国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Meta分析生物質(zhì)炭對(duì)中國(guó)主糧作物痕量溫室氣體排放的影響

2017-11-01 22:51孫濱峰王效科王海勇張利鈞張夢(mèng)汝
關(guān)鍵詞:氧化亞氮主糧甲烷

趙 紅,孫濱峰,逯 非,王效科,張 國(guó),王海勇,張利鈞,張夢(mèng)汝

?

Meta分析生物質(zhì)炭對(duì)中國(guó)主糧作物痕量溫室氣體排放的影響

趙 紅1,孫濱峰2,逯 非3※,王效科3,張 國(guó)3,王海勇1,張利鈞1,張夢(mèng)汝1

(1. 濟(jì)南市環(huán)境研究院環(huán)境規(guī)劃研究所,濟(jì)南 250102;2. 江西省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)工程研究所,南昌 330200; 3. 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心,城市與區(qū)域生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100085)

該文采用Meta分析方法定量分析生物質(zhì)炭輸入對(duì)中國(guó)主糧作物痕量溫室氣體的影響,研究可為農(nóng)田痕量溫室氣體減排提供有效的途徑。結(jié)果表明相對(duì)于不施加生物質(zhì)炭,生物質(zhì)炭輸入對(duì)甲烷吸收/排放并無(wú)顯著影響,而甲烷排放在不同耕作和施氮情況下發(fā)生顯著變化。旋耕和不施氮情況下施加生物質(zhì)炭分別顯著提高稻田甲烷排放達(dá)30%和46%,而在翻耕和施氮的情況下施加生物質(zhì)炭可減少稻田甲烷排放達(dá)9%和10%。生物質(zhì)炭輸入分別可顯著減少主糧作物氧化亞氮、全球增溫潛勢(shì)(global warming potential, GWP)及溫室氣體排放強(qiáng)度(greenhouse gas intensity, GHGI)達(dá)41%、18%及25%。不同土地利用類型、耕作類型、生物質(zhì)炭施用量及生物質(zhì)炭類型均可顯著影響農(nóng)田氧化亞氮、GWP和GWPI。合理的管理主糧作物生物質(zhì)輸入可為減少溫室氣體排放做出貢獻(xiàn),建議生物質(zhì)炭與施氮和翻耕2種農(nóng)作措施相結(jié)合,施加小于10 t/hm2及碳氮比(C/N)低于80的生物質(zhì)炭,以利于主糧作物綜合溫室效應(yīng)的減排。

溫室氣體;甲烷;氮;生物質(zhì)炭;Meta分析;全球增溫潛勢(shì)

0 引 言

全球氣候變化已成為不可爭(zhēng)議的事實(shí),目前中國(guó)是溫室氣體排放大國(guó),《巴黎協(xié)議》上中國(guó)表現(xiàn)出在應(yīng)對(duì)氣候變化問(wèn)題上應(yīng)盡的責(zé)任[1]。農(nóng)業(yè)土地活動(dòng)是最重要的溫室氣體排放源之一,農(nóng)業(yè)源溫室氣體排放量占人類活動(dòng)溫室氣體排放量的14%[2],農(nóng)業(yè)的二氧化碳排放幾乎均被凈初級(jí)生產(chǎn)力及植物的吸收所抵消,其全球增溫潛勢(shì)所占比例低于1%,而農(nóng)業(yè)甲烷和氧化亞氮的排放分別占人類活動(dòng)排放的52%和84%[3],所以有效地控制農(nóng)業(yè)中痕量溫室氣體的排放可為溫室氣體減排做出巨大貢獻(xiàn)。

生物質(zhì)炭是由植物生物質(zhì)在完全或部分缺氧的情況下經(jīng)熱解炭化產(chǎn)生的一類高度芳香化難熔性固態(tài)物質(zhì)[4]。潘根興等[5]對(duì)比了5種農(nóng)業(yè)秸稈利用的循環(huán)性與產(chǎn)業(yè)化潛力,發(fā)現(xiàn)農(nóng)田秸稈熱裂解處理可最大程度利用能源、養(yǎng)分和秸稈有機(jī)質(zhì)。由于生物質(zhì)炭含碳量高、難于分解、比表面積大、疏松多孔等特性,生物質(zhì)炭對(duì)于減少土壤硬度、促進(jìn)土壤微生物的發(fā)育、補(bǔ)充土壤養(yǎng)分及增產(chǎn)方面已有報(bào)道[5-6],而生物質(zhì)炭對(duì)痕量溫室氣體排放的影響目前還未取得一致的結(jié)論。旱地土壤是甲烷的匯,部分田間試驗(yàn)的結(jié)果表明旱地土壤施加生物質(zhì)炭后對(duì)甲烷的吸收沒(méi)有顯著影響[4],而有些試驗(yàn)結(jié)果證實(shí)施加生物質(zhì)炭后對(duì)甲烷的吸收有促進(jìn)作用[7-8];稻田是甲烷的主要排放源之一,一些研究證實(shí)生物質(zhì)炭輸入可減少稻田的甲烷排放[9-10],而另一些研究的結(jié)果與其相反[11];相似地,農(nóng)田生物質(zhì)炭的輸入對(duì)氧化亞氮排放的影響也表現(xiàn)出較大的變異性[7-12]。目前對(duì)生物質(zhì)炭影響農(nóng)田溫室氣體排放的田間試驗(yàn)數(shù)據(jù)報(bào)道較多,但綜合定量考慮生物質(zhì)炭對(duì)溫室氣體的影響還鮮有報(bào)道。

