堵錫華,吳瓊,陳艷,馮惠
徐州工程學(xué)院 化學(xué)化工學(xué)院, 徐州 221018
酚類化合物臭氧氧化速率的神經(jīng)網(wǎng)絡(luò)研究
堵錫華*,吳瓊,陳艷,馮惠
徐州工程學(xué)院 化學(xué)化工學(xué)院, 徐州 221018
酚類化合物(BP)是重要的工業(yè)原料或中間體,但工業(yè)廢水含有的酚類化合物會對環(huán)境造成污染。為建立酚類化合物臭氧氧化速率的QSPR(quantitative structure-property relationship)預(yù)測模型,分析了23種酚的分子結(jié)構(gòu)與臭氧氧化速率之間的相關(guān)關(guān)系,計(jì)算了這些酚的分子連接性指數(shù)和分子形狀指數(shù),優(yōu)化篩選了連接性指數(shù)的1χ和2χ、分子形狀指數(shù)的K1和K2共4種參數(shù),將其作為BP神經(jīng)網(wǎng)絡(luò)的輸入層變量,臭氧氧化速率作為輸出層變量,采用4:2:1的網(wǎng)絡(luò)結(jié)構(gòu),獲得了令人滿意的QSPR神經(jīng)網(wǎng)絡(luò)預(yù)測模型,模型總相關(guān)系數(shù)r為0.976,計(jì)算得到的臭氧氧化速率的預(yù)測值與實(shí)驗(yàn)值較為吻合,平均殘差僅為0.05;為檢驗(yàn)結(jié)構(gòu)參數(shù)建立模型的普適性,同樣方法建立對酚類化合物的辛醇-水分配系數(shù)的預(yù)測模型,模型總相關(guān)系數(shù)r達(dá)到0.993,辛醇-水分配系數(shù)的預(yù)測值與實(shí)驗(yàn)值吻合度較為理想,結(jié)果表明,本法建構(gòu)的神經(jīng)網(wǎng)絡(luò)模型具有良好的穩(wěn)健性和預(yù)測能力。
酚類化合物;臭氧氧化;分子連接性指數(shù);分子形狀指數(shù);神經(jīng)網(wǎng)絡(luò)
Received6 January 2017accepted20 February 2017
Abstract: Phenolic compounds were important industrial raw materials or intermediates, but industrial wastewater containing phenolic compounds was polluted to the environment. In order to establish QSPR (quantitative structure-property relationship) model of ozonation rate of phenolic compounds, the relationship between molecular structure and the ozonation rate of 23 kinds of phenolic compounds was analyzed. Moreover, the molecular connectivity indices and molecule shape indices of these compounds were calculated.1χand2χ of the molecular connectivity indices, K1and K2of the molecule shape indices were optimized. The four parameters were used as input variables of neural network and the ozonation rate was used as output variable, and the 4:2:1 network structure was adopted and BP neural network method was used to establish a satisfying QSPR prediction model. The total correlation coefficient r was 0.976. The predicted values and experimental values were very close, and the mean error was 0.05. In order to test the generality of our method, a QSPR model of octanol-water partition coefficient lgp of phenolic compounds was established using the same method. The total correlation coefficient r was 0.993. The predicted values of lgp agree with the experimental values. The results showed that the neural network model had good stability and predictive ability.
