国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

卵母細(xì)胞代謝及其調(diào)節(jié)

2017-10-17 05:27:02徐文丹崔毓桂茅彩萍
生殖醫(yī)學(xué)雜志 2017年10期
關(guān)鍵詞:卵丘卵母細(xì)胞線粒體

徐文丹,崔毓桂,茅彩萍*

(1.蘇州大學(xué)醫(yī)學(xué)院附屬第一醫(yī)院生殖醫(yī)學(xué)中心,蘇州 215006;2.南京醫(yī)科大學(xué)第一附屬醫(yī)院生殖醫(yī)學(xué)科,南京 210029)

·綜述·

卵母細(xì)胞代謝及其調(diào)節(jié)

徐文丹1,崔毓桂2*,茅彩萍1*

(1.蘇州大學(xué)醫(yī)學(xué)院附屬第一醫(yī)院生殖醫(yī)學(xué)中心,蘇州 215006;2.南京醫(yī)科大學(xué)第一附屬醫(yī)院生殖醫(yī)學(xué)科,南京 210029)

卵母細(xì)胞發(fā)育與成熟過程依賴大量ATP,因此物質(zhì)代謝旺盛。卵母細(xì)胞以葡萄糖和/或其中間產(chǎn)物丙酮酸為底物,在線粒體內(nèi)氧化磷酸化,產(chǎn)生大量ATP,是卵母細(xì)胞最主要的供能形式。但是,卵母細(xì)胞糖代謝模式有種屬特異性差異。同時(shí),卵母細(xì)胞也存在脂肪酸和氨基酸的代謝。除提供能量外,這些代謝產(chǎn)物在細(xì)胞信號(hào)傳導(dǎo)、滲透壓調(diào)節(jié)等方面也有重要作用。卵母細(xì)胞代謝的精確調(diào)控受多方面因素的影響如卵母細(xì)胞胞內(nèi)、胞間、胞外的調(diào)控等。研究卵母細(xì)胞代謝及其機(jī)制,對(duì)探尋改善卵母細(xì)胞質(zhì)量、提高卵母細(xì)胞體外成熟效能具有重要的意義。

卵母細(xì)胞; 卵丘細(xì)胞; 線粒體; 能量代謝; 卵母細(xì)胞成熟

The development and maturation of oocyte are dependent on ATP which comes from the highly active energy metabolism.It is the main energy procedure that oocytes produce ATP by the mitochondria oxidative phosphorylation with the glucose and/or its intermediate product,acetylformic acid,as substrate.Meanwhile,fatty and amino acids are also metabolic substrates in oocyte.Interestingly,there are species differences in the glycometabolism model.Besides energy,those metabolites and intermediate products play some roles in signal transduction,osmoregulation and so on.The oocyte metabolism is precisely controlled by the intracellular,intercellular and extracellular pathways.It is important to study oocyte metabolism and maturation mechanism in order to improve oocyte quality and efficiency of in vitro maturation(IVM).

Keywords: Oocyte; Cumulus cells; Mitochondria; Energy metabolism; Oocyte maturation

(JReprodMed2017,26(10):1047-1051)

卵母細(xì)胞發(fā)育成熟,是生殖醫(yī)學(xué)臨床獲得優(yōu)質(zhì)胚胎的關(guān)鍵。卵母細(xì)胞代謝過程的調(diào)控在其發(fā)育成熟過程中起重要作用,成熟期間線粒體增多、活性加強(qiáng)[1-3]。卵母細(xì)胞發(fā)育期間每個(gè)細(xì)胞事件都依賴能量支持,線粒體是其能量工廠。葡萄糖和/或糖代謝中間產(chǎn)物、脂肪酸和氨基酸,都可能是卵母細(xì)胞的代謝底物,尤其是葡萄糖產(chǎn)物-乙酰輔酶A(CoA),可轉(zhuǎn)入線粒體進(jìn)行氧化呼吸,合成大量ATP。除供能外,這些代謝中間物還可調(diào)節(jié)細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)及滲透壓等,確保卵母細(xì)胞核和細(xì)胞質(zhì)的成熟。因而,某些卵母細(xì)胞的代謝物也有望成為評(píng)價(jià)卵母細(xì)胞質(zhì)量的標(biāo)記物。另外,卵母細(xì)胞代謝也可受到卵母細(xì)胞胞內(nèi)、胞間和胞外機(jī)制的調(diào)控?,F(xiàn)階段,卵母細(xì)胞體外成熟技術(shù)已應(yīng)用于臨床輔助生殖,但I(xiàn)VM成熟率較低且胚胎發(fā)育潛能低[4]。研究卵母細(xì)胞代謝及其調(diào)節(jié)機(jī)制,對(duì)探尋改善卵母細(xì)胞質(zhì)量、提高IVM效能具有現(xiàn)實(shí)的意義。

