張 麗,張連峰,2*
(1.中國(guó)醫(yī)學(xué)科學(xué)院,醫(yī)學(xué)實(shí)驗(yàn)動(dòng)物研究所,北京協(xié)和醫(yī)學(xué)院比較醫(yī)學(xué)中心,衛(wèi)計(jì)委人類疾病比較醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室,北京 100021; 2.中國(guó)醫(yī)學(xué)科學(xué)院神經(jīng)科學(xué)中心,北京 100730)
研究進(jìn)展
肌萎縮側(cè)索硬化癥相關(guān)基因突變與疾病動(dòng)物模型
張 麗1,張連峰1,2*
(1.中國(guó)醫(yī)學(xué)科學(xué)院,醫(yī)學(xué)實(shí)驗(yàn)動(dòng)物研究所,北京協(xié)和醫(yī)學(xué)院比較醫(yī)學(xué)中心,衛(wèi)計(jì)委人類疾病比較醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室,北京 100021; 2.中國(guó)醫(yī)學(xué)科學(xué)院神經(jīng)科學(xué)中心,北京 100730)
肌萎縮側(cè)索硬化癥是一種累進(jìn)性神經(jīng)退行疾病,以上、下運(yùn)動(dòng)神經(jīng)元選擇性退化和凋亡為特征,引發(fā)癱瘓、最終導(dǎo)致死亡。大量引發(fā)ALS的基因突變被鑒定出,包括FUS/TLS、EPHA4、SS18L1、ATXN2 和C9ORF72等基因,這些基因突變的發(fā)現(xiàn)拓寬了RNA調(diào)節(jié)參與ALS病理生成的理解。本文對(duì)家族性ALS相關(guān)的基因突變及現(xiàn)有的ALS嚙齒類動(dòng)物模型進(jìn)行總結(jié)概括。
肌萎縮側(cè)索硬化癥;基因突變;動(dòng)物模型
肌萎縮側(cè)索硬化癥(amyotrophic lateral sclerosis,ALS)也稱為“葛雷克氏癥”,是一種累進(jìn)性神經(jīng)退行疾病,以控制肌肉收縮的一種神經(jīng)元即上、下運(yùn)動(dòng)神經(jīng)元選擇性退化和凋亡為特征,引發(fā)癱瘓、最終導(dǎo)致死亡。ALS分為家族型和分散性兩類,家族型ALS(fALS)約占10%,散發(fā)性ALS (sALS) 占90%。目前已找到多種引發(fā)ALS的基因突變,僅占這些病例的20%~30%左右。但大部分家族型和是絕大部分分散病例的病因仍是未知,可能與神經(jīng)突觸內(nèi)谷氨酸的興奮毒性、氧化應(yīng)激、神經(jīng)營(yíng)養(yǎng)因子、自身免疫反應(yīng)、重金屬中毒、慢病毒感染等有關(guān)。
ALS目前缺少有效的治療方法。發(fā)現(xiàn)新的致病基因、易感基因,尋找不同致病基因?qū)е翧LS的共同機(jī)制和治療靶點(diǎn)等仍然是目前研究的熱點(diǎn)。本文就目前發(fā)現(xiàn)的ALS相關(guān)基因突變和動(dòng)物模型情況作如下總結(jié)。
從1995年發(fā)現(xiàn)SOD1基因突變是家族型ALS的致病基因以來[1],ALS致病基因的發(fā)現(xiàn)越來越多,包括近5年發(fā)現(xiàn)的EPHA4、SS18L1和ATXN2等。表1列舉了ALS相關(guān)基因,共計(jì)27種,其中,SOD1、C9ORF72、FUS和TARDBP與ALS關(guān)系最為密切,SOD1在家族型ALS中占了15%,C9ORF72重復(fù)核酸擴(kuò)增在家族型ALS中占了45%,在散發(fā)性ALS中占了10%,F(xiàn)US和TARDBP在家族型ALS中比例均可達(dá)4%;SETX、VAPB、ANG、OPTN、SQSTM1等比較罕見,僅與少數(shù)ALS相關(guān),見圖1。仍有一些分子流行病研究發(fā)現(xiàn)的ALS相關(guān)基因可作為尚未確定基因。
圖1 家族型ALS致病基因比例Fig.1 The percentage of four familial ALS disease-causing genes and other genes
表1 參與 ALS病理發(fā)生的基因
續(xù)表1
