郭曉宇,李茹楓,馮成洪,,*,韓志華
1. 北京師范大學(xué)環(huán)境學(xué)院水環(huán)境模擬國家重點(diǎn)實(shí)驗(yàn)室,北京 1008752. 北京師范大學(xué)環(huán)境學(xué)院水沙科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,北京 1008753. 環(huán)境保護(hù)部南京環(huán)境科學(xué)研究所,南京 210042
污染水體中河蜆的生物毒性響應(yīng)研究進(jìn)展
郭曉宇1,李茹楓2,馮成洪1,2,*,韓志華3
1. 北京師范大學(xué)環(huán)境學(xué)院水環(huán)境模擬國家重點(diǎn)實(shí)驗(yàn)室,北京 1008752. 北京師范大學(xué)環(huán)境學(xué)院水沙科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,北京 1008753. 環(huán)境保護(hù)部南京環(huán)境科學(xué)研究所,南京 210042
河蜆作為廣泛分布于世界各國的典型底棲生物,由于其活動(dòng)性低、濾食性等特征被廣泛用作指示生物研究多種水體污染物的生物有效性。但迄今為止,尚沒有系統(tǒng)論述污染水體中河蜆生物毒性響應(yīng)的研究進(jìn)展。為此,本文從污染物種類、測試指標(biāo)、試驗(yàn)參數(shù)等角度探討了過去30多年間河蜆在氨、重金屬、有機(jī)污染物生物富集及生物毒性效應(yīng)等方面的研究過程及主要成果。以往研究主要以河蜆生物體內(nèi)累積、形態(tài)學(xué)及行為學(xué)觀察、生化指標(biāo)、代謝組學(xué)、基因完整性等指標(biāo)表征污染水體的生物毒性效應(yīng),并隨著分子生物學(xué)的發(fā)展已逐步由多指標(biāo)全面表征代替單一指標(biāo)測試。此外,現(xiàn)有研究多偏重于重金屬和持久性有機(jī)污染物,對氨、新型污染物及納米材料的河蜆生物毒性效應(yīng)探討尚處于起步階段。河蜆在自然水體污染狀況評估、污染水體的生物修復(fù)、水體毒性預(yù)測等方面具有較高適用性,但河蜆在沉積物毒性鑒定評估(TIE, Toxicity Identification and Evaluation)中的應(yīng)用研究依然較為缺乏,有待進(jìn)一步開展。
水體污染物;氨;重金屬;有機(jī)物;河蜆;生物毒性響應(yīng);生物累積
Received12 October 2016accepted16 December 2016
Abstract: As a typical benthonic species, Corbicula fluminea is widely used for biomonitoring freshwater pollution due to its sessile and filter-feeding characteristics. However, there is few reports reviewing the progress about biological toxic response and bioaccumulation for contaminants of C. fluminea in aquatic environment. Therefore, this study summarized the main achievements about the effects of pollutants (ammonia, trace metals, organic contaminants) on freshwater invertebrates C. fluminea in terms of pollutant species, test index, test medium and test duration. The results indicated that the common biomonitoring techniques applied in C. fluminea study could be classified as bioaccumulation, morphology, behavior observation, biochemical index alterations, metabonomics measure and genetic integrity changes. With the development of molecular biology, the use of single biomarker is gradually replaced by multi-biomarker approach. Furthermore, existing researches mainly focus on heavy metals and persistent organic pollutants, whereas studies on ammonia, emerging contaminants and nanomaterials are still in the initial stage. Overall, C. fluminea is a useful species for evaluating aquatic pollution, bioremediation, toxicity prediction. Studies on the application of C. fluminea in the area of sediment Toxicity Identification and Evaluation (TIE), by contrast, are still scarce and need extensive investigations.
Keywords: water pollutants; ammonia; heavy metal; organic pollutants; Corbicula fluminea; biological toxicity response; bioaccumulation
水體沉積物中具有明顯生物和生態(tài)效應(yīng)的污染物種類繁多,近年來,污染物的生物毒性響應(yīng)特征、過程與機(jī)制逐漸成為國內(nèi)外研究的熱點(diǎn)。生物毒性測試由于可反映污染物的生物可利用性,是評估水體綜合污染的有效手段之一,是化學(xué)分析和底棲生物群落結(jié)構(gòu)評價(jià)方法的有益補(bǔ)充[1]。雙殼貝類作為一類世界性分布的沿岸底棲水生動(dòng)物,在污染物的生物富集和傳遞過程中起著重要作用,可通過食用影響人體健康,已成為環(huán)境毒理學(xué)研究關(guān)注的對象[20]。
河蜆作為一種典型淡水底棲雙殼貝類,具有活動(dòng)性低、易于培養(yǎng)、經(jīng)濟(jì)實(shí)用、分布廣泛等特征,對污染物具有較強(qiáng)的富集性,廣泛應(yīng)用于水體尤其是沉積物毒性效應(yīng)評價(jià)和鑒定研究[2]。河蜆原產(chǎn)于亞洲、非洲以及澳大利亞[3],由于其入侵性,目前亦廣泛分布于北美、南美以及歐洲等地[4-5]。美國[11,34,42,53-60,88,93,95-101]、中國[18-19,29,40,45-52,61-62,92]、法國[2,6,13-16,28,33,35,37-38,43-44,63-77,86,107-108]、德國[30,32]、英國[12]、葡萄牙[7-10,21,39,41,94,102]、阿根廷[79-80,90,103-104]、巴西[17,36,81,85,105]、西班牙[83,87]、塞爾維亞[91]、馬來西亞[82]、伊拉克[78]、菲律賓[106]等國家均開展了河蜆在污染物生物毒性響應(yīng)的研究。
河蜆對污染物生物毒性響應(yīng)研究主要包括生物富集、生化指標(biāo)改變、形態(tài)學(xué)、行為學(xué)觀察、野外種群及群落水平分布調(diào)查等[1]。也有研究將其作為哨兵生物(sentinel organism),應(yīng)用于貽貝污染物監(jiān)測項(xiàng)目(NCCOS)等常規(guī)生物監(jiān)測程序探討[60]。整體上,河蜆作為水體尤其是沉積物污染受試生物的指示性應(yīng)用研究尚處于發(fā)展階段。近幾年,相關(guān)研究逐漸涉及到組織學(xué)、組織化學(xué)、組織病理學(xué)[7-11],代謝組學(xué)[12]和基因表達(dá)[13-19]等分子生物學(xué)方面。各種生物效應(yīng)、毒理學(xué)指標(biāo)也隨著分子生物學(xué)及相關(guān)分析檢測儀器技術(shù)的發(fā)展而快速更新。
為系統(tǒng)認(rèn)識(shí)河蜆對污染物的生物毒性響應(yīng)特征,本文基于1983—2016年國外文獻(xiàn)中有關(guān)河蜆研究成果,結(jié)合前期已發(fā)表研究成果[20],從水體污染物類型、研究方法、指標(biāo)體系等方面綜合歸納整理河蜆的污染物生物富集及生物毒性效應(yīng)研究現(xiàn)狀及發(fā)展歷程。結(jié)果可為河蜆對水體及沉積物中污染物的生物富集、生物毒性鑒定研究提供參考。