Meta分析是綜合分析變異數(shù)據(jù)并得到一致結(jié)論的工具[13],可有效解決單組試驗(yàn)不能解決的問(wèn)題,目前已有文章采用Meta分析方法研究農(nóng)作措施對(duì)農(nóng)田痕量溫室氣體排放的研究[14]。本文通過(guò)收集目前已發(fā)表的生物質(zhì)炭對(duì)主糧作物溫室氣體排放影響的文章數(shù)據(jù),采用Meta分析方法定量研究不同生物質(zhì)炭施加的情況對(duì)主糧作物溫室氣體及其綜合排放效應(yīng)的影響,以期探求生物質(zhì)炭減排的有效措施。

1 材料與方法

1.1 數(shù)據(jù)來(lái)源

本文收集的已發(fā)表的文獻(xiàn)均源于2016年12月之前,外文文獻(xiàn)主要來(lái)自于Web of ScienceTM,中文文獻(xiàn)主要來(lái)自中國(guó)知網(wǎng)數(shù)據(jù)庫(kù)(CNKI)和萬(wàn)方數(shù)據(jù)庫(kù)。文獻(xiàn)收集的關(guān)鍵詞包括“生物質(zhì)炭(biochar)、黑炭(black cabron)、甲烷(methane)、氧化亞氮(nitrous oxide)、溫室氣體(greenhouse gas)”,共收集相關(guān)文獻(xiàn)100余篇。

1.2 數(shù)據(jù)選取

文獻(xiàn)資料遴選的具體標(biāo)準(zhǔn)如下:1)以不施生物質(zhì)炭為對(duì)照組,施加生物質(zhì)炭為試驗(yàn)組;2)要求收集的文章中包括甲烷吸收或排放數(shù)據(jù),氧化亞氮排放數(shù)據(jù)及產(chǎn)量數(shù)據(jù);3)田間試驗(yàn);4)收集溫室氣體數(shù)據(jù)要求收集單季累計(jì)排放值(稻田指水稻移栽到成熟這一階段);5)收集的產(chǎn)量數(shù)據(jù)要求單季年產(chǎn)量數(shù)據(jù);6)確保收集的溫室氣體和產(chǎn)量數(shù)據(jù)測(cè)定方式可信;7)農(nóng)田數(shù)據(jù)只收集小麥、水稻和玉米3種主糧作物,因?yàn)樗鼈兪侵袊?guó)最主要的糧食作物并且耕地面積占全國(guó)農(nóng)田總面積的71%。

最后,生物質(zhì)炭對(duì)甲烷和氧化亞氮排放影響的研究共收集了有效數(shù)據(jù)134對(duì),其中生物質(zhì)炭對(duì)甲烷吸收、甲烷排放和氧化亞氮排放影響的有效數(shù)據(jù)分別為29對(duì)、37對(duì)和68對(duì)。本文收集的數(shù)據(jù)主要源于以下參考文獻(xiàn)(表1)。

1.3 Meta分析

本文選擇生態(tài)學(xué)中常用的反應(yīng)比ln()估算生物質(zhì)炭施加對(duì)溫室氣體排放的影響強(qiáng)度[28]。

相對(duì)于不施生物質(zhì)炭,主糧作物痕量溫室氣體排放受生物質(zhì)炭的影響可進(jìn)一步通過(guò)以下分組進(jìn)行解釋:1)耕作類型(翻耕,旋耕);2)不同施肥狀態(tài)(施氮,不施氮);3)不同土地類型(水田,旱田);4)不同生物質(zhì)炭施用量(<10、10~20、>20 t/ hm2);5)不同類型黑炭(小麥黑炭,玉米黑炭,其他黑炭:包括竹炭、生活垃圾炭等)。

由于大部分已發(fā)表的文章中沒(méi)有給出權(quán)重值,本文的研究采用非權(quán)重Meta分析的方法[14,30],采用Meta分析軟件包(METAWIN 2.1.3.4)來(lái)估算相對(duì)于不施生物質(zhì)炭,施加生物質(zhì)炭引起的效應(yīng)值定量變化(Sinauer Associates, Inc., Sunderland,MA,USA)。效應(yīng)值的計(jì)算采用重復(fù)樣技術(shù)疊加計(jì)算4 999次,效應(yīng)值的置信區(qū)間采用靴帶法計(jì)算[28],如果效應(yīng)值的95%置信區(qū)間不與0重合,那么則認(rèn)為效應(yīng)值顯著[31]。本文采用隨機(jī)效應(yīng)分析來(lái)比較不同組間的差異,如果組間效應(yīng)異質(zhì)性檢驗(yàn)值對(duì)應(yīng)的值小于0.05,那么則認(rèn)為其組間有顯著差異。分析組間差異的同時(shí),組內(nèi)的異質(zhì)性檢驗(yàn)也進(jìn)行了分析,文章中的分組組內(nèi)無(wú)(>0.05)顯著差異。

1.4 相關(guān)參數(shù)的計(jì)算

全球增溫潛勢(shì)(global warming potential,GWP)常被用來(lái)估計(jì)不同溫室氣體對(duì)氣候系統(tǒng)的潛在效應(yīng),本文用GWP來(lái)評(píng)價(jià)生物質(zhì)炭的施用對(duì)甲烷和氧化亞氮排放的綜合影響。100 a的時(shí)間尺度下,甲烷和氧化亞氮的增溫潛勢(shì)分別是二氧化碳的25倍和298倍[32]。