基因Genes基因功能Genefunction染色體Chromosome突變Mutations家族性/%fALS散發(fā)性/%sALS參考文獻(xiàn)ReferencesTARDBP/TDP-43DNA/RNA結(jié)合蛋白,證據(jù)明確顯示TDP-43蛋白異常沉積與ALS病理相關(guān)。DNA/RNAbindingproteins,thepathologicaccumulationofTDP?43isnowwellrecognizedtocontributetothepa?thologyofALS.1p362239402~04[7]ARHGEF28該蛋白可結(jié)合神經(jīng)絲蛋白mRNA,可能參與了ALS神經(jīng)絲蛋白聚集體的形成。TheencodedproteininteractswithneurofilamentmRNAandmaybeinvolvedintheformationofALSneurofilamentaggregates.5q132---[8]SETX該蛋白具有DNA/RNA解旋酶功能域,參與RNA剪切過程?;蛲蛔兒鸵粋€(gè)常染色體顯性遺傳的青少年ALS相關(guān)。ThisproteincontainsaDNA/RNAhelicasedomainwhichsuggeststhatitmaybeinvolvedinbothDNAandRNAprocessing.MutationsinthisgenehavebeenassociatedwithanautosomaldominantformofjuvenileALS.9q34137罕見Rare[9]ATXN2ATXN2蛋白N端包含一個(gè)14~31殘基多谷氨酰胺區(qū)域,病理?xiàng)l件擴(kuò)增至32~200個(gè)。多谷氨酰胺長(zhǎng)度增加的個(gè)體對(duì)ALS易感。TheN?terminalregionoftheproteincontainsapolyglu?taminetractof14-31residuesthatcanbeexpandedinthepathogenicstateto32-200residues.IntermediatelengthexpansionsofthistractincreasesusceptibilitytoALS.12q2412CAG重復(fù)擴(kuò)增CAGrepeatexpansion47-[10,11]PFN1參與肌動(dòng)蛋白的聚合-解聚動(dòng)態(tài)平衡調(diào)節(jié)。該基因的缺失與Miller?Dieker綜合癥相關(guān),所編碼的蛋白質(zhì)也可能在亨廷頓病中發(fā)揮作用。Theencodedproteinplaysanimportantroleinactindy?namicsbyregulatingactinpolymerization.DeletionofthisgeneisassociatedwithMiller?Diekersyndrome,andtheencodedproteinmayalsoplayaroleinHuntingtondisease.17p1324--[12]SS18L1SS18L1鈣敏感的反式激活因子,參與表觀遺傳控制和染色質(zhì)重塑。SS18L1突變與ALS相關(guān)。Thisgeneencodesacalcium?responsivetransactivatorwhichisanessentialsubunitofaneuron?specificchroma?tin?remodelingcomplex.Mutationsinthisgenearein?volvedinALS.20q1333---[13,14]C9ORF72與RAB蛋白相互作用參與自噬和內(nèi)吞,具有2~22個(gè)或700~1600個(gè)拷貝的GGGGCC六核苷酸重復(fù)擴(kuò)增突變與ALS或額顳癡呆(FTD)相關(guān)。C9ORF72hasbeenshowntointeractwithRabproteinsthatareinvolvedinautophagyandendocytictransport.Ex?pansionofaGGGGCCrepeatfrom2-22copiesto700-1600copiesintranscriptsfromthisgeneisassociatedwithALSandFTD(frontotemporaldementia).9p212GGGGCC重復(fù)擴(kuò)增GGGGCCrepeatexpansion4510[15]OPTNOPTN可與huntingtin蛋白、轉(zhuǎn)錄因子3A以及RAB8蛋白相互作用,具有激活TNFa和Fas配體通路介導(dǎo)凋亡和炎癥,基因突變導(dǎo)致家族型青光眼和ALS。OPTNinteractionswithhuntingtin,RAB8andtranscriptionfactorIIIAproteins.Itmayutilizetumornecrosisfactor?al?phaorFas?ligandpathwaystomediateapoptosisandin?flammation.OPTNmutationsareassociatedwithfamilialglaucomaandALS.10p133罕見Rare-[16]
續(xù)表1