一、卵母細(xì)胞的糖代謝

線粒體是卵母細(xì)胞含量最多、作用最突出的一種細(xì)胞器,其在卵母細(xì)胞成熟和早期胚胎發(fā)育中發(fā)揮了重要的作用[5]。線粒體是細(xì)胞的能量工廠,葡萄糖、脂肪酸、氨基酸等轉(zhuǎn)化為乙酰CoA,最終都會(huì)轉(zhuǎn)入線粒體的氧化呼吸鏈,合成ATP。除高產(chǎn)能外,線粒體在調(diào)節(jié)代謝、鈣離子動(dòng)態(tài)平衡、脂肪酸氧化和凋亡過程中發(fā)揮了重要作用。卵母細(xì)胞成熟期間,線粒體數(shù)目劇增至10 000個(gè),線粒體自身活性也會(huì)增加,以滿足卵母細(xì)胞成熟期間的能量的需求。一些疾病如糖尿病、肥胖等都會(huì)導(dǎo)致卵母細(xì)胞線粒體功能不全而致卵母細(xì)胞成熟障礙,而線粒體營(yíng)養(yǎng)劑,如α硫辛酸、輔酶Q10和白藜蘆醇,則促進(jìn)卵母細(xì)胞體外成熟率[6]。由此可見,確保正常線粒體功能對(duì)于卵母細(xì)胞成熟和發(fā)育潛能的獲得至關(guān)重要。

在卵母細(xì)胞成熟的過程中,大部分葡萄糖首先經(jīng)過糖酵解為丙酮酸,后者成為卵母細(xì)胞能量產(chǎn)生的底物[7]。如鼠卵母細(xì)胞與卵丘細(xì)胞相比,糖酵解酶表達(dá)低,因而卵丘細(xì)胞將糖酵解的產(chǎn)物丙酮酸通過單羧酸轉(zhuǎn)運(yùn)系統(tǒng)轉(zhuǎn)運(yùn)至卵母細(xì)胞的線粒體中用于產(chǎn)能[8]。有趣的是,狗和豬卵母細(xì)胞可以使用葡萄糖作為主要能量底物,而不是丙酮酸,提示卵母細(xì)胞糖代謝模式的種屬性差異。

除氧化磷酸化途徑外,卵母細(xì)胞中的葡萄糖還可經(jīng)磷酸戊糖(PPP)、己糖胺生物合成(HBP)和多元醇途徑進(jìn)行代謝。PPP途徑可為卵母細(xì)胞的核成熟提供核糖以合成DNA和RNA,也可生成NADPH降低卵母細(xì)胞的活性氧(ROS)含量;HBP途徑主要是用于細(xì)胞外基質(zhì)(ECM)的合成,調(diào)控卵丘細(xì)胞的擴(kuò)張,也與o-相連的糖基化有關(guān)。o-相連的糖基化與蛋白磷酸化類似,可調(diào)節(jié)蛋白的活性,用于調(diào)節(jié)細(xì)胞的信號(hào)傳導(dǎo)。o-相連的糖基化可能調(diào)控HBP途徑的蛋白以調(diào)節(jié)卵丘細(xì)胞的擴(kuò)張[9]。

