after cotton stalk smashing
殘膜撿拾壓縮車分別撿拾立桿摟膜作業(yè)的膜堆和秸稈還田摟膜聯(lián)合作業(yè)的膜堆,即殘膜撿拾壓縮車應(yīng)用于回收工藝一和回收工藝二中,撿拾集條膜堆殘膜試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)結(jié)果如表2所示。
表2 殘膜撿拾壓縮車回收工藝一、二試驗(yàn)數(shù)據(jù)
由試驗(yàn)結(jié)果可以看出,集條膜堆中殘膜占有率隨著摟膜距離的增加在不斷減小,殘膜撿拾壓縮車的撿拾率和清雜率也相應(yīng)的下降。其中,回收工藝一中,當(dāng)摟膜距離≤40 m時(shí),膜堆殘膜撿拾率大于80%;回收工藝二中,當(dāng)摟膜距離≤60 m時(shí),膜堆殘膜撿拾率大于80%,達(dá)到撿拾作業(yè)要求。因此,為指導(dǎo)當(dāng)前作業(yè)規(guī)范,回收工藝一中立桿摟膜距離設(shè)定為40 m,殘膜撿拾壓縮車撿拾率為82.96%,回收工藝二中打桿摟膜距離設(shè)定為60 m,殘膜撿拾壓縮車撿拾率為81.91%。
在回收工藝三的試驗(yàn)中,利用秸稈還田機(jī)將棉桿粉碎還田后,根茬高度≤80 mm。秸稈還田后田間地膜含雜率較低,裝滿壓縮膜箱(裝載量為1 200 kg,壓縮密度為300 kg/m3)可一次性撿拾8 hm2田間地膜,殘膜撿拾率為88.21%,撿拾作業(yè)效果對(duì)比如圖11。機(jī)具纏膜現(xiàn)象主要發(fā)生在清雜輥處,由于撿膜機(jī)構(gòu)設(shè)置了防纏繞作業(yè)參數(shù),據(jù)3種回收工藝試驗(yàn)效果,機(jī)具纏膜率均小于2%。
注:圖11b中,含雜率高,撿拾率低;圖11c,含雜率低,撿拾率高。
在實(shí)際壓縮作業(yè)時(shí),壓縮液壓缸壓縮速度對(duì)殘膜壓縮影響較為明顯,壓縮不及時(shí)導(dǎo)致殘膜在壓縮膜箱入口處出現(xiàn)擁堵。因此,根據(jù)殘膜撿拾喂入量與壓縮時(shí)間相匹配的關(guān)系,進(jìn)行了多次試驗(yàn),機(jī)具作業(yè)速度為1.9 m/s時(shí),設(shè)置壓縮缸往復(fù)壓縮一次用時(shí)20 s,能保證壓縮作業(yè)順暢。回收殘膜雜質(zhì)含量對(duì)裝載量及壓縮密度有較大的影響,當(dāng)壓縮缸壓力一定,雜質(zhì)含量較低時(shí),殘膜容易松散,壓縮缸在退回階段,殘膜易產(chǎn)生回落,因此還需進(jìn)一步研究壓縮壓力與雜質(zhì)含量對(duì)殘膜壓縮密度的影響。
由試驗(yàn)結(jié)果看出,前期摟膜作業(yè)的含雜率對(duì)膜堆殘膜撿拾率有明顯的影響,因此,后續(xù)研究需進(jìn)一步提高機(jī)具的清雜能力。機(jī)具實(shí)際作業(yè)時(shí),地表并非絕對(duì)平整,由于播種、中耕、植保、采收等機(jī)具作業(yè)時(shí)對(duì)地面的壓力,導(dǎo)致棉田地表有部分凹陷,殘膜撿拾壓縮車的隨地仿形能力較為局限,因此在凹陷處殘膜撿拾率較低,還需改進(jìn)機(jī)具隨地仿形能力,進(jìn)一步提高殘膜撿拾率和清雜率。
1)為了配合殘膜分段回收作業(yè)模式,研制了一種殘膜撿拾壓縮車,通過對(duì)清雜機(jī)構(gòu)、撿膜機(jī)構(gòu)、脫膜輸送機(jī)構(gòu)及壓縮系統(tǒng)進(jìn)行設(shè)計(jì),計(jì)算各關(guān)鍵部件的結(jié)構(gòu)及工作參數(shù),該機(jī)能較好的適應(yīng)3種新型殘膜回收工藝作業(yè)。
2)提出了適合秋季棉田殘膜回收的3種回收工藝方法,分別為:①秸稈還田機(jī)切碎棉稈開設(shè)卸膜區(qū)?立桿摟膜機(jī)摟膜集條?殘膜撿拾壓縮車撿拾膜堆殘膜;②秸稈還田殘膜集條機(jī)作業(yè)?殘膜撿拾壓縮車撿拾膜堆殘膜;③秸稈還田機(jī)進(jìn)行秸稈還田作業(yè)或拔棉桿機(jī)回收棉桿作業(yè)?殘膜撿拾壓縮車撿拾田間地表殘膜。3種回收工藝中,各回收工序環(huán)節(jié)可高效有序的銜接作業(yè),能夠較好的解決秋后棉田機(jī)械化回收的難題。
3)樣機(jī)田間殘膜回收率試驗(yàn)表明,回收工藝三效果最佳,殘膜撿拾壓縮車撿拾秸稈還田后的地表殘膜,回收率可達(dá)88.21%,殘膜回收作業(yè)工序較少,作業(yè)效率較高。為指導(dǎo)當(dāng)前作業(yè)規(guī)范,回收工藝一中立桿摟膜距離設(shè)定為40 m,殘膜撿拾壓縮車撿拾率為82.96%,回收工藝二中打桿摟膜距離設(shè)定為60 m,殘膜撿拾壓縮車撿拾率為81.91%。通過樣機(jī)試驗(yàn)測(cè)試,各項(xiàng)性能試驗(yàn)指標(biāo)均滿足設(shè)計(jì)要求。
在新提出的回收工藝中,膜堆雜質(zhì)含量情況直接影響殘膜撿拾壓縮車的撿拾率及清雜率,因此在各作業(yè)環(huán)節(jié)中需要進(jìn)一步提升機(jī)具的清雜能力,進(jìn)一步提高殘膜撿拾率。
[1] 侯書林,胡三媛,孔建銘,等. 國(guó)內(nèi)殘膜回收機(jī)研究的現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報(bào),2002,18(3):186-190.Hou Shulin, Hu Sanyuan, Kong Jianming, et al. Present situation of research on plastic film residue collector in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(3): 186-190. (In Chinese with English abstract)
[2] 張佳喜,謝建華,薛黨勤,等. 國(guó)內(nèi)外地膜應(yīng)用及回收裝備的發(fā)展現(xiàn)狀[J]. 農(nóng)機(jī)化研究,2013,35(12):237-240. Zhang Jiaxi, Xie Jianhua, Xue Dangqin, et al. Development status of applying plastic film and the residue plastic filming film collecting machine at domestic and overseas[J]. Journal of Agricultural Mechanization Research, 2013, 35(12): 237-240. (In Chinese with English abstract)