基因Genes基因功能Genefunction染色體Chromosomes突變Mutations家族性/%fALS散發(fā)性/%sALS參考文獻(xiàn)ReferencesUBQLN2蛋白質(zhì)泛素化與降解。Thisproteinisthoughttofunctionallylinktheubiquitina?tionmachinerytotheproteasometoaffectinvivoproteindegradation.Xp11215--[17]SQSTM1可與泛素結(jié)合并調(diào)節(jié)NF?KB信號(hào)通路。SQSTM1bindsubiquitinandregulatesactivationofthenu?clearfactorkappa?B(NF?kB)signalingpathway.5q353罕見Rare[18]VCP參與高爾基體分選和蛋白質(zhì)泛素化與降解。TheencodedproteinplaysaroleinGolgisorting,proteinubiquitinationanddegradation.9p1334--[19]ALS2/ALSIN參與膜泡運(yùn)輸,調(diào)節(jié)內(nèi)吞。Thisproteinisinvolvedinvesiculartransportandfunctionsasamodulatorforendosomaldynamics.2q33119--[20]HNRNPA2B1核糖核蛋白類,與mRNA加工、代謝和運(yùn)輸有關(guān)。Thisgeneencodesheterogeneousnuclearribonucleoproteins(hnRNPs)andinfluencespre?mRNAprocessing,aswellasotheraspectsofmRNAmetabolismandtransport.7p152---[21,22]HNRNPA1核糖核蛋白類,與mRNA加工、代謝和運(yùn)輸有關(guān)。Thisgeneencodesheterogeneousnuclearribonucleoproteins(hnRNPs)thatassociatewithpre?mRNAsinthenucleusandinfluencespre?mRNAprocessing,aswellasotheraspectsofmRNAmetabolismandtransport.12q1313---[22]CHMP2B參與膜泡運(yùn)輸。CHMP2Bisinvolvedinvesiculartransport.3p112---[23]ELP3ELP3是組蛋白乙酰轉(zhuǎn)移酶復(fù)合物的催化亞基,和RNA合成延長(zhǎng),投射神經(jīng)元成熟有關(guān)。ELP3isthecatalyticsubunitofthehistoneacetyltransferaseelongatorcomplex,whichcontributestotranscriptelongationandalsoregulatesthematurationofprojectionneurons.8p211---[24]ANGRNA酶家族成員,促進(jìn)tRNA水解進(jìn)而導(dǎo)致蛋白合成下降,可調(diào)節(jié)新生血管形成和運(yùn)動(dòng)神經(jīng)元軸突生長(zhǎng)。Thisgeneencodesribonuclease,RNaseAfamily.Ithydro?lyzescellulartRNAsresultingindecreasedproteinsynthe?sis.Itisanexceedinglypotentmediatorofnewbloodvesselformationandmotorneuronaxonoutgrowth.14q11218罕見Rare[20]SPG11參與細(xì)胞間物質(zhì)轉(zhuǎn)運(yùn),與神經(jīng)元軸突生長(zhǎng)有關(guān)。Theproteinisinvolvedinintercellulartransportandisre?latedtoaxonoutgrowth.15q211---[20]DCTN1可與細(xì)胞內(nèi)微管結(jié)合驅(qū)動(dòng)軸突運(yùn)輸。Dynactinbindstomicrotubulestodriveaxonaltransport.2p131---[25]NEFH參與神經(jīng)元細(xì)胞骨架的形成。Theproteinisinvolvedintheformationofneuronalcy?toskeleton.22q122---[20]VAPB參與細(xì)胞間物質(zhì)轉(zhuǎn)運(yùn),與神經(jīng)元軸突生長(zhǎng)有關(guān)。Theproteinisinvolvedinintercellulartransportandisre?latedtoaxonoutgrowth.20q13322罕見Rare[20]
注: -, 不明確;fALS,家族性脊髓側(cè)索硬化癥;ALS,脊髓側(cè)索硬化癥。
Note. -, unclear; fALS, familial amyotrophic lateral sclerosis; ALS, amyotrophic lateral sclerosis.