溫室氣體排放強(qiáng)度(greenhouse gas intensity,GHGI)就是在農(nóng)業(yè)生態(tài)系統(tǒng)每生產(chǎn)1 kg糧食產(chǎn)量的溫室氣體排放量,是GWP除以作物產(chǎn)量所得的值[33]。

2 結(jié)果與分析

2.1 施加生物質(zhì)炭對(duì)主糧作物GWP的影響

從全國(guó)68對(duì)數(shù)據(jù)結(jié)果來(lái)看,相對(duì)于不施加生物質(zhì)炭,生物質(zhì)炭的施加平均可降低中國(guó)主糧作物GWP達(dá)18%(95%置信區(qū)間8%~27%),且不同生物質(zhì)炭的施用情況對(duì)GWP產(chǎn)生顯著影響(表2)。其中旱田施加生物質(zhì)炭后GWP的降低水平極顯著高于水田(<0.01)(圖1a);少量施加生物質(zhì)炭(<10 t/hm2)的GWP的減排水平高于大量施加生物質(zhì)炭(>10 t/hm2)(圖1b);翻耕情況下施加生物質(zhì)炭可顯著降低中國(guó)農(nóng)田GWP達(dá)19%,而旋耕情況下施加生物質(zhì)炭則增加GWP12%(圖1c);另外,不同生物質(zhì)炭類型中,GWP的減排水平為其他黑炭(41%)及玉米黑炭(20%)高于小麥黑炭(13%)(圖1d)。

注:圖中圓形和橫線分別代表平均值和95%置信區(qū)間,括號(hào)內(nèi)的數(shù)值及百分比分別代表數(shù)據(jù)對(duì)數(shù)和百分比變化。下同。

表2 生物質(zhì)炭施加對(duì)主糧作物痕量溫室氣體排放影響的組間異質(zhì)性分析

Note:**,<0.01;*,<0.05;–,>0.05。

2.2 施加生物質(zhì)炭對(duì)主糧作物甲烷排放的影響

從全國(guó)31對(duì)數(shù)據(jù)結(jié)果來(lái)看,相對(duì)于不施加生物質(zhì)炭,生物質(zhì)炭的施加對(duì)旱田甲烷排放的影響為14%(95%置信區(qū)間–10%~28%),但差異不顯著。

總體來(lái)看,施加生物質(zhì)炭對(duì)稻田中甲烷的排放沒(méi)有顯著影響,但在不同耕作和不同施肥狀況中顯示出極顯著組間差異(表2)。其中旋耕情況下施加生物質(zhì)炭可顯著增加稻田甲烷排放達(dá)30%,而常規(guī)翻耕情況下施加生物質(zhì)炭可降低稻田甲烷排放達(dá)9%(圖2a)。生物質(zhì)炭的輸入在施氮肥和不施氮肥條件下對(duì)甲烷的排放有顯著的區(qū)別,根據(jù)圖2b,不施氮肥時(shí),單獨(dú)施加生物質(zhì)炭可增加稻田甲烷排放達(dá)46%(95%置信區(qū)間14%~80%),而施加氮肥時(shí),生物質(zhì)炭的施加可顯著減少稻田甲烷排放10%(95%置信區(qū)間2%~22%)。

圖2 生物質(zhì)炭施加對(duì)稻田甲烷排放的影響

2.3 施加生物質(zhì)炭對(duì)主糧作物氧化亞氮排放的影響

從全國(guó)68對(duì)數(shù)據(jù)結(jié)果來(lái)看,相對(duì)于不施加生物質(zhì)炭,生物質(zhì)炭的施加平均可降低主糧作物氧化亞氮排放達(dá)41%(95%置信區(qū)間31%~51%),并且在不同土地利用類型、生物質(zhì)炭施用量及黑炭類型分組間產(chǎn)生顯著差異(表2)。旱田施加生物質(zhì)炭后氧化亞氮的排放平均降低44%,而稻田的減排潛力為24%(圖3a);少量施加生物質(zhì)炭(<10 t/hm2)的氧化亞氮減排水平(52%)高于大量施加生物質(zhì)炭(>10 t/ hm2)(圖3b);不同生物質(zhì)炭類型中,其他黑炭(包括竹炭、水稻秸稈炭等)和玉米黑炭的氧化亞氮的減排水平較高,而小麥黑炭的減排水平只有33%(圖3c)。

2.4 施加生物質(zhì)炭對(duì)主糧作物GWPI的影響

根據(jù)文章收集的數(shù)據(jù),生物質(zhì)炭輸入平均可增加主糧產(chǎn)量達(dá)7%(95%置信區(qū)間4%~10%),平均可降低中國(guó)主糧作物GWPI達(dá)25%(95%置信區(qū)間18%~23%)。生物質(zhì)炭對(duì)組間GWPI的影響與GWP的結(jié)果相似,其中旱田施加生物質(zhì)炭后GWPI的降低水平極顯著高于稻田(<0.01)(圖4a);少量施加生物質(zhì)炭(<10 t/ hm2)的GWPI的減排水平最高(圖4b);翻耕情況下施加生物質(zhì)炭對(duì)GWPI的減排潛力(22%)高于旋耕(1%)(圖4c);不同生物質(zhì)炭類型中,GWIP的減排水平中其他黑炭為47%,玉米黑炭為26%,小麥黑炭為20%(圖4d)。