在豬的成熟卵母細(xì)胞中葡萄糖、丙酮酸和氧含量要比未成熟的多2倍。在羚羊和豬的卵母細(xì)胞體外培養(yǎng)系統(tǒng),減少葡萄糖含量可抑制減數(shù)分裂、細(xì)胞質(zhì)成熟和胚胎發(fā)育,而IVM培養(yǎng)基加入充足的葡萄糖則加強(qiáng)牛和豬的IVM和卵母細(xì)胞的發(fā)育潛能??梢娖咸烟堑拇x對(duì)于卵母細(xì)胞的成熟是至關(guān)重要的;但是,高濃度葡萄糖則抑制卵母細(xì)胞減數(shù)分裂,其機(jī)制不清[9]。

二、卵母細(xì)胞的脂質(zhì)代謝

脂肪酸β氧化(FAO)是卵母細(xì)胞成熟的另一個(gè)重要的能量來源[10]。一個(gè)脂肪酸氧化可產(chǎn)生106個(gè)ATP而葡萄糖大約為30個(gè)ATP,因而它是卵母細(xì)胞成熟和植入前胚胎發(fā)育能量產(chǎn)生的有效來源。脂肪酶裂解脂滴中的甘油三酯為甘油骨架和不同鏈長(zhǎng)及不同飽和度的脂肪酸。脂肪酸主要通過細(xì)胞表面的脂肪酸蛋白轉(zhuǎn)運(yùn)體,包括脂肪酸轉(zhuǎn)位酶、組織特異性脂肪酸轉(zhuǎn)運(yùn)蛋白和質(zhì)膜結(jié)合脂肪酸結(jié)合蛋白,進(jìn)入細(xì)胞,而后通過肉毒堿棕櫚酰轉(zhuǎn)移酶I(CPT1)跨越線粒體的外膜,再經(jīng)肉毒堿進(jìn)入線粒體內(nèi)膜,隨后脂肪酸進(jìn)入FAO,釋放乙酰CoA,進(jìn)入TCA產(chǎn)生ATP。脂肪酸結(jié)合肉毒堿后轉(zhuǎn)運(yùn)到線粒體這一步是FAO的限速步驟,受CPT1催化[11]。補(bǔ)充外源脂肪酸如棕櫚酸、肉毒堿可提高cpt1的表達(dá),加強(qiáng)脂肪酸的β氧化,降低葡萄糖的消耗,提高IVM的成熟率而使用CPT1抑制劑依托莫斯可抑制脂肪酸跨過線粒體膜,降低FAO,增加葡萄糖的消耗,阻礙IVM的成熟[12]。更高濃度的依托莫斯才能抑制小鼠的卵母細(xì)胞的核成熟,說明FAO在小鼠卵母細(xì)胞的重要性要低于其他物種[10]。然而,數(shù)項(xiàng)研究表明小鼠的核成熟其實(shí)也是需要脂肪酸的β氧化[13]。

除了為細(xì)胞提供能量外,脂肪酸及其前體或代謝物也是非代謝過程所需的,特別是細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)。二酰甘油(DAG)是(4、5)-二磷脂酰肌醇的脂質(zhì)水解產(chǎn)物,是細(xì)胞內(nèi)的第二信使,PKC是其主要靶點(diǎn)[14]。值得注意的是,DAG與PKC結(jié)合引發(fā)PKC激活,調(diào)節(jié)卵母細(xì)胞成熟過程已經(jīng)涉及到的多個(gè)關(guān)鍵過程,如減數(shù)分裂的恢復(fù)、紡錘體重組和激活[15]。脂肪酸也結(jié)合核受體和轉(zhuǎn)錄因子如過氧化物酶體增殖物激活受體(PPAR)和固醇調(diào)節(jié)元件結(jié)合蛋白(SREBP)。PPAR和SREBP在小鼠和牛的卵母細(xì)胞中都有檢測(cè)到,可能與胚胎發(fā)育和女性生育有關(guān)[16]。