研究表明,ALS是通過異常的蛋白脂代謝如ER應(yīng)激和自噬以及RNA剪切加工過程介導(dǎo)的。而在所有的非SOD1介導(dǎo)的ALS疾病均有RNA剪切過程參與。目前發(fā)現(xiàn)的參與ALS病理發(fā)生的基因有30種左右,涉及細(xì)胞表面受體、RNA剪切、蛋白質(zhì)合成到軸突轉(zhuǎn)運(yùn)等多個(gè)方面。但是,涉及RNA剪切、延伸和代謝的基因占了主要部分,其中C9ORF72突變導(dǎo)致的ALS疾病在家族性ALS病例的中的比例最高,與RNA代謝的關(guān)系也最為密切。由于C9ORF72剪切體1的第一外顯子E1a和剪切體3的第一外顯子E1b之間有GGGGCC六個(gè)堿基的重復(fù)序列(hexanucleotide repeat expansion,HRE),HER長(zhǎng)短在人群中具有多態(tài)性,正常人群中GGGGCC重復(fù)數(shù)一般在30個(gè)以下,高于30個(gè)重復(fù)會(huì)有發(fā)生額顳葉癡呆(FTD)或ALS的可能,ALS患者中拷貝數(shù)可高達(dá)1 600個(gè)。盡管C9ORF72的致病機(jī)制仍然處于初始階段,但是目前可推測(cè)HER有二種可能機(jī)制參與FTD或ALS。其一是HRE結(jié)構(gòu)導(dǎo)致C9ORF72轉(zhuǎn)錄子在細(xì)胞內(nèi)的積累,并可能與DNA形成RNA/DNA 雜交環(huán)(R-loop)引起RNA毒性。第二種可能是HRE結(jié)構(gòu)可能導(dǎo)致一種叫做不需要ATG的翻譯(repeat-associated non-ATG (RAN) translation)GGGGCC重復(fù)可以編碼甘胺酸/精氨酸或脯氨酸/精氨酸的多肽,這兩種多肽都有細(xì)胞毒性。C9ORF72第一外顯子后的GGGGCC多拷貝重復(fù),造成RNA的異常積累和定位。
此外,F(xiàn)US、TARDB、SETX、ATXN2、ARHGEF28、ELP3、HNRPA2B1和HNRPA1等8個(gè)基因在ALS所占比例次于C9ORF72,也與RNA代謝相關(guān)。FUS和TARDBP是一個(gè)多功能的DNA和RNA結(jié)合蛋白,參與RNA轉(zhuǎn)錄、選擇性剪接及mRNA穩(wěn)定性調(diào)節(jié)。SETX有DNA/RNA解旋酶功能域,參與tRNA和核內(nèi)小RNA的剪切。ANG 屬于RNA酶,ATXN2突變可以增加TARDBP毒性。ARHGEF28是Rho信號(hào)激活單白,但可以結(jié)合神經(jīng)絲蛋白mRNA 并引起其降解,ELP3參與RNA合成延長(zhǎng)。HNRPA2B1和HNRPA1編碼不均一型核糖核蛋白(heterogeneous nuclear ribonucleoprotein,hnRNP)是多功能RNA結(jié)合蛋白,可調(diào)節(jié)前體mRNA(pre-mRNA)分子的選擇性剪接以及mRNA轉(zhuǎn)運(yùn)、翻譯和穩(wěn)定性。因此RNA代謝異??赡苁茿LS的核心機(jī)制之一。
ALS動(dòng)物模型是研究ALS的病因、病理、發(fā)病機(jī)制和治療的重要工具。目前建立ALS的嚙齒類動(dòng)物模型主要是SOD1、TDP-43、VCP、FUS、ALSIN等基因的不同突變體和采用不同啟動(dòng)子的轉(zhuǎn)基因大小鼠或基因敲除小鼠,還包括Wobbler小鼠自發(fā)突變ALS易感品系,以及免疫原誘發(fā)的豚鼠ALS模型(表2)。自發(fā)突變ALS易感品系Wobbler小鼠是50年前建立的ALS模型,現(xiàn)在仍然廣泛使用。hmSOD1-G93A突變基因轉(zhuǎn)基因小鼠是目前應(yīng)用最廣泛的ALS模型[27],比較客觀的反映氧化應(yīng)激對(duì)運(yùn)動(dòng)神經(jīng)元的損傷機(jī)制。
ALS病因多樣,機(jī)制復(fù)雜,目前所建立的基因修飾模型和誘導(dǎo)模型尚不能全方位的反映ALS的病理機(jī)制,這也成為ALS治療研究的限制之一。一方面現(xiàn)有的模型品系僅涉及有限的基因,大多致病基因包括新發(fā)現(xiàn)的ALS致病基因比如C9ORF72、ARHGEF28尚未建立模型,這些基因可能反映不同致病機(jī)制。另一方面,已經(jīng)建立的SOD1、TDP-43、FUS等基因在野生型基因高表達(dá)時(shí)也會(huì)引起神經(jīng)毒性[28,31,32], 所以轉(zhuǎn)基因模型不能完全反映基因突變的特點(diǎn)。相對(duì)于轉(zhuǎn)基因隨機(jī)插入,基因敲入是實(shí)現(xiàn)基因穩(wěn)定過表達(dá)的一種有效工具。利用CRISPR/Cas9技術(shù)可以實(shí)現(xiàn)外源基因的定點(diǎn)敲入,使遺傳背景更為簡(jiǎn)單,實(shí)驗(yàn)操作更加精準(zhǔn)、高效。此外,很多致病基因表達(dá)的蛋白具備多個(gè)功能域,可以和其他多種因子相互作用,而且基因敲除和點(diǎn)突變對(duì)細(xì)胞作用也是不同的,基因敲除ALS模型不能完全反映基因突變的致病機(jī)制,因此在未來的研究中,需要以突變的基因敲入為主,制作更能反映致病機(jī)制的ALS模型。
表2 ALS嚙齒類模型