研究過程中,根據(jù)污染物種類、試驗(yàn)參數(shù)、測試指標(biāo)進(jìn)行分類,具體技術(shù)路線見圖-1。
研究表明,氨對不同水生無脊椎動(dòng)物具有不同程度的毒性,但是氨毒性可能是致命的[21]。有學(xué)者對多種淡水貝類進(jìn)行氨毒性實(shí)驗(yàn),得出不同貝類的96 h半致死濃度(11.53~23.1 mg·L-1)[22-24]。Cooper等[25-27]曾研究人工模擬河流中河蜆大面積死亡時(shí)軟體組織腐敗所釋放氨對本土物種淡水貽貝的影響。但是氨對河蜆本身的急慢性毒性效應(yīng)卻報(bào)道較少。據(jù)作者檢索,國外報(bào)道中僅發(fā)現(xiàn)一篇文獻(xiàn),論述長期慢性氨污染對河蜆的多種生物標(biāo)志物產(chǎn)生的亞致死影響研究(表1)[21]。研究發(fā)現(xiàn),采自污染河口區(qū)的河蜆由于長期處于污染環(huán)境中,其各項(xiàng)酶活性指標(biāo)均表現(xiàn)出較高背景值,因此受1 mg·L-1含氨水污染后,各項(xiàng)指標(biāo)并未表現(xiàn)出明顯差異。這說明長期處于污染水域會(huì)增強(qiáng)河蜆對氨的耐受性,有利于其入侵行為。由于水生生物的內(nèi)源排放及人類工農(nóng)業(yè)快速發(fā)展所引起的外源污染,氨氮已成為水環(huán)境中最普遍的污染物之一,但是目前水體中氨污染引起的河蜆毒性響應(yīng)研究甚少,此類研究有待進(jìn)一步加強(qiáng)。
圖1 研究過程技術(shù)路線Fig. 1 The technology roadmap of research
表2匯總了1983—2016年間的65篇在國外期刊發(fā)表的有關(guān)河蜆對重金屬的生物毒性響應(yīng)研究進(jìn)展。從表2可以看出,已有大量研究探討了重金屬污染水體中河蜆的生物毒性響應(yīng)。在研究所屬國家分類上,法國有相對較全面的研究。波爾多大學(xué)研究團(tuán)隊(duì)從1997年到2014年間發(fā)表27篇文獻(xiàn)。美國、中國、德國、英國、阿根廷、巴西、馬來西亞、伊拉克、西班牙等在河蜆對污染物生物毒性響應(yīng)方面也均有研究。研究過程經(jīng)歷了從早期的河蜆不同軟體組織對重金屬的富集量、行為學(xué)特征(閉殼響應(yīng)、呼吸活性)[34,37,44,53-54,58,63,66-71,78-80],到后期的生物標(biāo)志物多指標(biāo)綜合研究,如:生化指標(biāo)中丙二醛(MDA)、金屬硫蛋白(MT)、谷胱甘肽(GSH)含量測定[7-10],抗氧化系統(tǒng)中過氧化氫酶(CAT)、超氧化物歧化酶(SOD)等酶活性的測定[9-10,43,61],蛋白定量驗(yàn)證中MXR蛋白、熱休克蛋白Hsp60等的測定[36,72-74],再到分子標(biāo)記物中基因表達(dá)水平的測定研究[13-16]。也有很多研究,探討了不同非生物因子如pH、溫度、溶解氧(DO)、CO2含量等因素影響下不同重金屬對河蜆的生物毒性效應(yīng)[37,43,66-68,70-71]。除以上指標(biāo)外,還對污染物影響下河蜆消化腺病變、消化腺細(xì)胞內(nèi)污染物顆粒及溶酶體系統(tǒng)變化和中性脂質(zhì)含量等組織學(xué)、組織化學(xué)及組織病理學(xué)進(jìn)行研究[7-10,15]。由于雙殼類消化腺在調(diào)整和消除外源有害物質(zhì)中起到關(guān)鍵作用,且消化道管壁上皮細(xì)胞對許多金屬及準(zhǔn)金屬污染物的損害影響較敏感[9],因此以往研究常對該器官進(jìn)行組織學(xué)分析。英國學(xué)者Nicole等[12]還對河蜆代謝組學(xué)進(jìn)行分析,探究Cd和Zn對不同大小河蜆代謝物的影響。整體而言,除法國、葡萄牙、巴西學(xué)者涉及到一些組織學(xué)觀察、生化指標(biāo)響應(yīng)、蛋白定量驗(yàn)證、及基因表達(dá)方面的研究,其他國家研究多處于基礎(chǔ)階段,多采用河蜆體內(nèi)污染物富集量、死亡率、掘穴行為等常規(guī)指標(biāo)進(jìn)行表征。我國學(xué)者對重金屬污染水體中河蜆的生物毒性響應(yīng)開展了大量研究[20,29,40,61-62,109-110],對河蜆的金屬富集、行為學(xué)觀察、生化指標(biāo)改變3個(gè)方面進(jìn)行了污染物生物毒性響應(yīng)研究,但是對于重金屬污染,還未展開組織學(xué)、代謝組學(xué)、基因水平的研究。
在重金屬種類上,常見重金屬Cd、Hg、Cu、Zn、Se、U、Ni、Pb等對河蜆的生物毒性效應(yīng)均有研究,而Cd作為對淡水生物群落毒性最強(qiáng)[28]的污染物,研究文獻(xiàn)最多。在79篇文獻(xiàn)中有46篇將其列為研究對象(表2)。還有少量研究探討金屬放射性同位素[28-29]、稀土元素[30]的生物毒性。對于近年來新的環(huán)境挑戰(zhàn),也有學(xué)者對納米材料尤其是納米金屬進(jìn)行雙殼類生物毒性實(shí)驗(yàn)。葡萄牙學(xué)者對納米金剛石及納米TiO2的河蜆生物毒性研究[9-10]表明,納米材料影響河蜆的氧化應(yīng)激系統(tǒng)且引起了消化腺上皮細(xì)胞的組織學(xué)變化。整體上納米材料對河蜆生物毒性研究較少。隨著納米材料應(yīng)用的增多,此類研究有必要繼續(xù)完善,為環(huán)境風(fēng)險(xiǎn)評估提供可靠信息[31]。
在基質(zhì)選取上,現(xiàn)有研究主要以現(xiàn)場監(jiān)測和室內(nèi)模擬模式開展水相(含沉積物孔隙水、沉積物上覆水)、全沉積物相實(shí)驗(yàn)研究(表2)。其中,水相研究中包括天然水體的原位水相實(shí)驗(yàn)和實(shí)驗(yàn)室配水的室內(nèi)模擬實(shí)驗(yàn)。相對而言,水相實(shí)驗(yàn)易于操作控制,現(xiàn)有研究多采用水相加標(biāo)進(jìn)行模擬實(shí)驗(yàn)研究,針對全沉積物的毒性效應(yīng)研究較少(約占6%)。然而,河蜆作為底棲生物直接接觸沉積物,可通過鰓攝取沉積物間隙水中游離態(tài)污染物,也可通過攝食途徑取食富含污染物的顆粒物而累積污染物。因此,水相實(shí)驗(yàn)難以全面、直接反映沉積物的污染和生物毒性。在生物毒性效應(yīng)研究中,實(shí)驗(yàn)基質(zhì)的選取還需以全沉積物為主要基質(zhì)。
從實(shí)驗(yàn)周期角度來分析,根據(jù)研究類別的不同,野外監(jiān)測及原位試驗(yàn)研究通常周期較長。野外監(jiān)測考慮河蜆富集的時(shí)空分布,通常進(jìn)行不同季節(jié)多次采樣[32-34];原位試驗(yàn)[35]由于污染物濃度的不可控性而需進(jìn)行長期富集實(shí)驗(yàn)。由于河蜆對重金屬具有較強(qiáng)的富集能力,除少數(shù)研究對河蜆進(jìn)行體外急性(96 h)毒性實(shí)驗(yàn)外[36],重金屬對河蜆的生物毒性及河蜆對重金屬的解毒機(jī)制[14, 37-38]研究多采用慢性(1個(gè)月~1年)毒性實(shí)驗(yàn)。
整體上,河蜆在水體重金屬污染中的應(yīng)用主要集中在4個(gè)方面:(1)通過野外監(jiān)測評估實(shí)際水生環(huán)境中重金屬污染情況;(2)研究河蜆對富含重金屬水體的生物修復(fù)能力,探討重金屬污染區(qū)域的生物修復(fù)技術(shù);(3)重金屬對河蜆健康影響的毒理學(xué)機(jī)理研究;(4)毒性預(yù)測——依據(jù)河蜆生物監(jiān)測得出的毒理學(xué)數(shù)據(jù)建立生物模型來評估及預(yù)測污染物潛在生態(tài)風(fēng)險(xiǎn)。
在野外監(jiān)測上,大量學(xué)者通過野外監(jiān)測分析河蜆體內(nèi)重金屬含量與環(huán)境介質(zhì)(如水體、沉積物)中重金屬含量關(guān)系,發(fā)現(xiàn)痕量重金屬在河蜆體內(nèi)富集量比周圍環(huán)境介質(zhì)中含量高幾個(gè)數(shù)量級(jí)[34, 39]。雖然河蜆體內(nèi)污染物含量不能反映環(huán)境水體的真實(shí)污染水平,但是河蜆對重金屬的累積特征與環(huán)境中重金屬量分布具有很好的相關(guān)性[13, 32-33, 40]。迄今為止,體內(nèi)污染物含量監(jiān)測是河蜆在天然水體環(huán)境污染研究中唯一的實(shí)際應(yīng)用。
在生物修復(fù)應(yīng)用上,葡萄牙學(xué)者采用室內(nèi)模擬實(shí)驗(yàn)研究河蜆對酸性礦排水的生物修復(fù)效果,發(fā)現(xiàn)河蜆對水體中重金屬有較強(qiáng)的去除率,證明了河蜆用于生物修復(fù)的適用性[41]。但目前仍未發(fā)現(xiàn)有研究采用河蜆對實(shí)際重金屬污染區(qū)域進(jìn)行生物修復(fù),而室內(nèi)模擬研究僅此一篇文獻(xiàn)報(bào)道,相關(guān)研究有待繼續(xù)開展。