圖3 生物質(zhì)炭施加對(duì)氧化亞氮排放的影響

圖4 生物質(zhì)炭施加對(duì)溫室氣體排放強(qiáng)度(GWPI)的影響

3 討 論

3.1 生物質(zhì)炭的施加對(duì)痕量溫室氣體排放的影響

總體而言,生物質(zhì)炭的施加對(duì)旱田和稻田甲烷吸收/排放的影響不顯著,而生物質(zhì)炭的稻田甲烷排放的影響主要視耕作情況和施肥狀態(tài)而定。

從全國(guó)數(shù)據(jù)的Meta結(jié)果來(lái)看,生物質(zhì)炭的施加平均可降低中國(guó)主糧作物氧化亞氮排放達(dá)41%,這與諸多大田試驗(yàn)的結(jié)果相似[9,21],主要可歸納為以下2個(gè)方面:1)生物炭固定氧化亞氮產(chǎn)生源。生物質(zhì)炭的多孔特性和較大的比表面積(收集數(shù)據(jù)生物質(zhì)炭的比表面積介于8.92~6 200 m2/g)可增加對(duì)硝態(tài)氮及銨態(tài)氮的吸附,減少了產(chǎn)氧化亞氮的基質(zhì)[34];生物質(zhì)炭較高的碳氮比(C/N)導(dǎo)致微生物在有機(jī)質(zhì)礦化過(guò)程中缺氮,從而吸收土壤有效氮,加強(qiáng)對(duì)土壤氮素的臨時(shí)固持作用[35]。2)生物質(zhì)炭改變土壤反硝化作用。由于生物質(zhì)炭多孔的特性,生物質(zhì)炭輸入土壤后改善了土壤的通氣條件,從而一定程度上抑制產(chǎn)氧化亞氮的反硝化作用;由于生物質(zhì)炭增加土壤pH[21]及易分解碳[36],增加反硝化中氧化亞氮還原酶的活性,從而增加氧化亞氮向氮?dú)獾霓D(zhuǎn)化[37]。

由此可見(jiàn),生物質(zhì)炭輸入減少GWP主要是由于抑制了氧化亞氮的排放。通過(guò)GWPI,本文發(fā)現(xiàn)生物質(zhì)炭的施加可有效提高農(nóng)田產(chǎn)量,因此,生物質(zhì)炭施加后應(yīng)會(huì)對(duì)農(nóng)田有固碳效益,當(dāng)進(jìn)一步考慮二氧化碳、甲烷和氧化亞氮3種溫室氣體時(shí),生物質(zhì)炭的減排效果可能比當(dāng)前只考慮2種痕量溫室氣體的減排效果更大。

3.2 不同情況下生物質(zhì)炭的施加對(duì)痕量溫室氣體排放的影響

稻田甲烷的排放量取決于甲烷產(chǎn)生、氧化及向大氣傳輸這3個(gè)過(guò)程相互作用的結(jié)果,生物質(zhì)炭中的易分解碳是甲烷的產(chǎn)生源,連續(xù)淹水的情況下能夠促進(jìn)甲烷的產(chǎn)生[38]。旋耕對(duì)土壤的擾動(dòng)較小,旋耕情況下施加生物質(zhì)炭會(huì)將大部分生物質(zhì)炭轉(zhuǎn)移到耕層0~5 cm左右,生物質(zhì)炭輸入而產(chǎn)生的甲烷還未完全被氧化已傳輸?shù)酱髿庵腥?,而翻耕能夠有效地提高土壤的通透性,翻耕與生物質(zhì)炭的結(jié)合將有效地提高稻田土壤的氧氣含量,從而從減少甲烷的產(chǎn)生,另外翻耕會(huì)將大部分生物質(zhì)炭轉(zhuǎn)移到耕層10~20 cm,植物根際、水與大氣的接觸面均能有效地氧化甲烷。因此,翻耕與生物質(zhì)炭的結(jié)合會(huì)抑制稻田甲烷的排放。

本文通過(guò)對(duì)全國(guó)多組田間試驗(yàn)數(shù)據(jù)結(jié)果的分析,發(fā)現(xiàn)生物質(zhì)炭的輸入在施氮肥和不施氮肥條件下對(duì)甲烷的排放有明顯的區(qū)別。不施氮肥條件下施加生物質(zhì)炭可顯著增加稻田甲烷排放,主要是由于生物質(zhì)炭中的易分解碳為甲烷的產(chǎn)生提供基質(zhì)[37],而施氮情況下輸入生物質(zhì)炭會(huì)抑制甲烷排放,主要是由于生物質(zhì)炭和氮肥均能提高稻田土壤中易分解碳的形成,根據(jù)Sun等[14]的解釋,甲烷氧化菌視甲烷為唯一的碳源和能量源,當(dāng)土壤中存在大量易分解碳時(shí),甲烷氧化菌的活性和數(shù)量大幅提高[39],導(dǎo)致甲烷在未排放之前被氧化,可見(jiàn)生物質(zhì)炭與氮肥的配施可有效減少稻田甲烷的排放。

本文的研究結(jié)果顯示旱田施加生物質(zhì)炭后氧化亞氮的減排潛力顯著高于稻田,這可能是由于旱田中不飽和的水分條件更能抑制氧化亞氮的排放[38]。另外,不施氮情況下增加甲烷的排放也可能是導(dǎo)致稻田的減排潛力相對(duì)較低的原因。

