馮曦,朱敏,何艷,*
1. 浙江大學(xué)土水資源與環(huán)境研究所,杭州3100582. 浙江省農(nóng)業(yè)資源與環(huán)境重點(diǎn)實(shí)驗(yàn)室,杭州310058
土壤還原過(guò)程對(duì)氯代有機(jī)污染物還原脫氯的影響與機(jī)制
馮曦1,2,朱敏1,2,何艷1,2,*
1. 浙江大學(xué)土水資源與環(huán)境研究所,杭州3100582. 浙江省農(nóng)業(yè)資源與環(huán)境重點(diǎn)實(shí)驗(yàn)室,杭州310058
自然環(huán)境中,大多數(shù)氯代有機(jī)污染物厭氧還原脫氯反應(yīng)是與土壤環(huán)境中一些生源要素的生物化學(xué)還原過(guò)程相伴生。有機(jī)污染物的種類、生物有效性以及毒性能夠顯著影響這些生源要素的轉(zhuǎn)化,反過(guò)來(lái),土壤中活躍的氧化還原反應(yīng)也可以顯著影響有機(jī)污染物的動(dòng)力學(xué)轉(zhuǎn)化過(guò)程。本文從氧化還原順序上綜述了反硝化過(guò)程、鐵還原過(guò)程、硫酸鹽還原過(guò)程和產(chǎn)甲烷過(guò)程對(duì)氯代有機(jī)污染物厭氧還原脫氯過(guò)程的影響與作用機(jī)制,旨在為氯代有機(jī)污染物在厭氧環(huán)境中還原脫氯的過(guò)程與機(jī)理的進(jìn)一步研究、以及還原脫氯與微生物介導(dǎo)的生源要素氧化還原過(guò)程的耦合作用機(jī)制的揭示提供參考。
還原脫氯;反硝化;鐵還原;硫還原;產(chǎn)甲烷
Received14 January 2017accepted30 April 2017
Abstract: Under anaerobic conditions, reductive dechlorination of chlorinated organic pollutants is thought to be coupled to biogeochemical processes of some biogenic elements in soil. The variety, bio-availability and toxicity of organic pollutants can significantly affect the transformation of the biogeochemical processes. Correspondingly, soil natural active redox processes can also significantly affect the dynamics of organic pollutant transformation. Based on the classical redox reactions sequence, the effects and mechanisms of denitrification process, dissimilatory iron reduction process, sulfate reduction process and methanogenic process on reductive dechlorination of chlorinated organic pollutants were reviewed and discussed in this paper. We also provided reference for the further study to disclose more in-depth mechanism regarding reductive dechlorination and their interaction with the co-occurring natural redox processes in soil under anaerobic environment.Keywords: reductive dechlorination; denitrification; dissimilatory iron reduction; sulfate reduction; methanogenesis