在河蜆的生物毒理學(xué)研究上,河蜆在重金屬加標(biāo)介質(zhì)中的生化響應(yīng)[7, 10, 36, 42-43]、基因損傷[13-15]、解毒機(jī)制[14, 38, 44]等都有助于研究污染物對河蜆的潛在毒性影響。因?yàn)殡p殼類底棲生物在污染物的影響下早期的指標(biāo)響應(yīng)表現(xiàn)在生物標(biāo)志物層面。毒性響應(yīng)首先會(huì)在亞細(xì)胞水平表現(xiàn)出明顯響應(yīng),隨后才會(huì)在更高生物水平顯現(xiàn)。與軟體組織內(nèi)污染物富集量測定相比,生物標(biāo)志物能夠提供更加完整的、生物學(xué)上更可靠的信息[31]。然而,受生物和非生物因素影響,生物標(biāo)志物亦無法絕對準(zhǔn)確地表征污染物生物毒性。此外,由于單生物標(biāo)志物無法充分反映生物體的健康損害程度,大量學(xué)者采用多標(biāo)志物[7-10, 43]監(jiān)測河蜆對污染物的生物毒性響應(yīng)。同時(shí),生物標(biāo)志物與一般急性毒性實(shí)驗(yàn)評價(jià)指標(biāo)——死亡率相比,更加困難、昂貴且耗時(shí)。綜上所述,河蜆毒理學(xué)機(jī)制研究仍亟需經(jīng)濟(jì)、快捷、準(zhǔn)確的測試指標(biāo),評估污染物對生物的健康損傷。
在生物毒性預(yù)測方面,我國臺(tái)灣學(xué)者進(jìn)行了大量的探索[45-52]。研究表明,閉殼響應(yīng)可作為一項(xiàng)生物監(jiān)測指標(biāo)研究金屬污染水體對雙殼貝類的健康影響。閉殼響應(yīng)模型技術(shù)可為將來生態(tài)預(yù)警系統(tǒng)的建立提供一個(gè)風(fēng)險(xiǎn)管理框架。
天然水體受人類活動(dòng)影響,接納了大量外源性有機(jī)污染物,如有機(jī)農(nóng)藥、多氯聯(lián)苯、多環(huán)芳烴等持久性有機(jī)污染物,烷基酚類,內(nèi)分泌干擾物、抗生素等多種藥物。河蜆在歐美等國被廣泛用作指示生物研究多種有機(jī)污染物的生物有效性。表3綜述了從1986到2015年間的31篇在國外期刊發(fā)表的有關(guān)河蜆對有機(jī)污染物的生物毒性響應(yīng)報(bào)道。
表1 河蜆在氨生物毒性效應(yīng)中的應(yīng)用Table 1 Corbicula fluminea in ammonia biological toxicity test
期刊名注釋(Journal Title Abbreviations): WASP-Water, Air, & Soil Pollution.
測試指標(biāo)名稱注釋(Index Abbreviations): MDA-malondialdehyde, CAT-catalase, GPx-glutathione peroxidase, GST-glutathione S-transferase, GR-glutathione reductase, ChE-cholinesterase, ODH-octopine dehydrogenase.
表2 河蜆在金屬污染物生物監(jiān)測中的應(yīng)用Table 2 Corbicula fluminea in metal contamination biomonitoring
期刊名注釋(Journal Title Abbreviations): WASP-Water, Air, & Soil Pollution, STE-Science of the Total Environment, JEQ-Journal of Environmental Quality, EES-Ecotoxicology and Environmental Safety, TEC-Toxicological and Environmental Chemistry, WR-Water Research, CBP-Comparative Biochemistry & Physiology Part C Comparative Pharmacology, TSTE-The Science of the Total Environment, ET-Environmental Toxicology, EMA-Environmental Monitoring and Assessment, ESPI- Environmental Science: Processes & Impacts, ESPR-Environmental Science and Pollution Research, TE-Toxicology and Endocrinology, BECT- Bulletin of Environmental Contamination and Toxicology, JER-Journal of Environmental Radioactivity, JEM-Journal of Environmental Monitoring, WST-Water Science & Technology, BTER- Biological Trace Element Research, JHM-Journal of Hazardous Materials, AJE-Asian Journal of Ecotoxicology, JAES-Journal of Agro-Environment Science, JSCNU-Journal of South China Normal University (Natural Science Edition), ES-Environmental Science, OELS-Oceanologia Et Limnologia Sinica, JLS-Journal of Lake Science, CJAEB- Chinese Journal of Applied & Environmental Biology, CJAE-Chinese Journal of Applied Ecology, Eco-Ecologic Science, RF-Reservoir Fisheries, CJE-Chinese Journal of Ecology, JAAS-Journal of Anhui Agricultural Science.
測試指標(biāo)名稱注釋(Index Abbreviations): SOD-superoxide dismutase, CAT- catalase, MT-metallothionein, LPO-lipid peroxidation, ChE-cholinesterase, ODH-octopine dehydrogenase, AEC-adenylate energy charge, ATP-adenosinetriphosphate, CA-carbonic anhydrase, HMBP-heavy metal binding protein, MXR-multixenobiotic resistance protein, MDA-malondialdehyde, GPx-glutathione peroxidase, GSTpi-glutathione S-transferase pi class, GST-glutathione S-transferase, GSH-glutathione, GR-glutathione reductase.
表3 河蜆在有機(jī)污染物生物監(jiān)測中的應(yīng)用Table 3 Corbicula fluminea in organic contamination biomonitoring
期刊名注釋(Journal Title Abbreviations): WASP- Water, Air, & Soil Pollution, AECT-Archives of Environmental Contamination and Toxicology, EC- Environmental Chemistry, EMA-Environmental Monitoring and Assessment, AT-Aquatic Toxicology, BECT- Bulletin of Environmental Contamination and Toxicology, EES-Ecotoxicology and Environmental Safety, ETP-Environmental Toxicology and Pharmacology, TP-Toxicologic Pathology, MR-GTEM--Mutation Research/Genetic Toxicology and Environmental Mutagenesis, MF-Marine Fishers, CJPS-Chinese Journal of Pesticide Science, JRE-Journal of Resources and Ecology, ASC-Acta Scientiae Circumstantiae, CJEE- Chinese Journal of Environmental Engineering.