目前中國(guó)生物質(zhì)炭在大田的施用量介于3~40 t/hm2之間,其中生物質(zhì)炭施用量在<10 t/ hm2的范圍內(nèi)其氧化亞氮和GWP的減排潛力普遍較強(qiáng),而生物質(zhì)炭量在10~40 t/ hm2的減排潛力相對(duì)較低,這可能是由于中國(guó)主糧作物土壤的理化性質(zhì)、種植制度及氣候條件等變化差異較大,目前從全國(guó)來(lái)看并無(wú)生物質(zhì)炭輸入量與GWP減排潛力呈顯著相關(guān)的文章?;诒疚乃占漠a(chǎn)量數(shù)據(jù)、作物稻谷比[40]及生物質(zhì)材料35%的生物質(zhì)炭轉(zhuǎn)化率[41],可估算出目前中國(guó)主糧作物秸稈每年約有2~8 t/hm2轉(zhuǎn)化為生物質(zhì)炭,其范圍可達(dá)到最優(yōu)的痕量溫室氣體減排效果,因此本文不建議額外超量施用生物質(zhì)炭。

生物質(zhì)炭的種類繁多,本文收集的生物質(zhì)炭主要包括小麥秸稈生物質(zhì)炭、玉米秸稈生物質(zhì)炭、竹炭、水稻谷殼炭、水稻秸稈炭等,不同種類的生物質(zhì)炭由于其化學(xué)組分不同,導(dǎo)致其對(duì)溫室氣體排放的影響也有顯著差異[40]。通過(guò)一元線性回歸分析發(fā)現(xiàn)生物質(zhì)炭的C/N與GWP和GWPI呈正相關(guān)(圖5),當(dāng)生物質(zhì)炭的C/N低于80時(shí),GWP和GWPI的減排效果較為顯著。說(shuō)明施加持有較高C/N的生物質(zhì)炭可增加溫室氣體的綜和排放效應(yīng),而施加C/N低于80的生物質(zhì)炭可促進(jìn)GWP和GWPI的減排。

圖5 生物質(zhì)炭的C/N與GWP和GWPI反應(yīng)比的相關(guān)關(guān)系

4 結(jié) 論

本文通過(guò)收集生物質(zhì)炭對(duì)痕量溫室氣體排放影響的文章數(shù)據(jù),采用Meta分析方法對(duì)不同生物質(zhì)炭施加情況下主糧作物溫室氣體排放的變化進(jìn)行了研究,并得出以下結(jié)論:

1)總體來(lái)講,相對(duì)于不施加生物質(zhì)炭,生物質(zhì)炭輸入可有效降低中國(guó)主糧作物氧化亞氮排放(41%)、GWP(18%)及GWPI(25%),而對(duì)甲烷吸收/排放并無(wú)顯著影響;

2)生物質(zhì)炭在翻耕和施加氮肥的情況下會(huì)顯著降低稻田甲烷的排放,而在不施氮情況下施加生物質(zhì)炭可顯著提高甲烷排放達(dá)46%;

3)生物質(zhì)炭在小于10 t/hm2、旱田及翻耕情況下輸入相比大于10 t/hm2、稻田及旋耕的減排效果更為顯著,降低生物質(zhì)炭的C/N可有效減排GWP和GWPI。最后為保證主糧作物痕量溫室氣體的有效減排,建議結(jié)合翻耕及施氮處理,并將田間秸稈直接進(jìn)行生物質(zhì)炭化,無(wú)需額外輸入生物質(zhì)炭即可達(dá)到最優(yōu)痕量溫室氣體減排效果。

[1] Iyer G C, Edmonds J A, Fawcett A A, et al. The contribution of Paris to limit global warming to 2 ℃[J]. Environmental Research Letters, 2015, 10: 125002.

[2] Bouwman A F, Boumans L J M. Emissions of N2O and NO from fertilized fields: Summary of available measurement data[J]. Global Biogeochemistry Cycles, 2002, 16(4), 1-6.

[3] Smith P, Martino D, Cai Z, et al, Agriculture[M]//Metz B, Davidson OR, Bosch PR, et al. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, USA: Cambridge University Press, 2007: 497–540.

[4] Wu Fengping, Jia Zhikuan, Wang Sunguo, et al. Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil[J]. Biology and Fertility of Soils, 2013, 49(5): 555-565.

[5] 潘根興,張阿鳳,鄒建文,等. 農(nóng)業(yè)廢棄物生物黑炭轉(zhuǎn)化還田作為低碳農(nóng)業(yè)途徑的探討[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2010,26(4): 394-400. Pan Genxing, Zhang Afeng, Zou Jianwen, et al. Biochar from agro-byproducts used as amendment to croplands: An option for low carbon agriculture[J]. Journal of Ecology and Rural Environment, 2010, 26(4): 394-400. (in Chinese with English abstract)

[6] Liu Xiaoyu, Zhang Afeng, Ji Chunying, et al. Biochar’s effect on crop productivity and the dependence on experimental conditions: A meta-analysis of literature data[J]. Plant and Soil, 2013, 373(1/2): 583-594.

[7] Karhu K, Mattila T, Bergstr?m I, et al. Biochar addition to agricultural soil increased CH4uptake and water holding capacity: Results from a short-term pilot field study[J]. Agriculture, Ecosystems & Environment, 2011, 140(1): 309-313.