Keywords: phenolic compound;ozonation;molecular connectivity index;molecule shape index;neural network
酚類化合物在工業(yè)上被廣泛用作酚醛樹脂、高分子材料、合成纖維、防腐劑、殺蟲劑、香料、染料等生產(chǎn)原料或中間體[1],工業(yè)生產(chǎn)產(chǎn)生的廢水由于含有酚類污染物,容易造成對環(huán)境的破壞[2-3],因此世界上許多國家將部分酚類化合物列為優(yōu)先控制的環(huán)境污染物[4],越來越多的研究工作者對其對環(huán)境的影響也越發(fā)關(guān)注,開展了卓有成效的研究[5-7]。在這些研究中,對酚類化合物的生物毒性[8-9]、電化學(xué)腐蝕性[10]、色譜保留特性[11]等較為常見,對水體中酚類化合物臭氧氧化降解研究雖然較少,但已逐漸引起科研人員的重視[12]。為此,在前人研究[13-14]工作基礎(chǔ)上,本文采用人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)方法建立了酚類化合物臭氧氧化降解的QSPR構(gòu)效關(guān)系模型,通過酚類化合物分子結(jié)構(gòu)參數(shù)與其臭氧氧化速率之間的關(guān)系,分析了對臭氧氧化速率的影響因素。本研究可為酚類化合物的環(huán)境降解處理提供理論上的指導(dǎo)。
表1 lgk與結(jié)構(gòu)參數(shù)的最佳變量子集回歸結(jié)果Table 1 The results of structure parameters and lgk with best subsets regression
表2 酚類化合物的結(jié)構(gòu)參數(shù)Table 2 Structural parameters of phenolic compound
優(yōu)化篩選的分子連接性指數(shù)1χ和2χ揭示分子中原子的連接特性,分別代表分子二價(jià)和三價(jià)的路徑指數(shù);分子形狀指數(shù)K1和K2揭示形狀特征,K1反映分子的環(huán)性,K2反映原子的空間密度。
考察文獻(xiàn)[15]中列出的23種酚類化合物的臭氧氧化速率lgk,與優(yōu)化篩選出的分子連接性指數(shù)和分子形狀指數(shù)中的4種1χ、2χ、K1、K2進(jìn)行相關(guān)性分析,得到回歸方程為:
lgk =1.6101χ-1.7482χ+0.899 K1-1.598 K2+3.993
(1)
式(1)中n為樣本數(shù)??梢钥闯?,該方程的決定系數(shù)r2為0.807,相關(guān)性并不理想,根據(jù)式(1)得到的lgk預(yù)測值與實(shí)驗(yàn)值的平均殘差為0.09。
為建立準(zhǔn)確預(yù)測酚類化合物臭氧氧化降解的QSPR模型,在多元回歸分析基礎(chǔ)上,采用人工神經(jīng)網(wǎng)絡(luò)(ANN)方法對酚類化合物的臭氧氧化速率lgk進(jìn)一步進(jìn)行研究,以篩選得到的4種結(jié)構(gòu)參數(shù)作為神經(jīng)網(wǎng)絡(luò)法的輸入層神經(jīng)元數(shù),酚類化合物臭氧氧化速率lgk作為輸出層神經(jīng)元數(shù),按照許祿等[19]建議的規(guī)則:
2.2> n/M ≥1.4
(2)
式(2)中:n為樣本數(shù),M為神經(jīng)網(wǎng)絡(luò)的總權(quán)重。M的計(jì)算式為:
M =(I+1)H+(H+1)Q
(3)
式(3)中:I、H、Q分別為神經(jīng)網(wǎng)絡(luò)中輸入層、隱含層和輸出層的神經(jīng)元數(shù)(即變量數(shù))。這里的輸入層變量(即結(jié)構(gòu)參數(shù))I = 4;輸出層變量(即酚臭氧氧化速率lgk)Q = 1;按式(3)計(jì)算H只能取2,故神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)采用4:2:1方式。為避免過擬合、過訓(xùn)練,將23個(gè)酚類化合物分子樣本分為3組: 訓(xùn)練集(在每5個(gè)數(shù)據(jù)組中取第1、3、5個(gè)數(shù)據(jù),依次類推)、測試集(數(shù)據(jù)組的第2個(gè))和驗(yàn)證集(數(shù)據(jù)組的第4個(gè)),由此構(gòu)建得到神經(jīng)網(wǎng)絡(luò)模型的總相關(guān)系數(shù)r=0.976,決定系數(shù)R2=0.9526,其他分別為: 訓(xùn)練集決定系數(shù)R2=0.9506、測試集決定系數(shù)R2=0.9643、驗(yàn)證集決定系數(shù)R2=0.9545;利用該神經(jīng)網(wǎng)絡(luò)預(yù)測模型計(jì)算得到的酚類化合物臭氧氧化速率的預(yù)測值(Pre.)列于表3中,該預(yù)測值(Pre.)與實(shí)驗(yàn)值(Exp.)吻合度較為理想,兩者的平均殘差(Err.)為0.05,與多元回歸方法所得殘差0.09的結(jié)果相比,神經(jīng)網(wǎng)絡(luò)法預(yù)測臭氧氧化速率的誤差明顯要小。楊靜等[15]分別用遺傳-偏最小二乘算法(GA-PLS)、遺傳-人工神經(jīng)網(wǎng)絡(luò)法(GA-ANN)2種方法,也采用4個(gè)變量建模,得到的23個(gè)酚類化合物臭氧氧化速率預(yù)測值與實(shí)驗(yàn)值的平均殘差分別為0.28和0.15,顯然本法的預(yù)測能力優(yōu)于文獻(xiàn),預(yù)測精度明顯高于文獻(xiàn)。本法預(yù)測值與實(shí)驗(yàn)值的關(guān)系見圖1。