[3] 那明君,董欣,侯書林,等. 殘膜回收機(jī)主要工作部件的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),1999,15(2):112-115. Na Mingjun, Dong Xin, Hou Shulin, et al. Research on main components of the machine for retrieving the used plastic film after harvesting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1999, 15(2): 112-115. (in Chinese with English abstract)
[4] 李斌,王吉奎,蔣蓓. 新疆棉區(qū)殘膜污染及其治理技術(shù)[J].農(nóng)機(jī)化研究,2012,34(5):228-232. Li Bin, Wang Jikui, Jiang Bei. The plastic film pollution and treatment technology in Xinjiang cotton area[J]. Journal of Agricultural Mechanization Research, 2012, 34(5): 228-232. (in Chinese with English abstract)
[5] 張佳,張宇濤,董黎明,等. 國(guó)內(nèi)殘膜回收機(jī)械研究現(xiàn)狀及發(fā)展趨勢(shì)[J]. 農(nóng)業(yè)科技與裝備,2014,36(4):29-30,33.Zhang Jia, Zhang Yutao, Dong Liming, et al. Domestic residual film recovery machine research status and development trend[J]. Agricultural Science & Technologyand Equipment, 2014, 36(4): 29-30, 33. (in Chinese with English abstract)
[6] 徐弘博,胡志超,吳峰,等. 殘膜回收收膜部件研析[J]. 農(nóng)機(jī)化研究,2016,38(8):242-249. Xu Hongbo, Hu Zhichao, Wu Feng, et al. Study on the collecting component of plastic film residue collector[J]. Journal of Agricultural Mechanization Research, 2016, 38(8): 242-249. (in Chinese with English abstract)
[7] 謝建華. 壟作殘膜撿拾及脫卸裝置的研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2014. Xie Jianhua. Study on Pick-up and Unloading Device for Residual Plastic Film of Bed Planting[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract)
[8] 陳發(fā),史建新,王學(xué)農(nóng),等. 弧型齒殘膜撿拾滾筒撿膜的機(jī)理[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(6):36-41. Chen Fa, Shi Jianxin, Wang Xuenong, et al. Study on collecting principle of arc-type tooth roller for collecting plastic residue[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(6): 36-41. (in Chinese with English abstract)
[9] 謝建華,侯書林,付宇,等. 殘膜回收機(jī)彈齒式拾膜機(jī)構(gòu)運(yùn)動(dòng)分析與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(增刊1):94-99. Xie Jianhua, Hou Shulin, Fu Yu, et al. Motion analysis and experiment on spring-tooth mulching plastic film collector[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(Supp.1): 94-99. (in Chinese with English abstract)
[10] 胡凱,王吉奎,李斌,等. 棉稈粉碎還田與殘膜回收聯(lián)合作業(yè)機(jī)研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(19):24-32.Hu Kai, Wang Jikui, Li Bin, et al. Development and experiment of combined operation machine for cotton straw chopping and plastic film collecting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(19): 24-32. (in Chinese with English abstract)