污染物名稱注釋(Contaminants Abbreviation): BFRs—brominated flame-retardants, TBB—2,3,4,5-tetrabromobenzoate, TBPH—2-ethylhexyl 2,3,4,5-etrabromophthalate, BTBPE—1,2-bis(2,4,6-tribromophenoxy) ethane, DBDPE—decabromodiphenyl ethane, DGH/QUAT—dodecylguanidine hydrochloride (DGH), QUAT—n-alkyl dimethylbenzyl ammonium chloride, polyDADMAC—poly diallyl dimethyl ammonium chloride, HCH—hexachlorocyolohexane (666), DDT—dichlorodiphenyltri-chloroe-thane.
測試指標(biāo)名稱注釋(Index Abbreviations): P450, P418—cytochromes, NADH-red—NADH-cytochrome C reductase, CAT—catalase, PL—peroxidizable lipids, NP—net peroxidation, TOSC—total oxidant scavenging capacity, SOD—superoxide dismutase, GR—glutathione reductase, TR—thioredoxin reductase, MDA—malondialdehyde, TR—thioredoxin reductase, GPx—glutathione peroxidase, GSTpi—glutathione S-transferase pi class, EROD—ethoxyresorufin-O-deethylase, GST—glutathione S-transferase, BSAF—biota-sediment accumulation factor, DBF—dibenzylfluorescein dealkylase, AO—antioxidant enzymes.
從研究區(qū)分布看,美國學(xué)者用河蜆做指示生物,表征有機(jī)污染物生物毒性的研究較多,其次為法國及阿根廷。我國學(xué)者在河蜆對有機(jī)污染物的生物毒性效應(yīng)研究中亦開展了大量工作[20,110-111]。測試指標(biāo)的采用及發(fā)展與重金屬污染的生物毒性研究相似。早期研究多偏重于河蜆體內(nèi)有機(jī)污染物富集量測定[30,32,88,90,95,96-98,103,107];后期逐步發(fā)展為多指標(biāo)聯(lián)用,如行為學(xué)指標(biāo)(虹吸行為、掘穴行為、閉殼響應(yīng))、形態(tài)學(xué)指標(biāo)(組織學(xué)、組織化學(xué)、組織病理學(xué)分析)[11,93]、生化指標(biāo)(SOD、CAT、GR、GPx、GST、膽堿酯酶、AO酶、EROD等氧化還原系統(tǒng)的多種酶學(xué)指標(biāo))[2,85,87,91,94,108]、分子生物學(xué)相關(guān)方法(轉(zhuǎn)錄組測序和分析[18-19]、DNA完整性[11, 17, 85-87])等。
從污染物角度,有機(jī)污染物種類繁多,研究者多圍繞重點(diǎn)關(guān)注的持久性有機(jī)污染物、藥物、苯酚類物質(zhì)及用于船舶防污漆的三丁基錫,亦有少量學(xué)者進(jìn)行重金屬與多氯聯(lián)苯(PCB)、多環(huán)芳烴(PAH)、有機(jī)氯農(nóng)藥(OCP)復(fù)合污染的研究[54, 80]。河蜆對有機(jī)污染物生物毒性效應(yīng)研究的試驗(yàn)基質(zhì)選取情況與重金屬污染研究情況相同,多數(shù)研究采用水相加標(biāo)實(shí)驗(yàn)。對于試驗(yàn)周期,多以有機(jī)物毒性強(qiáng)弱及實(shí)驗(yàn)濃度為依據(jù),確定不同試驗(yàn)時(shí)長。持久性有機(jī)污染物及抗生素、雌激素等藥物多采用慢性毒性實(shí)驗(yàn)[2, 11, 18-19, 54, 86-89]。
整體上,與重金屬相比,河蜆在有機(jī)污染物生物毒性效應(yīng)中的研究報(bào)道相對較少,主要集中在2個(gè)方面:(1)采用野外監(jiān)測評估實(shí)際水生環(huán)境中有機(jī)污染物污染情況;(2)有機(jī)污染物對河蜆健康影響的毒理學(xué)機(jī)理研究。河蜆體內(nèi)有機(jī)污染物含量的野外監(jiān)測分析結(jié)果表明,河蜆對疏水性有機(jī)污染物有較強(qiáng)富集能力[90-92]。河蜆體內(nèi)有機(jī)污染物累積量與水體、沉積物中含量存在顯著相關(guān)性,且污染水域?qū)油樠趸瘧?yīng)激系統(tǒng)有不良影響。室內(nèi)模擬試驗(yàn)及原位試驗(yàn)發(fā)現(xiàn),低劑量長期暴露于有機(jī)污染物可引起行為學(xué)響應(yīng)[93]、形態(tài)學(xué)變化[11]、生化響應(yīng)[18-19, 85-87, 94]、基因損傷[17-19, 85, 87]等。由此可知,河蜆對有機(jī)污染物[19]有較強(qiáng)敏感性和生物累積能力,可以作為哨兵生物對有機(jī)物污染區(qū)域進(jìn)行生物監(jiān)測。以往研究也從細(xì)胞水平驗(yàn)證了河蜆用于環(huán)境風(fēng)險(xiǎn)評估的適用性。然而,目前沉積物毒性鑒定評估(TIE)中所采用的生物響應(yīng)指標(biāo)多為受試生物死亡率,隨著環(huán)境治理的推進(jìn),極毒性污染逐漸減少,采用生物慢性毒性響應(yīng)指標(biāo)進(jìn)行沉積物TIE顯得尤為重要。
經(jīng)過30多年的探索,國內(nèi)外在污染水體的河蜆生物毒性響應(yīng)研究上已有較為全面的發(fā)展。大量學(xué)者采用河蜆生物體內(nèi)累積、形態(tài)學(xué)及行為學(xué)觀察、生化指標(biāo)改變、代謝組學(xué)、基因完整性等生物監(jiān)測技術(shù)對氨、重金屬、有機(jī)污染物的生物毒性效應(yīng)進(jìn)行表征,認(rèn)證河蜆對實(shí)際水生環(huán)境污染狀況的評估能力,對污染水體的生物修復(fù)能力,對水體的毒性預(yù)測能力等。這些研究全面認(rèn)證了河蜆作為指示生物對于環(huán)境風(fēng)險(xiǎn)評估的適用性。
河蜆的生物毒性效應(yīng)研究多偏重于重金屬污染水體,對有機(jī)污染物研究相對較少且多局限于持久性有機(jī)污染物,對于氨、新型污染物及納米材料的研究尚處于起步階段,這些污染物對河蜆毒性影響有待進(jìn)一步開展。且多種污染物對河蜆的復(fù)合毒性研究有待進(jìn)一步加強(qiáng)。研究中多采用水相進(jìn)行模擬實(shí)驗(yàn),對于全沉積物的研究仍需加強(qiáng)。
河蜆測試指標(biāo)從早期的生物富集量測定、行為學(xué)形態(tài)學(xué)觀察,到后期出現(xiàn)的生化指標(biāo)測定,再到分子生物學(xué)指標(biāo)測定。不同測試指標(biāo)的選取針對不同研究目的。生物富集是污染物生物毒性效應(yīng)研究的重要過程,污染物在生物體內(nèi)的富集是一個(gè)包含攝食、排泄、儲(chǔ)存、降解的動(dòng)態(tài)平衡過程;行為學(xué)及形態(tài)學(xué)觀察在污染物生物毒性響應(yīng)研究中可以提供最直觀快捷的反映;隨著生物技術(shù)的發(fā)展,污染物對蛋白質(zhì)、酶、核酸等生物大分子的毒性作用機(jī)理逐漸被關(guān)注,因此可以在不同水平進(jìn)行毒性預(yù)測,近年發(fā)展的許多生物標(biāo)志物如氧化應(yīng)激酶、基因毒性、溶酶體改變、免疫活性以及膽堿酯酶活性等被用于毒理學(xué)研究。生物富集及形態(tài)學(xué)行為學(xué)觀察可以提供直接、基礎(chǔ)的研究,而生化指標(biāo)及分子生物學(xué)指標(biāo)可以提供更多生物水平層面的毒性預(yù)測,與軟體組織內(nèi)污染物富集量測定相比,生物標(biāo)志物能夠提供更加完整的、生物學(xué)上更可靠的信息。河蜆測試指標(biāo)隨著分子生物學(xué)及相關(guān)分析檢測儀器技術(shù)的飛速發(fā)展而快速更新,且多指標(biāo)全面表征逐步代替單一指標(biāo)測試,以更全面準(zhǔn)確評估污染物對河蜆的毒性影響。然而對于不同特定毒物的特異性生物標(biāo)志物的篩選研究比較匱乏,有待進(jìn)一步研究。
目前對河蜆在沉積物毒性鑒定評估(TIE)中的應(yīng)用研究較為缺乏,尤其將河蜆的行為學(xué)及形態(tài)學(xué)變化、生化響應(yīng)、基因損傷等指標(biāo)全面結(jié)合用于沉積物毒性鑒定評估(TIE)的研究鮮有報(bào)道。而河蜆作為廣泛分布且對污染物具有較強(qiáng)富集性及敏感性的雙殼類底棲生物,具有較全面的生物監(jiān)測背景研究,對于其在沉積物毒性鑒定評估中(TIE)的應(yīng)用研究工作有待開展。
[1] Zhou Q F, Zhang J B, Fu J J, et al. Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem [J]. Analytica Chimica Acta, 2008, 606(2): 135-150
[2] Bonnafé E, Sroda S, Budzinski H, et al. Responses of cytochrome P450, GST, and MXR in the mollusk Corbicula fluminea to the exposure to hospital wastewater effluents [J]. Environmental Science and Pollution Research, 2015, 22(14): 11033-11046
[3] Sousa R, Antunes C, Guilhermino L. Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: An overview [J]. Annales de Limnologie - International Journal of Limnology, 2008, 44(2): 85-94
[4] Hubenov Z, Trichkova T, Kenderov L, et al. Distribution of Corbicula fluminea (Mollusca: Corbiculidae) over an eleven-year period of its invasion in Bulgaria [J]. Acta Zoologica Bulgarica, 2013, 65(3): 315-326
[5] Ilarri M I, Freitas F, Costa-Dias S, et al. Associated macrozoobenthos with the invasive Asian clam Corbicula fluminea [J]. Journal of Sea Research, 2012, 72: 113-120
[6] Fournier E, Adam C, Massabuau J-C, et al. Bioaccumulation of waterborne selenium in the Asiatic clam Corbicula fluminea: Influence of feeding-induced ventilatory activity and selenium species [J]. Aquatic Toxicology, 2005, 72(3): 251-260
[7] Santos H M, Diniz M S, Costa P M, et al. Toxicological effects and bioaccumulation in the freshwater clam (Corbicula fluminea) following exposure to trivalent arsenic [J]. Environmental Toxicology, 2007, 22(5): 502-509
[8] Costa P M, Santos H M, Peres I, et al. Toxicokinetics of waterborne trivalent arsenic in the freshwater bivalve Corbicula fluminea [J]. Archives of Environmental Contamination and Toxicology, 2009, 57(2): 338-347
[9] Vale G, Franco C, Diniz M S, et al. Bioavailability of cadmium and biochemical responses on the freshwater bivalve Corbicula fluminea—The role of TiO2nanoparticles [J]. Ecotoxicology and Environmental Safety, 2014, 109: 161-168
[10] Cid A, Picado A, Correia J B, et al. Oxidative stress and histological changes following exposure to diamond nanoparticles in the freshwater Asian clam Corbicula fluminea (Müller, 1774) [J]. Journal of Hazardous Materials, 2015, 284: 27-34