表3 酚類化合物臭氧氧化速率的預(yù)測Table 3 Prediction of ozonation rates of phenolic compound
從表3可以看出,利用訓(xùn)練集分子建構(gòu)的模型對另外的測試集分子(標(biāo)記有*的分子)進(jìn)行預(yù)測,得到的平均殘差為0.054,與所有分子預(yù)測結(jié)果的平均殘差吻合,說明本法建構(gòu)的預(yù)測模型有良好的魯棒性和預(yù)測能力。預(yù)測模型的權(quán)重和偏置見表4。對臭氧氧化速率lgk研究中,測試集的預(yù)測值與實(shí)驗(yàn)值平均誤差為0.05,驗(yàn)證集的預(yù)測值與實(shí)驗(yàn)值平均誤差為0.03,與訓(xùn)練集的平均誤差0.06及總平均誤差0.05基本吻合,說明不存在過訓(xùn)練、過擬合現(xiàn)象。
為檢驗(yàn)利用結(jié)構(gòu)參數(shù)構(gòu)建模型的普適性,將上述4種結(jié)構(gòu)參數(shù)與文獻(xiàn)[15]列出的辛醇-水分配系數(shù)(取對數(shù)值lgp)進(jìn)行神經(jīng)網(wǎng)絡(luò)建模,網(wǎng)絡(luò)結(jié)構(gòu)、樣本分組等條件均與對lgk分析相同,所得模型的總相關(guān)系數(shù)r=0.993,各組相關(guān)系數(shù)為: 訓(xùn)練集r=0.989、測試集r=0.999、驗(yàn)證集r=0.997,可以看出結(jié)構(gòu)參數(shù)與辛醇-水分配系數(shù)之間呈優(yōu)級的非線性相關(guān)關(guān)系,利用模型得到的預(yù)測值Pre.與文獻(xiàn)值Exp.的平均殘差為0.10,吻合度較好,相關(guān)數(shù)據(jù)也列入表3中,預(yù)測值與實(shí)驗(yàn)值的關(guān)系見圖2。
圖1 lgk的實(shí)驗(yàn)值與預(yù)測值關(guān)系Fig. 1 Relationship between literal and calculated lgk
表4 BP-ANN模型的權(quán)重和偏置Table 4 Weights and bias of BP-ANN model
圖2 lgp的實(shí)驗(yàn)值與預(yù)測值關(guān)系Fig. 2 Relationship between literal and calculated lgp
為檢驗(yàn)?zāi)P椭蟹肿拥碾x域性,這里用Jackknifed法對模型(1)采用逐一剔除法檢驗(yàn),從23個(gè)酚類化合物分子中依次剔除1個(gè),用余下的酚類化合物分子進(jìn)行回歸分析,這樣就有23個(gè)決定系數(shù)值,對這些值作控制圖(見圖3)。
圖3 Jackknifed決定系數(shù)的檢驗(yàn)Fig. 3 Inspection of Jackknifed determination coefficient
從檢驗(yàn)的決定系數(shù)控制圖可以看出,只有去除17號分子時(shí),模型的決定系數(shù)低至0.737,游離于可控區(qū)域之外,說明該分子的存在對模型的影響較大。
圖4 Jackknifed決定系數(shù)R2的雷達(dá)圖Fig. 4 Radar map of determination coefficient R2 of Jackknifed
考察酚類化合物的分子結(jié)構(gòu)與其臭氧氧化速率的大小可以看出,當(dāng)酚的苯環(huán)上連接的基團(tuán)數(shù)越多時(shí),分子體積越大,被臭氧氧化的速率也越大;當(dāng)取代基數(shù)目相同時(shí),基團(tuán)的性質(zhì)對速率有一定的影響,基團(tuán)的吸電子能力越強(qiáng),氧化速率越慢;分子連接性指數(shù)和分子形狀指數(shù)蘊(yùn)含了分子的連接特性和空間密度等特性,在一定程度上與氧化速率的變化規(guī)律一致,通過與神經(jīng)網(wǎng)絡(luò)方法結(jié)合,可進(jìn)一步提高所建模型的預(yù)測能力:
(1)神經(jīng)網(wǎng)絡(luò)對多元回歸分析具有一定的糾錯(cuò)能力,能很好地反映出分子連接性指數(shù)結(jié)合分子形狀指數(shù)與酚類化合物臭氧氧化速率之間具有良好的非線性關(guān)系,模型具有良好的穩(wěn)健性和較強(qiáng)的預(yù)測能力,預(yù)測平均殘差僅為0.05。
(2)優(yōu)化篩選的指數(shù)與酚類化合物的其他性質(zhì)也具有良好的非線性關(guān)系,具有普適性。將幾種指數(shù)與辛醇-水分配系數(shù)建立模型的預(yù)測平均殘差只有0.10,故可用于辛醇-水分配系數(shù)的數(shù)據(jù)挖掘。一般而言,辛醇-水分配系數(shù)值越大,進(jìn)入生物體體內(nèi)的有機(jī)物分子數(shù)目會越多,毒性會越強(qiáng),故通過預(yù)測酚類化合物的辛醇-水分配系數(shù),可揭示該類化合物對環(huán)境生物毒性的影響,評價(jià)其對環(huán)境的危險(xiǎn)性。
[1] 崔秀君, 王志欣, 袁星, 等. 支持向量機(jī)用于酚類化合物毒性的QSAR研究[J]. 計(jì)算機(jī)與應(yīng)用化學(xué), 2008, 25(3): 298-302