[8] 劉玉明. 生物質(zhì)炭應(yīng)用于黃淮海平原低產(chǎn)農(nóng)作旱地增產(chǎn)低碳效果探討[D]. 南京:南京農(nóng)業(yè)大學(xué),2012. Liu Yuming. Effects of Biochar on Increasing Yield and Decreasing Carbon Intensity in Low Fertility Soils from the Central China Plain[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract)

[9] 秦曉波,李玉娥,李健陵,等. 生物質(zhì)炭添加對(duì)華南雙季稻田碳排放強(qiáng)度的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(5):226-234. Qin Xiaobo, Li Yu’e, Li Jianling, et al. Impact of biochar amendment on carbon emissions intensity in double rice field in South China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 226-234.(in Chinese with English abstract)

[10] 蔣晨,麻培俠,胡保國(guó),等.生物質(zhì)炭還田對(duì)稻田甲烷的減排效果[J].農(nóng)業(yè)工程學(xué)報(bào),2013,29(15):184-191. Jiang Chen, Ma Peixia, Hu Baoguo, et a1.Effect of biochar returning to paddy field on CH4emission reduction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(15): 184—191.(in Chinese with English abstract)

[11] Knoblauch C, Maarifat A A, Pfeiffer E M, et al. Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils[J]. Soil Biology and Biochemistry, 2011, 43(9): 1768-1778.

[12] 張阿鳳. 秸稈生物質(zhì)炭對(duì)農(nóng)田溫室氣體排放及作物生產(chǎn)力的效應(yīng)研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2012. Zhang Afeng. A study on Effect of Biochar Amendment on Greenhouse Gases Emissions and Crop Productivity Agriculture[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract)

[13] Gurevitch J, Hedges L V. Statistical issues in ecological meta-analyses[J]. Ecology, 1999, 80(4), 1142-1149.

[14] Sun Binfeng, Zhao Hong, Lü Yizhong, et al. The effects of nitrogen fertilizer application on methane and nitrous oxide emission/uptake in Chinese croplands[J]. Journal of Integrative Agriculture, 2016, 15(2): 440-450.

[15] 曲晶晶. 生物質(zhì)炭稻田施用下的土壤固碳減排效應(yīng)及其對(duì)水稻生產(chǎn)力的影響[D]. 南京:南京農(nóng)業(yè)大學(xué),2012. Qu Jingjing. Influence of Biochar Amendment on Paddy Soil Carbon Sequestration and GHGs Emissions Reduction and Rice Productivity[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract)

[16] 馬義虎,顧道健,劉立軍,等. 玉米秸稈源有機(jī)肥對(duì)水稻產(chǎn)量與溫室氣體排放的影響[J]. 中國(guó)水稻科學(xué),2013,27(5):520-528. Ma Yihu, Gu Daojian, Liu Lijun, et al. Effects of the organic fertilizers made from maize straw on grain yield of rice and emission of greenhouse gases from paddy fields[J]. Chinese Journal of Rice Science, 2013, 27(5): 520-528. (in Chinese with English abstract)

[17] 彭華,紀(jì)雄輝,吳家梅,等. 生物黑炭還田對(duì)晚稻CH4和N2O綜合減排影響研究[J]. 生態(tài)環(huán)境學(xué)報(bào),2011,20(11):1620-1625. Peng Hua, Ji Xionghui, Wu Jiamei, et al. Integrated effect of decreasing CH4and N2O emission by Biochar incorported to paddy field on late rice[J]. Ecology and Environmental Sciences, 2011, 20(11): 1620-1625. (in Chinese with English abstract)

[18] Shen Jianlin, Tang Hong, Liu Jieyun, et al. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems [J]. Agriculture, Ecosystems & Environment, 2014, 188(4): 264-274.

[19] 李露,周自強(qiáng),潘曉健,等. 氮肥與生物炭施用對(duì)稻麥輪作系統(tǒng)甲烷和氧化亞氮排放的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(5):1095-1103. Li Lu, Zhou Ziqiang, Pan Xiaojian, et al. Combined effects of nitrogen fertilization and biochar incorporation on methane and nitrous oxide emissions from paddy fields in rice-wheat annual rotation system[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(5): 1095-1103. (in Chinese with English abstract)

[20] 劉玉學(xué),王耀鋒,呂豪豪,等. 生物質(zhì)炭化還田對(duì)稻田溫室氣體排放及土壤理化性質(zhì)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2013,24(8):2166-2172. Liu Yuxue, Wang Yaofeng, Lü Haohao, et al. Effects of biochar application on greenhouse gas emission from paddy soil and its physical and chemical properties[J]. Chinese Journal of Applied Ecology, 2013, 24(8): 2166-2172. (in Chinese with English abstract)

[21] 李松,李海麗,方曉波,等. 生物質(zhì)炭輸入減少稻田痕量溫室氣體排放[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(21):234-240. Li Song, Li Haili, Fang Xiaobo, et a1. Biochar input to reduce trace greenhouse gas emission in paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 234-240. (in Chinese with English abstract)

[22] 鄔剛. 不同施肥模式下施用生物黑炭對(duì)雨養(yǎng)旱地土壤性質(zhì),玉米生長(zhǎng)和溫室氣體排放影響的研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2012. Wu Gang. Effect of Biochar Amendment on Soil Properties, Corn Growth and Greenhouse Gas Emissions from Rain-fed Dry Land under Different Fertilization Mode[D]. Nanjing: Nanjing Agricultural University, 2012

[23] 李曉. 施用生物質(zhì)炭及炭基肥對(duì)溫室氣體排放, 玉米生長(zhǎng)及土壤性質(zhì)的影響[D]. 南京:南京農(nóng)業(yè)大學(xué),2013. Li Xiao. Effects of Biochar and Biochar-based Fertilizer Amendment on Greenhouse Gases Emission, Maize Growth[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese with English abstract)