[11] Lehmann D W, Levine J F, McHugh Law J M. Polychlorinated biphenyl exposure causes gonadal atrophy and oxidative stress in Corbicula fluminea clams [J]. Toxicologic Pathology, 2007, 35(3): 356-365
[12] Spann N, Aldridge D C, Griffin J L, et al. Size-dependent effects of low level cadmium and zinc exposure on the metabolome of the Asian clam, Corbicula fluminea [J]. Aquatic Toxicology, 2011, 105(3-4): 589-599
[13] Arini A, Daffe G, Gonzalez P, et al. What are the outcomes of an industrial remediation on a metal-impacted hydrosystem? A 2-year field biomonitoring of the filter-feeding bivalve Corbicula fluminea [J]. Chemosphere, 2014, 108: 214-224
[14] Arini A, Daffe G, Gonzalez P, et al. Detoxification and recovery capacities of Corbicula fluminea after an industrial metal contamination (Cd and Zn): A one-year depuration experiment [J]. Environmental Pollution, 2014, 192: 74-82
[15] Bigot A, Minguez L, Giambérini L, et al. Early defense responses in the freshwater bivalve Corbicula fluminea exposed to copper and cadmium: Transcriptional and histochemical studies [J]. Environmental Toxicology, 2011, 26(6): 623-632
[16] Simon O, Floriani M, Cavalie I, et al. Internal distribution of uranium and associated genotoxic damages in the chronically exposed bivalve Corbicula fluminea [J]. Journal of Environmental Radioactivity, 2011, 102(8): 766-773
[17] Fedato R P, Simonato J D, Martinez C B R, et al. Genetic damage in the bivalve mollusk Corbicula fluminea induced by the water-soluble fraction of gasoline [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2010, 700(1-2): 80-85
[18] Chen H H, Zha J M, Yuan L L, et al. Effects of fluoxetine on behavior, antioxidant enzyme systems, and multixenobiotic resistance in the Asian clam Corbicula fluminea [J]. Chemosphere, 2015, 119: 856-862
[19] Chen H H, Zha J M, Liang X F, et al. Effects of the human antiepileptic drug carbamazepine on the behavior, biomarkers, and heat shock proteins in the Asian clam Corbicula fluminea [J]. Aquatic Toxicology, 2014, 155: 1-8
[20] 郭曉宇, 李茹楓, 馮成洪. 河蜆在我國沉積物毒性評價(jià)與鑒定中的應(yīng)用研究[J]. 生態(tài)毒理學(xué)報(bào), 2016, 11(2): 89-100
Guo X Y, Li R F, Feng C H. Corbicula fluminea in sediment toxicity evaluation and identification studies in China [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 89-100 (in Chinese)
[21] Costa S, Guilhermino L. Influence of long-term exposure to background pollution on the response and recovery of the invasive species Corbicula fluminea to ammonia sub-lethal stress: A multi-marker approach with field estuarine populations [J]. Water, Air, & Soil Pollution, 2015, 226(4): 95
[22] Mummert A K, Neves R J, Newcomb T J, et al. Sensitivity of juvenile freshwater mussels (Lampsilis fasciola, Villosa iris) to total and un-ionized ammonia [J]. Environmental Toxicology & Chemistry, 2003, 22(11): 2545-2553
[23] Newton T J, Bartsch M R. Lethal and sublethal effects of ammonia to juvenile Lampsilis mussels (Unionidae) in sediment and water-only exposures [J]. Environmental Toxicology & Chemistry, 2007, 26(10): 2057-2065
[24] Montresor L C, Miranda-Filho K C, Paglia A, et al. Short-term toxicity of ammonia, sodium hydroxide and a commercial biocide to golden mussel Limnoperna fortunei (Dunker, 1857) [J]. Ecotoxicology and Environmental Safety, 2013, 92: 150-154
[25] Ilarri M I, Antunes C, Guilhermino L, et al. Massive mortality of the Asian clam Corbicula fluminea in a highly invaded area [J]. Biological Invasions, 2011, 13(2): 277-280
[26] Cooper N L, Cherry D S. Potential effects of Asian clam (Corbicula fluminea) die-offs on native freshwater mussels (Unionidae) II: Porewater ammonia [J]. Journal of the North American Benthological Society, 2014, 24(2): 381-394
[27] Cherry D S, Scheller J L, Cooper N L, et al. Potential effects of Asian clam (Corbicula fluminea) die-offs on native freshwater mussels (Unionidae) I: Water-column ammonia levels and ammonia toxicity [J]. Journal of the North American Benthological Society, 2014, 24(2): 369-380
[28] Fraysse B, Baudin J P, Garnier-Laplace J, et al. Effects of Cd and Zn waterborne exposure on the uptake and depuration of 57Co, 110mAg and 134Cs by the Asiatic clam (Corbicula fluminea) and the zebra mussel (Dreissena polymorpha)—Whole organism study [J]. Environmental Pollution, 2002, 118(3): 297-306
[29] Fan W H, Ren J Q, Wu C G, et al. Using enriched stable isotope technique to study Cu bioaccumulation and bioavailability in Corbicula fluminea from Taihu Lake, China [J]. Environmental Science and Pollution Research, 2014, 21(24): 14069-14077
[30] Merschel G, Bau M. Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water [J]. Science of The Total Environment, 2015, 533: 91-101
[31] Zuykov M, Pelletier E, Harper D A T. Bivalve mollusks in metal pollution studies: From bioaccumulation to biomonitoring [J]. Chemosphere, 2013, 93(2): 201-208
[32] Sebesvari Z, Ettwig K F, Emons H. Biomonitoring of tin and arsenic in different compartments of a limnic ecosystem with emphasis on Corbicula fluminea and Dikerogammarus villosus [J]. Journal of Environmental Monitoring, 2005, 7(3): 203-207
[33] Baudrimont M, Lemaire-Gony S, Ribeyre F, et al. Seasonal variations of metallothionein concentrations in the Asiatic clam (Corbicula fluminea) [J]. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 1997, 118(3): 361-367
[34] Leland H V, Scudder B C. Trace elements in Corbicula fluminea from the San Joaquin River, California [J]. Science of the Total Environment, 1990, 97-98(7): 641-672
[35] Marie V, Baudrimont M, Boudou A. Cadmium and zinc bioaccumulation and metallothionein response in two freshwater bivalves (Corbicula fluminea and Dreissena polymorpha) transplanted along a polymetallic gradient [J]. Chemosphere, 2006, 65(4): 609-617
[36] Rocha C T, Souza M M. The influence of lead on different proteins in gill cells from the freshwater bivalve, Corbicula fluminea, from defense to repair biomarkers [J]. Archives of Environmental Contamination and Toxicology, 2012, 62(1): 56-67