[1] Andersen PM, Nilsson P, Ala-Hurula V, et al. Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase [J]. Nat Genet, 1995, 10(1): 61-66.
[2] Ackerley S, James PA, Kalli A, et al. A mutation in the small heat-shock protein HSPB1 leading to distal hereditary motor neuronopathy disrupts neurofilament assembly and the axonal transport of specific cellular cargoes [J]. Hum Molec Genet, 2006, 15(2): 347-354.
[3] Krishnan J, Lemmens R, Robberecht W, et al. Role of heat shock response and Hsp27 in mutant SOD1-dependent cell death [J]. Exp Neurol, 2006, 200(2): 301-310.
[4] Hideyama T, Kwak S. When does ALS start? ADAR2-GluA2 hypothesis for the etiology of sporadic ALS [J]. Front Mol Neurosci, 2011, 4: 33.
[5] Van Hoecke A, Schoonaert L, Lemmens R, et al. EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans [J]. Nat Med, 2012, 18(9): 1418-1422.
[6] Deng H, Gao K, Jankovic J. The role of FUS gene variants in neurodegenerative diseases [J]. Nat Rev Neurol, 2014, 10(6): 337-348.
[7] Bennion Callister J, Pickering-Brown SM. Pathogenesis/genetics of frontotemporal dementia and how it relates to ALS [J]. Exp Neurol, 2014, 262 Pt B: 84-90.
[9] Chen YZ, Bennett CL, Huynh HM, et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4) [J]. Am J Hum Genet, 2004, 74(6): 1128-1135.
[10] Liu X, Lu M, Tang L, et al. ATXN2 CAG repeat expansions increase the risk for Chinese patients with amyotrophic lateral sclerosis [J]. Neurobiol Aging, 2013, 34(9): 2236. e5-8.
[11] Elden AC, Kim HJ, Hart MP, at al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS [J]. Nature, 2010, 466(7310): 1069-1075.
[12] Wu CH, Fallini C, Ticozzi N, et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis [J]. Nature. 2012, 488(7412): 499-503.
[13] Teyssou E, Vandenberghe N, Moigneu C, et al. Genetic analysis of SS18L1 in French amyotrophic lateral sclerosis[J]. Neurobiol. Aging, 2014, 35(5): e9-e12.
[14] Renton AE, Traynor BJ. CRESTing the ALS mountain [J]. Nat Neurosci, 2013, 16(7):774-775.
[15] Haeusler AR, Donnelly CJ, Periz G, et al. C9 or f72 nucleotide repeat structures initiate molecular cascades of disease [J]. Nature. 2014, 507(7491): 195-200.
[16] Maruyama H, Morino H, Ito H. Mutations of optineurin in amyotrophic lateral sclerosis [J]. Nature, 2010, 465(7295): 223-226.
[17] Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics [J]. Nat Neurosci, 2014, 17(1):17-23.