氯代有機(jī)物(chlorinated organic compounds,COCs)指的是氯原子取代了脂肪烴、芳香烴及其衍生物中的一個(gè)或幾個(gè)氫原子后的產(chǎn)物,其種類繁多,主要包括氯代烴(chlorinated hydrocarbon)、有機(jī)氯農(nóng)藥(organochlorine pesticides,OCPs)、氯代苯(chlorinated biphenyls,CBs)、多氯聯(lián)苯(polychlorinated biphenyls, PCBs)、氯代苯酚(chlorinated phenols,CPs)等,被廣泛應(yīng)用于化工、醫(yī)藥、農(nóng)藥、制革等行業(yè)。大多數(shù)COCs具有較低的水溶性和較高的辛醇-水分配系數(shù),一旦進(jìn)入環(huán)境,很難在短時(shí)間內(nèi)自然降解,并能夠進(jìn)行長(zhǎng)距離遷移和沉積,容易在生物體內(nèi)聚集,可通過(guò)食物鏈積累,造成嚴(yán)重的環(huán)境污染和長(zhǎng)期的生態(tài)破壞后果。
COCs與一般的芳香族化合物相比,其可生化性大大降低,這是因?yàn)槁仍右鹆嘶衔锓肿咏Y(jié)構(gòu)特性的改變,所以脫氯是COCs生物降解的關(guān)鍵步驟。根據(jù)脫氯過(guò)程中的電子得失,其機(jī)理分為氧化脫氯和還原脫氯[1]。但在好氧條件下高氯代有機(jī)污染物很難被微生物利用[2],氯離子會(huì)阻礙雙加氧酶對(duì)苯環(huán)的攻擊,使得大部分好氧微生物降解高氯代污染物的能力和效率要低于低氯代有機(jī)污染物[3]。在缺氧條件下,一旦氯原子被脫去,其產(chǎn)物就對(duì)好氧的2,3-和3,4-雙氧化酶等變得更為敏感[4],使氯代有機(jī)污染物形成容易進(jìn)一步被好氧礦化的物質(zhì)。例如氯代烯烴可以通過(guò)一系列還原脫氯作用,形成烯烴,進(jìn)而轉(zhuǎn)化為甲烷[5];而對(duì)于氯代芳烴,氯原子強(qiáng)烈的吸電子性使芳烴上電子云密度降低,在缺氧條件下,電子云密度較低的苯環(huán)在酶作用下很容易受到還原劑的親核攻擊,顯示出較好的缺氧生物降解性[6]。因此,氯代有機(jī)污染物的缺氧脫氯越來(lái)越引起了研究者們的興趣。
自然環(huán)境中,大多數(shù)氯代有機(jī)污染物厭氧還原脫氯反應(yīng)在土壤環(huán)境中是與反硝化反應(yīng)、鐵還原反應(yīng)、硫酸鹽還原反應(yīng)、產(chǎn)甲烷反應(yīng)等重要的生物化學(xué)過(guò)程相伴生。有機(jī)污染物的種類、生物有效性以及毒性能夠顯著影響這些生源要素的轉(zhuǎn)化,反過(guò)來(lái),土壤中活躍的氧化還原對(duì)也可以顯著影響氯代有機(jī)污染物的動(dòng)力學(xué)轉(zhuǎn)化過(guò)程[10]。隨著土壤環(huán)境中的生物地球化學(xué)循環(huán)過(guò)程等熱點(diǎn)問(wèn)題的提出,土壤生源要素氧化還原循環(huán)參與條件下的有機(jī)污染物消減的調(diào)控過(guò)程及作用機(jī)制引起了國(guó)內(nèi)外廣大學(xué)者的關(guān)注。本文介紹了反硝化過(guò)程、鐵還原過(guò)程、硫酸鹽還原過(guò)程和產(chǎn)甲烷過(guò)程對(duì)氯代有機(jī)污染物厭氧還原脫氯過(guò)程的影響與作用機(jī)制,旨在為氯代有機(jī)污染物在厭氧環(huán)境中還原脫氯的過(guò)程與機(jī)理的進(jìn)一步研究、以及還原脫氯與微生物介導(dǎo)的生源要素氧化還原過(guò)程的耦合作用機(jī)制的揭示提供參考。
鐵,作為自然環(huán)境中含量最為豐富的變價(jià)金屬元素,其對(duì)地球生物化學(xué)循環(huán)過(guò)程有著深遠(yuǎn)的意義。自然界中,特別是在厭氧的土壤或沉積物環(huán)境下,鐵物種通常以難溶性Fe(III)氧化物的形式存在,而這些含變價(jià)元素的鐵氧化物在這些厭氧環(huán)境中也是天然存在的氧化劑[30]。大量的研究結(jié)果表明,土壤中Fe(III)的還原主要是由特定的異化鐵還原微生物驅(qū)動(dòng),在異化型鐵還原菌的異化作用中,F(xiàn)e(III)被用作電子受體,還原產(chǎn)生的Fe(II)可以偶聯(lián)多種有機(jī)物的氧化還原。所以說(shuō)Fe(III)還原是某些土壤和沉積物中有機(jī)質(zhì)分解中的一個(gè)重要過(guò)程,它們?cè)诼却袡C(jī)污染物的還原轉(zhuǎn)化過(guò)程中扮演著重要的角色[31]。