[37] Inza B, Ribeyre F, Boudou A. Dynamics of cadmium and mercury compounds (inorganic mercury or methylmercury): Uptake and depuration in Corbicula fluminea. Effects of temperature and pH [J]. Aquatic Toxicology, 1998, 43(4): 273-285
[38] Baudrimont M, Andres S, Durrieu G, et al. The key role of metallothioneins in the bivalve Corbicula fluminea during the depuration phase, after in situ exposure to Cd and Zn [J]. Aquatic Toxicology, 2003, 63(2): 89-102
[39] Reis P A, Guilhermino L, Antunes C, et al. Assessment of the ecological quality of the Minho estuary (Northwest Iberian Peninsula) based on metal concentrations in sediments and in Corbicula fluminea [J]. Limnetica, 2014, 33(1): 161-173
[40] Kong M, Hang X, Wang L, et al. Accumulation and risk assessment of heavy metals in sediments and zoobenthos (Bellamya aeruginosa and Corbicula fluminea) from Lake Taihu [J]. Water Science and Technology, 2016, 73(1): 203-214
[41] Rosa I C, Costa R, Gon?alves F, et al. Bioremediation of metal-rich effluents: Could the invasive bivalve work as a biofilter? [J]. Journal of Environment Quality, 2014, 43(5): 1536-1545
[42] Giesy J P, Duke C S, Bingham R D, et al. Changes in phosphoadenylate concentrations and adenylate energy charge as an integrated biochemical measure of stress in invertebrates: The effects of cadmium on the freshwater clam Corbicula fluminea [J]. Toxicological & Environmental Chemistry, 2008, 6(4): 259-295
[43] Legeay A, Achard-Joris M, Baudrimont M, et al. Impact of cadmium contamination and oxygenation levels on biochemical responses in the Asiatic clam Corbicula fluminea [J]. Aquatic Toxicology, 2005, 74(3): 242-253
[44] Simon O, Garnier-Laplace J. Kinetic analysis of uranium accumulation in the bivalve Corbicula fluminea: Effect of pH and direct exposure levels [J]. Aquatic Toxicology, 2004, 68(2): 95-108
[45] Liao C-M, Jou L-J, Chen B-C. Risk-based approach to appraise valve closure in the clam Corbicula fluminea in response to waterborne metals [J]. Environmental Pollution, 2005, 135(1): 41-52
[46] Jou L-J, Liao C-M. A dynamic artificial clam (Corbicula fluminea) allows parsimony on-line measurement of waterborne metals [J]. Environmental Pollution, 2006, 144(1): 172-183
[47] Liao C-M, Lin C-M, Jou L-J, et al. Linking valve closure behavior and sodium transport mechanism in freshwater clam Corbicula fluminea in response to copper [J]. Environmental Pollution, 2007, 147(3): 656-667
[48] Liao C-M, Jou L-J, Lin C-M, et al. Predicting acute copper toxicity to valve closure behavior in the freshwater clam Corbicula fluminea supports the biotic ligand model [J]. Environmental Toxicology, 2007, 22(3): 295-307
[49] Liao C-M, Jau S-F, Chen W-Y, et al. Acute toxicity and bioaccumulation of arsenic in freshwater clam Corbicula fluminea [J]. Environmental Toxicology, 2008, 23(6): 702-711
[50] Liao C-M, Jau S-F, Lin C-M, et al. Valve movement response of the freshwater clam Corbicula fluminea following exposure to waterborne arsenic [J]. Ecotoxicology, 2009, 18(5): 567-576
[51] Jou L J, Chen W Y, Liao C M. Online detection of waterborne bioavailable copper by valve daily rhythms in freshwater clam Corbicula fluminea [J]. Environmental Monitoring and Assessment, 2009, 155(1-4): 257-272
[52] Chen W-Y, Liao C-M, Jou L-J, et al. Predicting bioavailability and bioaccumulation of arsenic by freshwater clam Corbicula fluminea using valve daily activity [J]. Environmental Monitoring and Assessment, 2010, 169(1-4): 647-659
[53] Graney R L, Cherry D S, Cairns J. The influence of substrate, pH, diet and temperature upon cadmium accumulation in the Asiatic clam (Corbicula fluminea) in laboratory artificial streams [J]. Water Research, 1984, 18(7): 833-842
[54] Tatem H E. Bioaccumulation of polychlorinated biphenyls and metals from contaminated sediment by freshwater prawns, Macrobrachium rosenbergii and clams, Corbicula fluminea [J]. Archives of Environmental Contamination & Toxicology, 1986, 15(2): 171-183
[55] Doherty F G, Failla M L, Cherry D S. Identification of a metallothionein-like, heavy metal binding protein in the freshwater bivalve, Corbicula fluminea [J]. Comparative Biochemistry & Physiology Part C Comparative Pharmacology, 1987, 87(1): 113-120
[56] Doherty F G, Failla M L, Cherry D S. Metallothionein-like heavy metal binding protein levels in Asiatic clams are dependent on the duration and mode of exposure to cadmium [J]. Water Research, 1988, 22(7): 927-932
[57] Mccloskey J T, Dixon P M, Newman M C. Effect of metal and metalloid contaminated sediment on the spatial distribution of Asiatic clams (Corbicula fluminea) [J]. Archives of Environmental Contamination & Toxicology, 1995, 28(2): 203-208
[58] Lee B G, Lee J S, Luoma S N. Comparison of selenium bioaccumulation in the clams Corbicula fluminea and Potamocorbula amurensis: A bioenergetic modeling approach [J]. Environmental Toxicology & Chemistry, 2006, 25(7): 1933-1940
[59] Peltier G L, Wright M S, Hopkins W A, et al. Accumulation of trace elements and growth responses in Corbicula fluminea downstream of a coal-fired power plant [J]. Ecotoxicology and Environmental Safety, 2009, 72(5): 1384-1391
[60] Shoults-Wilson W A, Unrine J M, Rickard J, et al. Comparison of metal concentrations in Corbicula fluminea and Elliptio hopetonensis in the Altamaha River system, Georgia, USA [J]. Environmental Toxicology and Chemistry, 2010, 29(9): 2026-2033
[61] Ren J, Luo J, Ma H, et al. Bioavailability and oxidative stress of cadmium to Corbicula fluminea [J]. Environmental Science: Processes & Impacts, 2013, 15(4): 860-869
[62] Geng N, Wang C, Wang P F, et al. Cadmium accumulation and metallothionein response in the freshwater bivalve Corbicula fluminea under hydrodynamic conditions [J]. Biological Trace Element Research, 2015, 165(2): 222-232
[63] Inza B, Ribeyre F, Maury-Brachet R, et al. Tissue distribution of inorganic mercury, methylmercury and cadmium in the Asiatic clam (Corbicula fluminea) in relation to the contamination levels of the water column and sediment [J]. Chemosphere, 1997, 35(12): 2817-2836
[64] Bregni M, Ueno N T, Childs R. Bioaccumulation and metallothionein response in the Asiatic clam (Corbicula fluminea) after experimental exposure to cadmium and inorganic mercury [J]. Environmental Toxicology & Chemistry, 1997, 16(16): 2096-2105