[11] 王吉奎,付威,王衛(wèi)兵,等. SMS-1500型秸稈粉碎與殘膜回收機(jī)的設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(7):168-172. Wang Jikui, Fu Wei, Wang Weibing, et al. Design of SMS- 1500 type straw chopping and plastic film residue collecting machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 168-172. (in Chinese with English abstract)
[12] 王學(xué)農(nóng),史建新,郭俊先,等. 懸掛式棉稈粉碎還田摟膜機(jī)摟膜機(jī)構(gòu)的設(shè)計(jì)與試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(1):135-140.Wang Xuenong, Shi Jianxin, Guo Junxian, et al. Experimental study and design on film raking mechanism of hanging film raker withcotton-stalk crushing and returning to field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(1): 135-140. (in Chinese with English abstract)
[13] 何義川,王序儉,王吉亮,等. 4SZ-3.0型收膜整地聯(lián)合作業(yè)機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,48(4):149-154.He Yichuan ,Wang Xujian ,Wang Jiliang, et al. Design and experiment of 4SZ-3.0 film collecting combined tillage machine[J]. Journal of Gansu Agricultural University, 2013, 48(4): 149-154. (in Chinese with English abstract)
[14] 張學(xué)軍. 殘膜分離與輸送裝置的研究[D]. 長(zhǎng)春:吉林大學(xué),2007. Zhang Xuejun. Study on Separation and Transport Device for Remnant Plastic Film[D]. Changchun: Jilin University, 2007. (in Chinese with English abstract)
[15] 劉旋峰,張麗,郭兆峰,等. 1SM-1.8(2.0)型牽引式棉田殘膜回收機(jī)的研制[J]. 新疆農(nóng)機(jī)化,2015,31(3):13-14.
[16] 陳振歆,王金武,牛春亮,等. 彈齒式苗間除草裝置關(guān)鍵部件設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(6):81-86.Chen Zhenxin, Wang Jinwu, Niu Chunliang, et al. Design and experiment of key components trash cultivators working in paddy rice seeding lines[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(6): 81-86. (in Chinese with English abstract)
[17] 施麗莉,胡志超,顧峰瑋,等. 耙齒式壟作花生殘膜回收機(jī)設(shè)計(jì)及參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):8-15.Shi Lili, Hu Zhichao, Gu Fengwei, et al. Design and parameter optimization on teeth residue plastic film collector of ridged peanut[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 8-15. (in Chinese with English abstract)
[18] 孫興凍,陳玉龍,羅昕,等. 針對(duì)秋后立稈模式的殘膜回收機(jī)的設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2015,37(9):73-76.Sun Xingdong,Chen Yulong, Luo Xin, et al. Design and research of plastic film residue collector used on vertical stem after autumn[J]. Journal of Agricultural Mechanization Research, 2015, 37(9): 73-76. (In Chinese with English abstract)
[19] 于云海,陳學(xué)庚,溫浩軍. 秸稈粉碎與殘膜集條聯(lián)合作業(yè)機(jī)的研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(24):1-8.Yu Yunhai, Chen Xuegeng, Wen Haojun. Development and experiment of cotton straw chopping and plastic film collection strip combined machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 1-8. (in Chinese with English abstract)
[20] 趙巖,鄭炫,周敦興. 農(nóng)田殘膜撿拾打包聯(lián)合作業(yè)機(jī)的研制[J]. 新疆農(nóng)機(jī)化,2015,31(1):6-7.