Cui X J,Wang Z X,Yuan X,et al. Application support vector machine to QSAR study of toxicity of substituted phenols [J]. Computers and Applied Chemistry, 2008, 25(3): 298-302 (in Chinese)
[2] 廖立敏,卿東紅,李建鳳,等. 烴基酚類化合物結(jié)構(gòu)與毒性關(guān)系研究[J]. 環(huán)境化學(xué), 2011, 30(2): 495-499
Liao L M,Qing D H,Li J F,et al. Quantitative structure-toxicity relationship study of alkylphenols[J]. Environmental Chemistry, 2011, 30(2): 495-499 (in Chinese)
[3] Altenburger R, Backhaus T, Boedeker W, et al. Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: Mixtures composed of similarly acting chemicals [J]. Environmental Toxicology and Chemistry, 2000, 19(9): 2341-2347
[4] 周文明,傅德黔,孫宗光. 中國水中優(yōu)先控制污染物黑名單的確定[J]. 環(huán)境科學(xué)研究, 1991, 4(6): 9-12
Zhou W M, Fu D Q, Sun Z G. Determination of black list of China’s priority pollutants in water [J]. Research of Environmental Sciences, 1991, 4(6): 9-12 (in Chinese)
[5] 鄧金鋒, 黃占斌, 郭相坤. 酚類化合物分子連接性指數(shù)與毒性[J]. 環(huán)境污染與防治, 2007, 29(5): 340-342
Deng J F, Huang Z B, Guo X K. Correlation of toxicity and molecular connectivity index of hydroxybenzenes [J]. Environmental Pollution and Control, 2007, 29(5): 340-342 (in Chinese)
[6] Suksomtip M,Ukrisdawithid S,Bhusawang P,et al. Phenolic compound content, antioxidant and radical-scavenging properties of methanplic extracts from the seed coat of certain thai tamarind cultivars [J]. Journal of Food Biochemistry, 2010, 34(5): 916-931
[7] Kamalraj S, Ramesh S, Muthumary J. A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae [J]. Natural Product Research, 2013, 27(16): 1445-1453
[8] 莫凌云,劉樹深,劉海玲. 苯酚與苯胺衍生物對發(fā)光菌的聯(lián)合毒性[J]. 中國環(huán)境科學(xué), 2008, 28(4): 334-339
Mo L Y,Liu S S,Liu H L. Joint toxicity of selected phenolic and aniline derivatives to photobacterium [J]. China Environmental Science, 2008, 28(4): 334-339 (in Chinese)
[9] 于瑞蓮, 林喜燕, 胡恭任. 酚類化合物對發(fā)光菌的聯(lián)合毒性[J]. 華僑大學(xué)學(xué)報(bào):自然科學(xué)版, 2009, 30(5): 549-552
Yu R L, Lin X Y, Hu G R. The joint toxicity of phenols to Photobacterium phosphoreum [J]. Journal of Huaqiao University: Natural Science, 2009, 30(5): 549-552 (in Chinese)
[10] 沈藝程, 龔翠然, 王飛, 等. 苯酚及其衍生物的電化學(xué)聚合及耐蝕性能[J]. 腐蝕與防護(hù), 2006, 27(12): 637-639
Shen Y C, Gong C R, Wang F, et al. Electropolymerizationg and corrosion resistance of phenol and its derivatives [J]. Corrosion & Protection, 2006, 27(12): 637-639 (in Chinese)
[11] 王岳松, 張軍, 林樂明. 苯酚和苯胺類衍生物的結(jié)構(gòu)與薄層色譜保留值關(guān)系的研究[J]. 色譜, 1999, 17(1): 18-20