[65] Andrès S, Baudrimont M, Lapaquellerie Y, et al. Field transplantation of the freshwater bivalve Corbicula fluminea along a polymetallic contamination gradient (River Lot, France): I. Geochemical characteristics of the sampling sites and cadmium and zinc bioaccumulation kinetics [J]. Environmental Toxicology & Chemistry, 1999, 18(11): 2462-2471
[66] Fraysse J P, Baudin J. Cadmium uptake by Corbicula fluminea and Dreissena polymorpha: Effects of pH and temperature [J]. Bulletin of Environmental Contamination and Toxicology, 2000, 65(5): 638-645
[67] Tran D, Boudou A, Massabuau J C. How water oxygenation level influences cadmium accumulation pattern in the Asiatic clam Corbicula fluminea: A laboratory and field study [J]. Environmental Toxicology & Chemistry, 2001, 20(9): 2073-2080
[68] Tran D, Boudou A, Massabuau J C. Relationship between feeding-induced ventilatory activity and bioaccumulation of dissolved and algal-bound cadmium in the Asiatic clam Corbicula fluminea [J]. Environmental Toxicology & Chemistry, 2002, 21(2): 327-333
[69] Tran D, Fournier E, Durrieu G, et al. Copper detection in the Asiatic clam Corbicula fluminea: Optimum valve closure response [J]. Aquatic Toxicology, 2003, 65(3): 317-327
[70] Tran D, Massabuau J C, Garnier-Laplace J. Effect of carbon dioxide on uranium bioaccumulation in the freshwater clam Corbicula fluminea [J]. Environmental Toxicology & Chemistry, 2004, 23(3): 739-747
[71] Fournier E, Tran D, Denison F, et al. Valve closure response to uranium exposure for a freshwater bivalve (Corbicula fluminea): Quantification of the influence of pH [J]. Environmental Toxicology & Chemistry, 2004, 23(5): 1108-1114
[72] Achard M. Induction of a multixenobiotic resistance protein (MXR) in the Asiatic clam Corbicula fluminea after heavy metals exposure [J]. Aquatic Toxicology, 2004, 67(4): 347-357
[73] Tran D, Bourdineaud J P, Massabuau J C, et al. Modulation of uranium bioaccumulation by hypoxia in the freshwater clam Corbicula fluminea: Induction of multixenobiotic resistance protein and heat shock protein 60 in gill tissues [J]. Environmental Toxicology & Chemistry, 2005, 24(9): 2278-2284
[74] Achard-Joris M, Gonzalez P, Marie V, et al. cDNA cloning and gene expression of ribosomal S9 protein gene in the mollusk Corbicula fluminea: A new potential biomarker of metal contamination up-regulated by cadmium and repressed by zinc [J]. Environmental Toxicology & Chemistry, 2006, 25(2): 527-533
[75] Fournier E, Adam C, Massabuau J C, et al. Selenium bioaccumulation in Chlamydomonas reinhardtii and subsequent transfer to Corbicula fluminea: Role of selenium speciation and bivalve ventilation [J]. Environmental Toxicology & Chemistry, 2006, 25(10): 2692-2699
[76] Tran D, Fournier E, Durrieu G, et al. Inorganic mercury detection by valve closure response in the freshwater clam Corbicula fluminea: Integration of time and water metal concentration changes [J]. Environmental Toxicology & Chemistry, 2007, 26(7): 1545-1551
[77] Tran D, Massabuau J C, Garnier-Laplace J. Impact of hypoxia on hemolymph contamination by uranium in an aquatic animal, the freshwater clam Corbicula fluminea [J]. Environmental Pollution, 2008, 156(3): 821-826
[78] Abaychi J K, Mustafa Y Z. The Asiatic clam, Corbicula fluminea: An indicator of trace metal pollution in the Shatt al-Arab River, Iraq [J]. Environmental Pollution, 1988, 54(2): 109-122
[79] Bilos C, Colombo J C, Presa M J. Trace metals in suspended particles, sediments and Asiatic clams (Corbicula fluminea) of the Río de la Plata Estuary, Argentina [J]. Environmental Pollution, 1998, 99(1): 1-11
[80] Cataldo D, Colombo J C, Boltovskoy D, et al. Environmental toxicity assessment in the Paraná River Delta (Argentina): Simultaneous evaluation of selected pollutants and mortality rates of Corbicula fluminea (Bivalvia) early juveniles [J]. Environmental Pollution, 2001, 112: 379-389
[81] De Oliveira L F, Dos Reis Martinez C B. Chromium accumulation in the Asian clam, Corbicula fluminea (Müller, 1774), as an indicative of landfill leachate contamination [J]. Bulletin of Environmental Contamination and Toxicology, 2014, 93(2): 149-153
[82] Ismail F A, Aris A Z, Latif P A. Dynamic behaviour of Cd2+adsorption in equilibrium batch studies by CaCO3-rich Corbicula fluminea shell [J]. Environmental Science and Pollution Research, 2014, 21(1): 344-354
[83] Bonnail E, Sarmiento A M, DelValls T A, et al. Assessment of metal contamination, bioavailability, toxicity and bioaccumulation in extreme metallic environments (Iberian Pyrite Belt) using Corbicula fluminea [J]. Science of The Total Environment, 2016, 544: 1031-1044
[84] Oneto M L, Basack S B, Casabe N B, et al. Biological responses in the freshwater bivalve Corbicula fluminea and the earthworm Eisenia fetida exposed to fenitrothion [J]. Fresenius Environmental Bulletin, 2005, 14(8): 716-720
[85] Dos Santos K C, Martinez C B R. Genotoxic and biochemical effects of atrazine and Roundup?, alone and in combination, on the Asian clam Corbicula fluminea [J]. Ecotoxicology and Environmental Safety, 2014, 100: 7-14
[86] Champeau O, Narbonne J-F. Effects of tributyltin and 17β-estradiol on immune and lysosomal systems of the Asian clam Corbicula fluminea (M.) [J]. Environmental Toxicology and Pharmacology, 2006, 21(3): 323-330
[87] Aguirre-Martínez G V, DelValls A T, Laura Martín-Díaz M. Yes, caffeine, ibuprofen, carbamazepine, novobiocin and tamoxifen have an effect on Corbicula fluminea (Müller, 1774) [J]. Ecotoxicology and Environmental Safety, 2015, 120: 142-154
[88] Peterson M J, Southworth G R, Ham K D. Effect of sublethal chlorinated discharges on PCB accumulation in transplanted Asiatic clams (Corbicula fluminea) [J]. Water Air & Soil Pollution, 1994, 73(73): 169-178
[89] McLeod P B, Luoma S N, Luthy R G. Biodynamic modeling of PCB uptake by Macoma balthica and Corbicula fluminea from sediment amended with activated carbon [J]. Environmental Science & Technology, 2008, 42(2): 484-490