三、卵母細(xì)胞中的氨基酸代謝

氨基酸(AA)通過一系列特異系統(tǒng)轉(zhuǎn)運(yùn)到細(xì)胞內(nèi),在細(xì)胞內(nèi)發(fā)揮了重要作用,包括蛋白合成、能量產(chǎn)生和細(xì)胞內(nèi)緩沖。其中,AA可轉(zhuǎn)換成α-酮酸進(jìn)入TCA產(chǎn)生ATP。卵母細(xì)胞中大量AA轉(zhuǎn)運(yùn)系統(tǒng)的存在說明卵母細(xì)胞是利用外環(huán)境的AA。研究表明,谷氨酰胺是支持卵母細(xì)胞發(fā)育的有效能量底物,使用谷氨酰胺作為唯一能量來源雖然不能完成到MⅡ期,但足以激發(fā)小鼠卵母細(xì)胞的減數(shù)分裂恢復(fù),且培養(yǎng)基中添加谷氨酰胺可促進(jìn)牛、倉(cāng)鼠、狗、兔子、猴子卵母細(xì)胞的成熟[17]。谷氨酰胺、天冬氨酸和纈氨酸也可抑制豬卵母細(xì)胞的多精授精[18]。

Tartia等[19]在研究了小鼠卵母細(xì)胞體積的調(diào)節(jié)時(shí),發(fā)現(xiàn)甘氨酸(GLY)轉(zhuǎn)運(yùn)體(GLY1)在不成熟的卵母細(xì)胞中是靜止的,而且其內(nèi)生的GLY也幾乎沒有。然而,在排卵促發(fā)的幾個(gè)小時(shí)內(nèi),GLY1調(diào)節(jié)的GLY轉(zhuǎn)運(yùn)被啟動(dòng)。同時(shí),卵母細(xì)胞可利用GLY調(diào)節(jié)卵母細(xì)胞的體積。這些發(fā)現(xiàn)表明卵母細(xì)胞存在GLY依賴的細(xì)胞體積調(diào)節(jié)機(jī)制,從而改變胞內(nèi)滲透壓[20]。

有趣的是,在卵母細(xì)胞成熟期間還存在另一種產(chǎn)能的方式,即cAMP經(jīng)磷酸二酯酶降解可觸發(fā)減數(shù)分裂并產(chǎn)生一磷酸腺苷,牛卵母細(xì)胞的腺苷酸激酶和肌酸激酶可將一磷酸激酶轉(zhuǎn)化為ATP,此為腺苷補(bǔ)救通路。當(dāng)抑制腺苷酸激酶和肌酸激酶時(shí)可減少卵母細(xì)胞的ATP含量,抑制卵母細(xì)胞的成熟[21]。

四、卵母細(xì)胞代謝的調(diào)節(jié)

1.卵胞外調(diào)控:卵巢是血循環(huán)中的糖皮質(zhì)激素的靶器官,通過結(jié)合其受體發(fā)揮作用,有2種糖皮質(zhì)激素的代謝酶調(diào)節(jié)其活性:3β-羥基類固醇脫氫酶1(HSD11B1)將非活性的皮質(zhì)酮轉(zhuǎn)化為有活性的皮質(zhì)醇而3β-羥基類固醇脫氫酶1(HSD11B2)將皮質(zhì)醇轉(zhuǎn)化為皮質(zhì)酮。排卵前LH峰可促進(jìn)人、大鼠等動(dòng)物的卵母細(xì)胞和顆粒細(xì)胞上HSD11B1的表達(dá),下調(diào)HSD11B2的表達(dá),說明卵泡液中皮質(zhì)醇含量增多,但其作用不清。有報(bào)道,高糖皮質(zhì)醇激素抑制卵母細(xì)胞成熟[22];但研究也發(fā)現(xiàn),卵泡液中的糖皮質(zhì)激素含量與卵母細(xì)胞內(nèi)的脂質(zhì)含量相反,與卵母細(xì)胞的成熟正相關(guān),卵丘細(xì)胞表達(dá)11βHSD1、脂質(zhì)代謝酶增多,提示皮質(zhì)醇可能促進(jìn)脂肪酸的氧化,從而促進(jìn)卵母細(xì)胞成熟[23]。