[18] Gal J, Str?m AL, Kwinter DM, et al. Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism [J]. J Neurochem, 2009, 111(4): 1062-1073.
[19] Zou ZY, Liu MS, Li XG, et al. Screening of VCP mutations in Chinese amyotrophic lateral sclerosis patients [J]. Neurobiol Aging, 2013, 34(5): 1519.e3-4.
[20] Su XW, Broach JR, Connor JR, et al. Genetic heterogeneity of amyotrophic lateral sclerosis: implications for clinical practice and research [J]. Muscle Nerve, 2014, 49(6): 786-803.
[21] Martinez FJ, Pratt GA, Van Nostrand EL, et al. Protein-RNA networks regulated by normal and ALS-associated mutant HNRNPA2B1 in the nervous system[J]. Neuron, 2016, 92(4): 780-795.
[22] Kim HJ, Kim NC, Wang YD, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS [J]. Nature, 2013, 495(7442): 467-473.
[23] Cox LE, Ferraiuolo L, Goodall EF, et al. Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS) [J]. PLoS One, 2010, 5(3): e9872.
[24] Simpson CL, Lemmens R, Miskiewicz K, et al. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration[J]. Hum Mol Genet, 2009, 18(3): 472-481.
[25] Münch C, Sedlmeier R, Meyer T, et al. Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS[J]. Neurology, 2004, 63(4): 724-726.
[26] Hirano M, Quinzii CM, Mitsumoto H, et al. Senataxin mutations and amyotrophic lateral sclerosis[J]. Amyotroph Lateral Scler, 2011, 12(3): 223-227.
[27] 范昌發(fā),岳秉飛,王軍志. 轉(zhuǎn)基因動(dòng)物模型在ALS發(fā)病機(jī)制研究及藥物療效觀察中的應(yīng)用[J].實(shí)驗(yàn)動(dòng)物科學(xué), 2008, 25(4): 45-48.
[28] McGoldrick P, Joyce PI, Fisher EM, et al. Rodent models of amyotrophic lateral sclerosis [J]. Biochim Biophys Acta, 2013, 1832 (9): 1421-1436.
[29] Lai C, Xie C, McCormack SG, et al. Amyotrophic lateral sclerosis 2-deficiency leads to neuronal degeneration in amyotrophic lateral sclerosis through altered AMPA receptor trafficking [J]. J Neurosci, 2006, 26(45): 11798-11806.
[30] Moser JM, Bigini P, Schmitt-John T. The Wobbler mouse, an ALS animal model [J]. Mol Genet Genomics, 2013, 288(5-6): 207-229.
[31] Mitchell JC, McGoldrick P, Vance C, et al. Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion[J]. Acta Neuropathol, 2012, 125 (2): 273-288.
[32] Xu G, Ayers JI, Roberts BL, et al. Direct and indirect mechanisms for wild-type SOD1 to enhance the toxicity of mutant SOD1 in bigenic transgenic mice[J]. Hum Mol Genet, 2014, 24(4): 1019-1035.
Amyotrophiclateralsclerosis-associatedgenemutationsandALSanimalmodels
ZHANG Li1, ZHANG Lian-feng1,2*
(1.Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Key Laboratory of Human Disease Comparative Medicine, National Health and Family Planning Commission of P.R.C, Beijing 100021,China; 2.Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100730,China)
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by a selective loss of upper and lower motor neurons that lead to paralysis and even death. Mutations in a large number of genes, includingFUS/TLS,EPHA4,SS18L1,ATXN2 andC9ORF72, are identified to the casual genes of ALS, which broadens our understanding of the role of RNA modulation in ALS pathogenesis. This review summarized ALS-associated genes and the related ALS rodent models.
Amyotrophic lateral sclerosis; Gene mutation; Animal model
R-33
A
1671-7856(2017) 10-0089-07
10.3969.j.issn.1671-7856. 2017.10.018
2017-03-01
國(guó)家自然科學(xué)基金(81571222);中央級(jí)公益科研院所基本科研業(yè)務(wù)費(fèi)(2016ZX310039)。
張麗(1981-),女,博士,研究方向:比較醫(yī)學(xué)。E-mail: zhangl@cnilas.org
張連峰,男,研究員,博士,研究方向:比較醫(yī)學(xué)。E-mail: zhanglf@cnilas.org