[90] Colombo J C, Bilos C, Campanaro M, et al. Bioaccumulation of polychlorinated biphenyls and chlorinated pesticides by the Asiatic clam Corbicula fluminea; its use as sentinel organism in the Rio de La Plata Estuary, Argentina. [J]. Environmental Science & Technology, 1995, 29(4): 914-927
[92] Lee C-C, Jhuang Y-F, Liu L-L, et al. The major source and impact of phenyltin contamination on freshwater aquaculture clam Corbicula fluminea and wild golden apple snail Pomacea canaliculata [J]. Environmental Chemistry, 2009, 6(4): 341-349
[93] Cooper N L, Bidwell J R. Cholinesterase inhibition and impacts on behavior of the Asian clam, Corbicula fluminea, after exposure to an organophosphate insecticide [J]. Aquatic Toxicology, 2006, 76(3-4): 258-267
[94] Brand?o F P, Pereira J L, Gon?alves F, et al. The impact of paracetamol on selected biomarkers of the mollusc species Corbicula fluminea [J]. Environmental Toxicology, 2014, 29(1): 74-83
[95] Ramsay G G, Tackett J H, Morris D W. Effect of low-level continuous chlorination on Corbicula fluminea [J]. Environmental Toxicology & Chemistry, 1988, 7(10): 855-856
[96] Rollins H B, Hutchinson P J, Prezant R S. Detection of xenophobic response in the periostracum of the bivalve, Corbicula fluminea, through laser-induced mass spectrometry [J]. Archives of Environmental Contamination & Toxicology, 1993, 24(2): 258-267
[97] Ham K D, Peterson M J. Effect of fluctuating low-level chlorine concentrations on valve-movement behavior of the Asiatic clam (Corbicula fluminea) [J]. Environmental Toxicology & Chemistry, 1994, 13(3): 493-498
[98] Bidwell J R, Farris J L, Cherry D S. Comparative response of the zebra mussel, Dreissena polymorpha, and the Asian clam, Corbicula fluminea, to DGH/QUAT, a nonoxidizing molluscicide [J]. Aquatic Toxicology, 1995, 33(3-4): 183-200
[99] Bouldin J L, Farris J L, Moore M T, et al. Assessment of diazinon toxicity in sediment and water of constructed wetlands using deployed Corbicula fluminea and laboratory testing [J]. Archives of Environmental Contamination and Toxicology, 2007, 53(2): 174-182
[100] La Guardia M J, Hale R C, Harvey E, et al. In situ accumulation of HBCD, PBDEs, and several alternative flame-retardants in the bivalve (Corbicula fluminea) and gastropod (Elimia proxima) [J]. Environmental Science & Technology, 2012, 46(11): 5798-5805
[101] Ismail N S, Müller C E, Morgan R R, et al. Uptake of contaminants of emerging concern by the bivalves Anodonta californiensis and Corbicula fluminea [J]. Environmental Science & Technology, 2014, 48(16): 9211-9219
[102] Rosa I C, Garrido R, Ré A, et al. Sensitivity of the invasive bivalve Corbicula fluminea to candidate control chemicals: The role of dissolved oxygen conditions [J]. Science of The Total Environment, 2015, 536: 825-830
[103] Basack S B, Oneto M L, Verrengia Guerrero N R, et al. Accumulation and elimination of pentachlorophenol in the freshwater bivalve Corbicula fluminea [J]. Bulletin of Environmental Contamination & Toxicology, 1997, 58(3): 497-503
[104] Basack S B, Oneto M L, Fuchs J S, et al. Esterases of Corbicula fluminea as biomarkers of exposure to organophosphorus pesticides [J]. Bulletin of Environmental Contamination & Toxicology, 1998, 61(5): 569-576
[105] Jacomini A E, Avelar W E P, Martinêz A S, et al. Bioaccumulation of atrazine in freshwater bivalves Anodontites trapesialis (Lamarck, 1819) and Corbicula fluminea (Müller, 1774) [J]. Archives of Environmental Contamination and Toxicology, 2006, 51(3): 387-391
[106] Beltran K S, Pocsidio G N. Acetylcholinesterase activity in Corbicula fluminea Mull, as a biomarker of organophosphate pesticide pollution in Pinacanauan River, Philippines [J]. Environmental Monitoring and Assessment, 2010, 165(1-4): 331-340
[107] Narbonne J F, Djomo J E, Ribera D, et al. Accumulation kinetics of polycyclic aromatic hydrocarbons adsorbed to sediment by the mollusk Corbicula fluminea [J]. Ecotoxicology & Environmental Safety, 1999, 42(1): 1-8
[108] Vidal M, Basseres A, Narbonne J. Potential biomarkers of trichloroethylene and toluene exposure in Corbicula fluminea [J]. Environmental Toxicology and Pharmacology, 2001, 9(3): 87-97
[109] 韓雨薇, 張彥峰, 陳萌, 等. 沉積物中重金屬Pb和Cd對河蜆的毒性效應(yīng)研究[J]. 生態(tài)毒理學(xué)報(bào), 2015, 10(4): 129-137
Han Y W, Zhang Y F, Chen M, et al. Toxicity of Pb/Cd-spiked freshwater sediments to Corbicula fluminea [J]. Asian Journal of Ecotoxicology, 2015, 10(4): 129-137 (in Chinese)
[110] 邱昕曄, 俞爽, 劉紅玲. 河蜆(Corbicula fluminea)在生態(tài)毒理學(xué)研究中的應(yīng)用與評價(jià)[J]. 生態(tài)毒理學(xué)報(bào), 2016, 11(1): 80-93
Qiu X Y, Yu S, Liu H L. A review of ecotoxicological studies of Corbicula fluminea [J]. Asian Journal of Ecotoxicology, 2016, 11(1): 80-93 (in Chinese)
[111] 金小偉, 查金苗, 許宜平, 等. 3種氯酚類化合物對河蜆的毒性和氧化應(yīng)激[J]. 生態(tài)毒理學(xué)報(bào), 2009, 4(6): 816-822
Jin X W, Zha J M, Xu Y P, et al. Toxicity and oxidative stress of three chlorophenols to freshwater clam Corbicula fluminea [J]. Asian Journal of Ecotoxicology, 2009, 4(6): 816-822 (in Chinese)
◆
AReviewofBiologicalToxicityResponseofAsianClamCorbiculaflumineatoContaminatedEnvironment
Guo Xiaoyu1, Li Rufeng2, Feng Chenghong1,2,*, Han Zhihua3
1. State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China2. Key Laboratory for Water and Sediment Science of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China3. Nanjing Institute of Environmental Science, Ministry of Environmental Protection, Nanjing 210042, China
10.7524/AJE.1673-5897.20161012002
2016-10-12錄用日期2016-12-16
1673-5897(2017)3-086-24
X171.5
A
馮成洪(1978-),男,博士,副教授,研究方向?yàn)槲廴疚镞w移轉(zhuǎn)化及環(huán)境效應(yīng)。
環(huán)境保護(hù)部公益性行業(yè)科研專項(xiàng)(No.201409040);北京市高等學(xué)校青年英才計(jì)劃項(xiàng)目(No.YETP0235);環(huán)境模擬與污染控制國家重點(diǎn)聯(lián)合實(shí)驗(yàn)室聯(lián)合基金(16L01ESPC)
郭曉宇(1988-),女,博士研究生,研究方向?yàn)槲廴疚镞w移轉(zhuǎn)化及環(huán)境效應(yīng),E-mail: guoxiaoyu@mail.bnu.edu.cn
*通訊作者(Corresponding author), E-mail: fengchenghong@bnu.edu.cn
郭曉宇, 李茹楓, 馮成洪, 等. 污染水體中河蜆的生物毒性響應(yīng)研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào),2017, 12(3): 86-109
Guo X Y, Li R F, Feng C H, et al. A review of biological toxicity response of Asian clam Corbicula fluminea to contaminated environment [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 86-109 (in Chinese)