2.胞間調(diào)控:由雌性生殖細(xì)胞和外周顆粒細(xì)胞組成的卵丘細(xì)胞-卵母細(xì)胞復(fù)合體(COCs),是具有完整功能并有動(dòng)力學(xué)特性的基本單位。有報(bào)道,當(dāng)小鼠卵丘細(xì)胞包被或是無卵丘細(xì)胞的卵母細(xì)胞都在含C14的L丙氨酸的培養(yǎng)基培養(yǎng)時(shí),在卵丘細(xì)胞包被的卵母細(xì)胞中放射量更高[24]。研究表明,在顆粒細(xì)胞存在的情況下,甘氨酸、丙氨酸、?;撬岷唾嚢彼岬穆涯讣?xì)胞轉(zhuǎn)運(yùn)增強(qiáng),揭示了卵母細(xì)胞和卵泡細(xì)胞的代謝合作關(guān)系,這對(duì)卵母細(xì)胞成熟潛能的獲得、卵丘細(xì)胞(CC)擴(kuò)張、早期胚胎的發(fā)育至關(guān)重要[25]。IVM期間的CC,可有效調(diào)節(jié)卵母細(xì)胞胞質(zhì)內(nèi)重要因子的合成和濃度,如谷胱甘肽(GSH)和Ca2+[26]。

3.胞內(nèi)調(diào)控:卵母細(xì)胞代謝的胞內(nèi)調(diào)控是更為復(fù)雜、系統(tǒng)的,其較新的研究進(jìn)展值得我們關(guān)注。沉默信息調(diào)節(jié)者(Sirt)是去乙?;讣易宄蓡T,是線粒體中的保守蛋白,可直接調(diào)節(jié)線粒體蛋白的乙?;瑥亩{(diào)節(jié)能量的生成,以對(duì)營(yíng)養(yǎng)狀態(tài)和能量平衡做出反應(yīng)。而且,它還可調(diào)節(jié)一些蛋白的乙?;@些蛋白涉及到脂肪酸氧化、氨基酸代謝和線粒體的氧化呼吸。研究發(fā)現(xiàn)干涉Sirt3,人卵母細(xì)胞線粒體生物合成下降、卵母細(xì)胞多倍體增多、發(fā)育成囊胚的能力下降;高表達(dá)Sirt3,又可逆轉(zhuǎn)這些變化。在小鼠模型擴(kuò)大樣本量進(jìn)行研究,也發(fā)現(xiàn)了相似的這種結(jié)果[27]??梢?,Sirt3可上調(diào)卵母細(xì)胞線粒體的生物合成,促進(jìn)細(xì)胞的代謝而促進(jìn)卵母細(xì)胞的成熟。Sirt1也有類似的作用[28]。白藜蘆醇是Sirt1的激活劑,研究發(fā)現(xiàn)其可促進(jìn)線粒體的生物合成、增加ATP含量和促進(jìn)卵母細(xì)胞的成熟,這也間接證明了上述Sirt1的作用[29]。5’AMP激活的蛋白激酶(AMPK)是絲氨酸/蘇氨酸的異源三聚體激酶,其作用有種屬特異性,在小鼠AMPK促進(jìn)能量代謝,促進(jìn)GVBD、紡錘體的形成和第一極體的排出,從而促進(jìn)卵母細(xì)胞的減數(shù)分裂[30];AMPK還促進(jìn)Sirt蛋白的激活而發(fā)揮作用[31]。