[21] 胡小欽. 貫流式谷物清選裝置設(shè)計(jì)及性能試驗(yàn)研究[D]. 杭州:浙江理工大學(xué),2012. Hu Xiaoqin. Design and Performance Evaluation of a Cross-Flow Grain Cleaning Device[D]. Hangzhou: ZhejiangSci-Tech University, 2012. (in Chinese with English abstract)
[22] 林亮. 小型軸流式風(fēng)機(jī)通流部件優(yōu)化設(shè)計(jì)研究[D]. 南京:東南大學(xué),2015. Lin Liang. Optimization Design of Flow Passage Parts of a Small Axial Fan[D]. Nanjing: Southeast University, 2015. (in Chinese with English abstract)
[23] 李從權(quán). 秸稈粉碎還田及殘膜回收聯(lián)合作業(yè)機(jī)的關(guān)鍵零部件研究[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2007.Li Congquan. The Study of the Key Parts and Key Components of the Field Straw Chopper Work with Film Collecting Machine[D]. Urumqi: Xinjiang Agricultural University, 2007. (in Chinese with English abstract)
[24] 郭文松,坎雜,張若宇,等. 網(wǎng)狀滾筒式籽棉殘膜分離機(jī)物料特性分析[J].農(nóng)業(yè)工程學(xué)報(bào),2011,27(增刊2):1-5. Guo Wensong, Kan Za, Zhang Ruoyu, et al. Analysis of material character based on mesh roller-type cotton and film remnant separator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.2): 1-5. (in Chinese with English abstract)
[25] 坎雜,郭文松,張若宇,等. 網(wǎng)狀滾筒式籽棉殘膜分離機(jī)的設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(6):95-99. Kan Za, Guo Wensong, Zhang Ruoyu, et al. Design of mesh roller-type separator for machine- harvested seed cotton and film remnant[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(6): 95-99. (in Chinese with English abstract)
[26] 史建新,陳發(fā),郭俊先,等. 拋送式棉稈粉碎還田機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(3):68-72.Shi Jianxin, Chen Fa, Guo Junxian, et al. Design and experimental research of the field straw chopper with throwing cotton- stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(3): 68-72. (in Chinese with English abstract)
[27] 盛言忠. 揭膜拔稈技術(shù)試驗(yàn)分析[J]. 農(nóng)機(jī)具之友,2010,16(7):29-30.Sheng Yanzhong.Experiment and analysis on techniques of removing coating and rocker[J]. Friends of the Agricultural Machinery, 2010, 16(7): 29-30. (In Chinese with English abstract)
[28] 郭振華,史建新,康秀生,等.鏟切式拔棉稈阻力分析[J]. 新疆農(nóng)機(jī)化,2008,24(4):9–11.
[29] 陳明江,平英華,曲浩麗,等. 棉稈機(jī)械化收獲技術(shù)與裝備現(xiàn)狀及發(fā)展對(duì)策[J]. 中國(guó)農(nóng)機(jī)化,2012,29(5):23-26.Chen Mingjiang, Ping Yinghua, Qu Haoli, et al. Status and development countermeasures of mechanized cotton-stalk harvesting technologies and equipments[J]. Chinese Agricultural Mechanization, 2012, 29(5): 23-26. (in Chinese with English abstract)
[30] 姚祖玉,全臘珍,鄒運(yùn)梅,等. 小型棉稈收獲機(jī)打捆裝置的設(shè)計(jì)與試驗(yàn)[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2015,41(5):560-564. Yao Zuyu, Quan Lazhen, Zou Yunmei, et al. Design and test of baling mechanism for small-type cotton harvester device[J]. Journal of Hunan Agricultural University :Natural Sciences, 2015, 41(5): 560-564. (in Chinese with English abstract)
劉進(jìn)寶,鄭 炫,趙 巖,陳學(xué)庚,劉興愛,葛士林.殘膜撿拾壓縮車及其作業(yè)工藝設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(19):17-26. doi:10.11975/j.issn.1002-6819.2017.19.003 http://www.tcsae.org
Liu Jinbao, Zheng Xuan, Zhao Yan, Chen Xuegeng, Liu Xingai, Ge Shilin.Design and experiment of operating process for collecting residual film compacted truck[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 17-26. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.19.003 http://www.tcsae.org
Design and experiment of operating process for collecting residual film compacted truck
Liu Jinbao1, Zheng Xuan2※, Zhao Yan2, Chen Xuegeng2, Liu Xingai1, Ge Shilin3
(1.832000,; 2.832000,;3.100083,)
The high impurity content and the residual film loosening have led to the problems that the recovery rate of residual film is low, the machine loading capacity is small, and the mechanized operation process is not continuous. In order to solve these problems, we put forward 3 kinds of recycling models of residual film recovery after cotton harvest, and analyzed the operation process and operating features of these 3 kinds of recycling methods. The first kind of recycling process was as follows: Firstly, the straw returning machine set up the residual film strip; secondly, the heap of the residual film was set before cotton stalk recovery; finally, the truck collecting and compacting residual film picked up the heap of the residual film gathered. For the second kind of recycling process, cotton straw chopping and residual plastic film collection strip combined machine was firstly