[24] 張斌,劉曉雨,潘根興,等. 施用生物質(zhì)炭后稻田土壤性質(zhì),水稻產(chǎn)量和痕量溫室氣體排放的變化[J]. 中國(guó)農(nóng)業(yè)科學(xué),2012,45(23):4844-4853. Zhang Bin, Liu Xiaoyu, Pan Genxing, et al. Changes in soil properties, yield and trace gas emission from a paddy after biochar amendment in two consecutive rice growing cycles[J]. Scientia Agricultura Sinica, 2012, 45(23): 4844-4853. (in Chinese with English abstract)

[25] 成功,張阿鳳,王旭東,等. 運(yùn)用“碳足跡”的方法評(píng)估小麥秸稈及其生物質(zhì)炭添加對(duì)農(nóng)田生態(tài)系統(tǒng)凈碳匯的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(3):604-612. Cheng Gong, Zhang Afeng, Wang Xudong, et al. Assessment of wheat straw and its biochar effects on carbon sink in agricultural ecosystems using "carbon footprint" method[J]. Journal of Agro-Envionment Science, 2016, 35(3): 604-612. (in Chinese with English abstract)

[26] 夏文斌,張旭輝,劉銘龍,等. 麥稈還田方式對(duì)旱地土壤綜合溫室效應(yīng)的影響[J]. 土壤,2014,46(6):1010-1016. Xia Wenbin, Zhang Xuhui, Liu Minglong, et al. Effects of wheat straw return ways on integrated global warming effect from dryland soil in north China Plain[J]. Soils, 2014, 46(6): 1010-1016. (in Chinese with English abstract)

[27] 李正東,陶金沙,李戀卿,等. 生物質(zhì)炭復(fù)合肥對(duì)小麥產(chǎn)量及溫室氣體排放的影響[J]. 土壤通報(bào),2015,46(1):177-183. Li Zhengdong, Tao Jinsha, Li Lianqing, et al. Effects of biochar-based fertilizer on wheat yield and greenhouse gases emissions[J]. Chinese Journal of Soil Science,2015, 46(1): 177-183. (in Chinese with English abstract)

[28] 李超. 不同施肥處理對(duì)春玉米田N2O排放的影響及經(jīng)濟(jì)效益分析[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2013. Li Chao. Effects and Economic Benefits Analysis of Different Fertilizer Treatments on N2O Emissions from Spring Corn Field[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese with English abstract)

[29] 韓繼明,潘根興,劉志偉,等. 減氮條件下秸稈炭化與直接還田對(duì)旱地作物產(chǎn)量及綜合溫室效應(yīng)的影響[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2016, 39(6): 986-995. Han Jiming, Pan Genxing, Liu Zhiwei, et al. Contrasting effect of straw return and its biochar on changes in crop yield and integrated global warming effects under different nitrogen levels[J]. Journal of Nanjing Agricultural University, 2016, 39(6): 986-995. (in Chinese with English abstract)

[30] Rosenberg M S, Adams D C, Gurevitch J. Metawin: Statistical Software for Meta-Analysis. Version 2. 1[M]. Sunderland, USA, Sinauer Associates, 2000.

[31] Curtis PS, Wang X. A meta-analysis of elevated CO2effects on woody plant mass, form, and physiology[J]. Oecologia, 1998, 113(3): 299-313.

[32] IPCC. Climate change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the IPCC [M]. Cambridge, New York: Cambridge University Press, 2007.

[33] Mosier A R, Halvorson A D, Reule C A, et al. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado[J]. Journal of Environmental Quality, 2006, 35(4): 1584-1598.

[34] Cornelissen G, Rutherford D W, Arp H P H, et al. Sorption of pure N2O to biochars and other organic and inorganic materials under anhydrous conditions[J]. Environmental Science & Technology, 2013, 47(14): 7704-7712.

[35] Baggs E M, Rees R M, Smith K A, et al, Nitrous oxide emission from soils after incorporating crop residues[J]. Soil Use & Management, 2000, 16(2): 82-87.

[36] Butterbach-Bahl K, Baggs EM, Dannenmann M, et al. Nitrous oxide emissions from soils: How well do we understand the processes and their controls?[J] Biological Sciences, 2013, 368(1621): 20130122.

[37] Yanai Y, Toyota K, Okazaki M, Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments[J]. Soil Science & Plant Nutrition, 2007, 53(2): 181-188.

[38] Schimel J. Global change: Rice, microbes and methane[J]. Nature, 2000, 403(6768): 375-377.

[39] Liu Yuxue, Yang Min, Wu Yimin, et al. Reducing CH4and CO2emissions from waterlogged paddy soil with biochar[J]. Journal of Soils and Sediments, 2011, 11(6): 930-939.

[40] 韓魯佳,閆巧娟,劉向陽(yáng),等. 中國(guó)農(nóng)作物秸稈資源及其利用現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報(bào),2002,18(3):87-91. Han Lujia, Yan Qiaojuan, Liu Xiangyang, et al. Straw resources and theire utilization in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(3): 87-91.(in Chinese with English abstract)

[41] Sohi S, Lopez-Capel E, Krull E, et al. Biochar, climate change and soil: A review to guide future research[J]. CSIRO Land and Water Science Report, 2009, 5(9): 17-31.