Wang Y S, Zhang J, Lin L M. The relationship between thin-layer chromatographic retention values and molecular structures of phenol and aniline derivatives[J]. Chinese Journal of Chromatography, 1999, 17(1): 18-20 (in Chinese)
[12] Liu H, Tan J, Yu H X, et al. Determination of the apparent reaction rate constants for ozone degradation of substituted phenols and QSPR/QSAR analysis[J]. International Journal of Environmental Research, 2010, 4(3): 507-512
[13] 堵錫華. 用新的路徑定位指數(shù)和神經(jīng)網(wǎng)絡(luò)研究多溴聯(lián)苯醚理化性質(zhì)[J]. 化工學(xué)報(bào), 2014, 65(4): 1169-1178
Du X H. Physicochemical property of polybrominated diphenyl ethers by new path location index and neural network [J]. CIESC Journal,2014,65(4): 1169-1178 (in Chinese)
[14] Du X H,Zhuang W C,Shi X Q,et al. Research on thermodynamic properties of polybrominated diphenylamine by neural network [J]. Chinese Journal of Chemical Physics, 2015, 28(1): 59-64
[15] 楊靜, 王建兵, 王亞華, 等. 酚類物質(zhì)臭氧氧化降解的定量構(gòu)效關(guān)系[J]. 環(huán)境化學(xué), 2015, 34(10): 1932-1939
Yang J, Wang J B, Wang Y H, et al. Quantitative structure-activity relationship for the ozonation of phenols [J]. Environmental Chemistry, 2015, 34(10): 1932-1939 (in Chinese)
[16] 張婷, 梁逸曾, 趙晨曦, 等. 基于分子結(jié)構(gòu)預(yù)測氣相色譜程序升溫保留指數(shù)[J]. 分析化學(xué), 2006, 34(11): 1607-1610
Zhang T, Liang Y Z, Zhao C X, et al. Prediction of temperature-programmed retention indices from molecule structures [J]. Chinese Journal of Analytical Chemistry, 2006, 34(11): 1607-1610 (in Chinese)
[17] Kier L B, Hall L H. Molecular Connectivity in Structure-Activity Analysis[M]. England: Research Studies Press, 1986: 69-75
[18] Kier L B. A shape index from molecular graphs [J]. Quantitative Structure-Activity Relationships, 1985, 4(3): 109-116
[19] 許祿,邵學(xué)廣. 化學(xué)計(jì)量學(xué)方法[M]. 北京:科學(xué)出版社,2004: 441
Xu L,Shao X G. Methods of Chemometrics [M]. Beijing: Science Press, 2004: 441 (in Chinese)
◆
ResearchonOzonationRatesofPhenolicCompoundbyNeuralNetworkMethod
Du Xihua*,Wu Qiong,Chen Yan, Feng Hui
School of Chemistry and Chemical Engineering, Xuzhou Institute of Technology, Xuzhou 221018,China
10.7524/AJE.1673-5897.20170106003
2017-01-06錄用日期2017-02-20
1673-5897(2017)3-675-06
X132
A
國家自然科學(xué)基金項(xiàng)目(No.21472071)
堵錫華(1963—),男,教授,研究方向?yàn)榄h(huán)境污染物構(gòu)效學(xué)研究,E-mail: 12dxh@sina.com
堵錫華, 吳瓊, 陳艷, 等. 酚類化合物臭氧氧化速率的神經(jīng)網(wǎng)絡(luò)研究[J]. 生態(tài)毒理學(xué)報(bào),2017, 12(3): 675-680
Du X H,Wu Q,Chen Y, et al. Research on ozonation rates of phenolic compound by neural network method [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 675-680 (in Chinese)