五、展望

卵母細(xì)胞成熟除了形態(tài)學(xué)特征外,代謝標(biāo)志物也可能作為評(píng)估卵母細(xì)胞質(zhì)量和預(yù)測(cè)其授精能力的指標(biāo)[32]。卵母細(xì)胞成熟可用BCB試驗(yàn)評(píng)估,這試驗(yàn)已經(jīng)用于雌性飲食控制后豬卵母細(xì)胞和卵泡液中脂肪酸的含量檢測(cè),主要是測(cè)量葡萄糖-6-磷酸脫氫酶(G6PDH)-PPP的第一步驟的催化酶在卵母細(xì)胞發(fā)生的卵母細(xì)胞中合成活動(dòng)。G6PDH是生長(zhǎng)的卵母細(xì)胞合成的而在成熟卵母細(xì)胞中其失活。G6PDH可將染料轉(zhuǎn)化為無色,在成熟的卵母細(xì)胞中其成藍(lán)色[33]。然而,BCB還未在人卵母細(xì)胞中用來評(píng)估G6PDH的活性。脂質(zhì)特異的熒光染料NILE紅,可沾染牛、豬、鼠的卵母細(xì)胞,且根據(jù)脂質(zhì)含量,會(huì)射出不同的熒光量。特別的是,卵母細(xì)胞脂肪區(qū)里灰色的平均值是評(píng)估單個(gè)卵母細(xì)胞脂質(zhì)含量的合適工具。這種方法用于卵母細(xì)胞獲得數(shù)有限的人類或?yàn)l危物種的卵母細(xì)胞質(zhì)量評(píng)估,可能有價(jià)值[34]。其他酶的功能檢測(cè),如-9和-5去飽和酶都有望用于評(píng)估卵母細(xì)胞質(zhì)量[35]。

圖1 卵母細(xì)胞代謝及其調(diào)節(jié)

卵母細(xì)胞發(fā)育成熟受到多種因素的調(diào)控,其代謝過程的調(diào)控是不可忽視的部分,尤其是葡萄糖代謝及其代謝中間產(chǎn)物關(guān)系到卵母細(xì)胞成熟(圖1)。卵母細(xì)胞代謝物檢測(cè)、調(diào)控因子檢測(cè),有望成為評(píng)價(jià)卵母細(xì)胞質(zhì)量的標(biāo)記。研究卵母細(xì)胞代謝及其機(jī)制,對(duì)探尋改善卵母細(xì)胞質(zhì)量新方法、提高卵母細(xì)胞體外成熟效能具有現(xiàn)實(shí)的意義。

[1] St John J.The control of mtDNA replication during differentiation and development[J].Biochim Biophys Acta,2014,1840:1345-1354.

[2] Fragouli E,Wells D.Mitochondrial DNA assessment to determine oocyte and embryo viability[J].Semin Reprod Med,2015,33:401-409.

[3] Van Blerkom J.Mitochondrial function in the human oocyte and embryo and their role in developmental competence[J].Mitochondrion,2011,11:797-813.

[4] Alvarez GM,Dalvit GC,Cetica PD.Influence of the cumulus and gonadotropins on the metabolic profile of porcine cumulus-oocyte complexes during in vitro maturation[J].Reprod Domest Anim,2012,47:856-864.

[5] St John JC,F(xiàn)acucho-Oliveira J,Jiang Y,et al.Mitochondrial DNA transmission,replication and inheritance:a journey from the gamete through the embryo and into offspring and embryonic stem cells[J].Hum Reprod Update,2010,16:488-509.

[6] Babayev E,Seli E.Oocyte mitochondrial function and reproduction[J].Curr Opin Obstet Gynecol,2015,27:175-181.

[7] Xie HL,Wang YB,Jiao GZ,et al.Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes[J].Sci Rep,2016,6:20764.

[8] Yuan B,Liang S,Kwon JW,et al.The role of glucose metabolism on porcine oocyte cytoplasmic maturation and its possible mechanisms[J].PLoS One,2016,11:e0168329.

[9] Sutton-McDowall ML,Gilchrist RB,Thompson JG.The pivotal role of glucose metabolism in determining oocyte developmental competence[J].Reproduction,2010,139:685-695.