趙 紅,孫濱峰,逯 非,王效科,張 國(guó),王海勇,張利鈞,張夢(mèng)汝.Meta分析生物質(zhì)炭對(duì)中國(guó)主糧作物痕量溫室氣體排放的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(19):10-16. doi:10.11975/j.issn.1002-6819.2017.19.002 http://www.tcsae.org

Zhao Hong, Sun Binfeng, Lu Fei, Wang Xiaoke, Zhang Guo, Wang Haiyong, Zhang Lijun, Zhang Mengru. Meta analysis on impacts of biochar on trace greenhouse gases emissions from staple crops in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 10-16. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.19.002 http://www.tcsae.org

Meta analysis on impacts of biochar on trace greenhouse gases emissions from staple crops in China

Zhao Hong1, Sun Binfeng2, Lu Fei3※, Wang Xiaoke3, Zhang Guo3, Wang Haiyong1, Zhang Lijun1, Zhang Mengru1

(1.250102,; 2.330200,; 3.100085,)

Biochar inputs have important impliations for agricultural soils, also have a significant influence on greenhouse gas emissions. This paper conducted a meta-analysis to quantitatively synthesize influence of biochar inputs on trace greenhouse gases from staple crops in China, and explored available mitigation method. The data were collected from published papers before December, 2016. The effective data were selected from the literatures including: 1) both treatments with and without biochar input; 2) methane and nitrous oxide emissions; 3) field experiment; 4) greenhouse gases from rice planting to maturity; 5) reliable measurements; 6) clear and reliable yield data; 7) wheat, rice and maize in China. A total of 134 datasets were obtained. They were classified by rice paddy field and dry land, rotary tillage and plowing tillage, different biochar amount and biochar types. The response ratio was calculated with the biochar input as the treatment and no biochar input as the control. The global warming potential and the greenhouse gas intensity were calculated. The results showed that the biochar input averagely decreased the global warming potential by 18% compared with no biochar input. The global warming potential decrease by inputting biochar in the dry land was significantly higher than that in the paddy field (<0.01). The reduction in global warming potential by inputting less than 10 t/hm2biochar was higher than that by inputting the biochar higher than 10 t/hm2. Plowing tillage could significantly reduce the GWP by 19%. The rate of change in GWP was highest in the other biochar (41%), followed by maize biochar (20%) and wheat biochar (13%). The biochar input didn’t greatly affect the methane emission in paddy field. However, the rotary tillage could significantly increase the methane emission by 30% and the inputting biochar without N application also greatly increase the methane emission. The biochar input average decreased the nitric oxides by 41% for the three staple crops. The nitrous oxides emission was decreased by 44% in the dry land, 24% in the paddy field, by 52% by inputting smaller than 10 t/hm2biochar. The nitrous oxides emissions were higher in the other biochar and maize biochar than the wheat biochar. Biochar input could increase the crop yield by 7% and decreased the greenhouse gas intensity by 25%. The decrease in the greenhouse gas intensity was higher in the dry land than the paddy field, in the smaller than 10 t/hm2biochar input than the input higher than 10 t/hm2, and in the plowing tillage than in the rotary tillage. The rate of change in greenhouse gas intensity was 47% in the other biochar input, 26% in the maize biochar, and 20% in the wheat biochar. Different soil use types, tillage managements, biochar amount and biochar types could significantly impact nitric oxide, global warming potential and greenhouse gas intensity. In addtion, biochar input combined with reasonable agricultural management could reduce greenhouse gas emissions in staple crops soils. This paper indicated that for reduction in global warming potential from staple crops, biochar should combine application with nitrogen fertilizer and plowing tillage managements, and input the biochar with less 10 t/hm2and C/N below 80, such as, field crop straw could directily carbonized.

greenhouse gases; methane; nitrogen; biochar; Meta analysis; global warming potential

10.11975/j.issn.1002-6819.2017.19.002

S161.9

A

1002-6819(2017)-19-0010-07

2016-07-06

2017-06-10

國(guó)家自然科學(xué)基金-青年基金項(xiàng)目(71003092);中國(guó)科學(xué)院青年創(chuàng)新促進(jìn)會(huì)項(xiàng)目

趙 紅,黑龍江五常人,博士,主要從事農(nóng)業(yè)土壤固碳減排方面的研究。Email:zhaohuahua1985@126.com

※通信作者:逯 非,北京人,副研究員,主要從事陸地生態(tài)系統(tǒng)固碳方面的研究。Email:feilul@rcees.ac.cn

猜你喜歡
氧化亞氮主糧甲烷
生物炭對(duì)農(nóng)田氧化亞氮排放及其影響機(jī)制的研究進(jìn)展
液氧甲烷發(fā)動(dòng)機(jī)
論煤炭運(yùn)輸之甲烷爆炸
三主糧高質(zhì)量發(fā)展科技研究之路知識(shí)產(chǎn)權(quán)獲得
XLNO型低溫脫除氧化亞氮催化劑性能研究
Gas from human waste
馬鈴薯主糧化
馬鈴薯將成為我國(guó)第四大主糧
基于VB6.0的紅外甲烷檢測(cè)儀串行通信的實(shí)現(xiàn)
沼液施用對(duì)潮土氧化亞氮排放通量的影響
正蓝旗| 静安区| 江津市| 周口市| 文水县| 东源县| 乌兰县| 佛冈县| 高台县| 永康市| 内丘县| 依兰县| 日照市| 贵阳市| 台江县| 麟游县| 晋宁县| 武冈市| 安阳县| 沧州市| 康马县| 沾化县| 辽中县| 叶城县| 清丰县| 东辽县| 沁源县| 海丰县| 东宁县| 布尔津县| 井研县| 农安县| 双流县| 黑龙江省| 北票市| 大渡口区| 镇沅| 故城县| 涿州市| 武宣县| 海丰县|