operated; next, the truck collecting and compacting residual plastic film picked up the heap of the residual film gathered. The third kind of recycling process was as follows: Firstly, straw returning machine operates, or cotton stalk pulling machine operates; secondly, the truck collecting and compacting residual film picked up the surface residual plastic film. A new operation mode was designed for the truck collecting and compacting residual film. The machine consists of impurities separation mechanism, pickup mechanism, residual film shedding mechanism, residual film compression mechanism, and hydraulic control system. Machine can simultaneously complete separation of residual film and impurities, residual film pickup and delivery, and residual film compression. A kind of structure preventing residual film winding was designed, and spring teeth and pole teeth in this structure were in staggered arrangement. The equations of the motion of impurities separation mechanism and pickup mechanism were respectively established, and the process of impurities separation mechanism and pickup mechanism operation was analyzed. The rotational speed of the end of the spring teeth was calculated to be 240 r/min, and the rotational speed of the pole teeth end of the picking mechanism was 90 r/min. The mechanism was designed, which could prevent residual film shedding mechanism from congestion. The operation process of the residual film conveying mechanism was analyzed, and the rotational speed of the end of film removing blade was 1 000 r/min. A kind of electronically controlled hydraulic compression system was designed, and the residual film loading of the compressed film box was improved. Then we examined the capability of the prototype and checked its production functions in field. The size of the heap of the residual film and the proportion of the residual film were recovered in the different distances for the first kind of recovery process model and the second kind of recovery process model. The prototype field experiments showed that, with the increase of the work distance of gathering up the film, the size of the residual film stack was increasing, and the proportion of residual film was decreased obviously. In the case of the same work distance gathering up the residual, the impurity content in the first kind of recycling process was higher than that of the second kind of recycling process, and the recovery rate of the residual film in the first kind of recycling process was lower than that of the second kind of recycling process. The recovery effects of three kinds of recovery processes were compared. The first kind of recovery method included gathering up the residual film before cotton stalk recovery—collecting residual film and compressing, with a work distance of gathering up the film of less than 40 m, and its pickup work was better. The secondary recovery method included gathering up the film after cotton stalk returning—setting heap of the residual film gathered—collecting residual film and compressing, with a work distance of gathering up the film of less than 60 m, and its pickup work was better, with a pickup rate of greater than 80%. The third recovery method included cotton stalk recovery—collecting residual film and compressing, and when the stubble height was less than 80 mm, the collecting rate of residual film reached 88.21%. The truck collecting and compacting residual film could pick up and compress the residue film in 8 hm2field. The rate of film winding was less than 2%. Through compression test, it demonstrated, to ensure the smooth operation of the machine when the operating speed of the machine was 1.9 m/s, the reciprocating compression time of compression cylinder was 20 s; the compression density was up to 300 kg/m3.
agricultural machinery; design; experiments; residual film; recovery method; cleaning out impurities; residual film stack pickup; hydraulic compression
10.11975/j.issn.1002-6819.2017.19.003
S223.5
A
1002-6819(2017)-19-0017-10
2017-03-11
2017-08-04
公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)經(jīng)費(fèi)項(xiàng)目(201503105);兵團(tuán)重大科技項(xiàng)目(2014AA002-2)。
劉進(jìn)寶,男,新疆伊犁人,助理研究員,主要從事現(xiàn)代農(nóng)業(yè)機(jī)械裝備的研究,Email:jinbao1226@126.com
※通信作者:鄭 炫,女,江蘇徐州人,研究員,主要從事現(xiàn)代農(nóng)業(yè)機(jī)械裝備的研究。Email:jiazhengxuan@sohu.com。
農(nóng)業(yè)工程學(xué)報(bào)2017年19期