[10] Paczkowski M,Silva E,Schoolcraft WB,et al.Comparative importance of fatty acid beta-oxidation to nuclear maturation,gene expression,and glucose metabolism in mouse,bovine,and porcine cumulus oocyte complexes[J].Biol Reprod,2013,88:111.

[11] Lopaschuk GD,Ussher JR,F(xiàn)olmes CD,et al.Myocardial fatty acid metabolism in health and disease[J].Physiol Rev,2010,90:207-258.

[12] Paczkowski M,Schoolcraft WB,Krisher RL.Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence[J].Reproduction,2014,148:429-439.

[13] Valsangkar D,Downs SM.A requirement for fatty acid oxidation in the hormone-induced meiotic maturation of mouse oocytes[J].Biol Reprd,2013,89:43.

[14] Wang QJ.PKD at the crossroads of DAG and PKC signaling[J].Trends Pharmacol Sci,2006,27:317-323.

[15] Sun QY,Miao YL,Schatten H.Towards a new understanding on the regulation of mammalian oocyte meiosis resumption[J].Cell Cycle,2009,8:2741-2747.

[16] Al Darwich A,Perreau C,Petit MH,et al.Effect of PUFA on embryo cryoresistance,gene expression and AMPKalpha phosphorylation in IVF-derived bovine embryos[J].Prostaglandins Other Lipid Mediat,2010,93:30-36.

[17] Zheng P,Bavister BD,Ji WZ.Amino acid requirements for maturation of rhesus monkey(Macacca mulatta)oocytes in culture[J].Reproduction,2002,124:515-522.

[18] Hong J,Lee E.Intrafollicular amino acid concentration and the effect of amino acids in a defined maturation medium on porcine oocyte maturation,fertilization,and preimplantation development[J].Theriogenology,2007,68:728-735.

[19] Tartia AP,Rudraraju N,Richards T,et al.Cell volume regulation is initiated in mouse oocytes after ovulation[J].Development,2009,136:2247-2254.

[20] Hoffmann EK,Lambert IH,Pedersen SF.Physiology of cell volume regulation in vertebrates[J].Physiol Rev,2009,89:193-277.

[21] Scantland S,Tessaro I,Macabelli CH,et al.The adenosine salvage pathway as an alternative to mitochondrial production of ATP in maturing mammalian oocytes[J].Biol Reprod,2014,91:75.

[22] Tetsuka M,Takagi R,Ambo N,et al.Glucocorticoid metabolism in the bovine cumulus-oocyte complex matured in vitro[J].Reproduction,2016,151:73-82.

[23] Simerman AA,Hill DL,Grogan TR,et al.Intrafollicular cortisol levels inversely correlate with cumulus cell lipid content as a possible energy source during oocyte meiotic resumption in women undergoing ovarian stimulation for in vitro fertilization[J].Fertil Steril,2015,103:249-257.

[24] Colonna R,Mangia F.Mechanisms of amino acid uptake in cumulus-enclosed mouse oocytes[J].Biol Reprod,1983,28:797-803.

[25] Ouandaogo ZG,Haouzi D,Assou S,et al.Human cumulus cells molecular signature in relation to oocyte nuclear maturity stage[J].PLoS One,2011,6:e27179.

[26] Hao ZD,Liu S,Wu Y,et al.Abnormal changes in mitochondria,lipid droplets,ATP and glutathione content,and Ca(2+)release after electro-activation contribute to poor developmental competence of porcine oocyte during in vitro ageing[J].Reprod Fertil Dev,2009,21:323-332.

[27] Zhao HC,Ding T,Ren Y,et al.Role of Sirt3 in mitochondrial biogenesis and developmental competence of human in vitro matured oocytes[J].Hum Reprod,2016,31:607-622.

[28] Di Emidio G,F(xiàn)alone S,Vitti M,et al.SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging[J].Hum Reprod,2014,29:2006-2017.

[29] Itami N,Shirasuna K,Kuwayama T,et al.Resveratrol improves the quality of pig oocytes derived from early antral follicles through sirtuin 1[J].Theriogenology,2015,83:1360-1367.

[30] Ritter LJ,Sugimura S,Gilchrist RB.Oocyte induction of EGF responsiveness in somatic cells is associated with the acquisition of porcine oocyte developmental competence[J].Endocrinology,2015,156:2299-2312.

[31] Bertoldo MJ,F(xiàn)aure M,Dupont J,et al.AMPK:a master energy regulator for gonadal function[J].Front Neurosci,2015,9:235.

[32] Sturmey RG,Leese HJ.Energy metabolism in pig oocytes and early embryos[J].Reproduction,2003,126:197-204.

[33] Cetica P,Pintos L,Dalvit G,et al.Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro[J].Reproduction,2002,124:675-681.

[34] Prates EG,Marques CC,Baptista MC,et al.Fat area and lipid droplets morphology of porcine oocytes during in vitro maturation with trans-10,cis-12 conjugated linoleic acid and forskolin[J].Animal,2013,7:602-609.

[35] Ford JH,Tavendale R.Analysis of fatty acids in early mid-life in fertile women:implications for reproductive decline and other chronic health problems[J].Am J Hum Biol,2010,22:134-136.

[編輯:侯麗]

Researchprogressofoocytemetabolismanditsregulation

XUWen-dan1,CUIYu-gui2*,MAOCai-ping1*

1.CenterofReproductiveMedicine,theFirstAffiliatedHospitalofSoochowUniversity,Suzhou215006 2.CenterofClinicalofReproductiveMedicine,theFirstAffiliatedHospitalofNanjingMedicalUniversity,Nanjing210029

10.3969/j.issn.1004-3845.2017.10.018

2017-03-09;

2017-04-11

2017江蘇省科教強(qiáng)衛(wèi)工程項(xiàng)目(生殖醫(yī)學(xué)創(chuàng)新平臺(tái),醫(yī)學(xué)重點(diǎn)人才項(xiàng)目);江蘇省社會(huì)發(fā)展項(xiàng)目(BE20150642);國(guó)家自然基金(81370719,81671535);高校優(yōu)勢(shì)學(xué)科II期建設(shè)過程(JX10231802);衛(wèi)生廳婦幼保健重點(diǎn)專科(FXK201221)

徐文丹,女,山東棗莊人,博士,圍產(chǎn)醫(yī)學(xué)與胎兒學(xué)專業(yè).(*

)

猜你喜歡
卵丘卵母細(xì)胞線粒體
AREG對(duì)綿羊卵丘細(xì)胞葡萄糖代謝的影響
棘皮動(dòng)物線粒體基因組研究進(jìn)展
線粒體自噬與帕金森病的研究進(jìn)展
卵丘細(xì)胞對(duì)豬卵母細(xì)胞成熟及發(fā)育的影響
牛卵母細(xì)胞的體外成熟培養(yǎng)研究
凋亡抑制劑Z-VAD-FMK在豬卵母細(xì)胞冷凍保存中的應(yīng)用
NF-κB介導(dǎo)線粒體依賴的神經(jīng)細(xì)胞凋亡途徑
卵丘細(xì)胞在卵母細(xì)胞發(fā)育過程中的作用
卵母細(xì)胞授精前剝除部分卵丘細(xì)胞對(duì)體外受精-胚胎移植結(jié)局的影響
補(bǔ)腎活血方對(duì)PCO小鼠未成熟卵母細(xì)胞體外核成熟的影響
东乡族自治县| 沂源县| 静宁县| 山西省| 和顺县| 陆丰市| 都安| 明水县| 南城县| 滦平县| 卢湾区| 东明县| 潮州市| 科技| 清水县| 阿克苏市| 玉树县| 顺义区| 嘉义市| 丁青县| 廉江市| 友谊县| 隆化县| 淳化县| 长兴县| 同心县| 封丘县| 巴林左旗| 西昌市| 肇州县| 乐至县| 长治市| 宜都市| 青川县| 永德县| 兴仁县| 噶尔县| 刚察县| 翁源县| 安国市| 呼图壁县|