當(dāng)電子供體限制的條件下,土壤中可作為最終電子受體同時(shí)存在的Fe(III)和COCs為獲取有限的電子而表現(xiàn)為競(jìng)爭(zhēng)關(guān)系。Paul等[32-33]發(fā)現(xiàn)三價(jià)鐵礦物的存在抑制了三氯乙烯(TCE)的厭氧還原脫氯,當(dāng)然,這也與鐵的存在形式、數(shù)量以及環(huán)境因子如pH等有關(guān)。另外,也有研究發(fā)現(xiàn),F(xiàn)e(III)還原產(chǎn)生的吸附態(tài)Fe(II)可以強(qiáng)化化學(xué)的還原脫氯反應(yīng)過(guò)程。吸附于鐵氧化物表面的Fe(II)由于中心周圍的電子云密度增加,而且吸附態(tài)Fe(II)的氧化還原電位明顯低于溶解態(tài)Fe(II),提高了脫氯轉(zhuǎn)化的自發(fā)性[34-36]。同時(shí),還原產(chǎn)生的二價(jià)鐵也可以作為還原劑將COCs還原,反應(yīng)式為:Fe2++ R-Cl → Fe3++ R+Cl-,即實(shí)現(xiàn)了鐵氧化物還原溶解反應(yīng)與化學(xué)脫氯反應(yīng)的交互[37]。
表1 土壤中主要還原反應(yīng)的熱力學(xué)順序(pH 7.0,25 ℃)aTable 1 Thermodynamic sequence of main reduction processes in soil (pH 7.0, 25 ℃)a
在微生物的參與下,鐵還原過(guò)程與氯代有機(jī)污染物還原脫氯過(guò)程的關(guān)系顯得更為復(fù)雜。厭氧土壤環(huán)境中,參與還原脫氯過(guò)程的微生物主要還是以氯代有機(jī)污染物為電子受體進(jìn)行能量代謝的脫氯菌,而在鐵還原條件下,鐵還原菌作為主要優(yōu)勢(shì)微生物也會(huì)相對(duì)抑制脫氯菌活性以及還原脫氯過(guò)程,主要也是通過(guò)對(duì)電子供體的競(jìng)爭(zhēng)而產(chǎn)生抑制作用[32, 38]。一些鐵還原菌可以直接以有機(jī)氯作為電子受體氧化電子供體進(jìn)行脫氯呼吸,為有機(jī)氯化合物污染的原位修復(fù)工作提供了一條新途徑。例如,Anaeromyxobacter dehalogenans strain 2CP-C除了可以利用Fe(III)作為電子受體外,還可以通過(guò)鄰位脫氯過(guò)程獲得能量生長(zhǎng)[39]。Desulfuromonas chlorethenica也可以同時(shí)利用Fe(III)還原和四氯乙烯以及三氯乙烯作為電子受體進(jìn)行生長(zhǎng)[40]。作為富鐵土壤環(huán)境中的典型菌屬,梭菌屬微生物Clostridium sp.也常在氯代化合物污染區(qū)域活躍[36, 41-42]。同時(shí)具有脫氯呼吸作用的異化鐵還原菌還包括Anaeromyxobacter dehalogenes、Desulfitobacterium frappieri、Desulfitobacterium hafniense、Desulfitobacterium metallireducens、Desulfuromonas michigansis、Trichlorobacter thiogenes等[43-46]。
由于異化鐵還原反應(yīng)可以利用的電子供受體種類多種多樣,利用Fe(II)與Fe(III)之間的這種異化還原轉(zhuǎn)化過(guò)程來(lái)進(jìn)行多種有機(jī)污染環(huán)境的修復(fù)也是一直以來(lái)的研究熱點(diǎn)。有研究表明,典型的異化鐵還原菌——希瓦氏菌(Shewanella)能夠通過(guò)還原Fe(III)過(guò)程來(lái)提高三氯、四氯、五氯等高氯代有機(jī)化合物的脫氯轉(zhuǎn)化效果[47-48]。Fe(Ⅲ)微生物還原過(guò)程成為聯(lián)系2個(gè)過(guò)程的“紐帶”:一方面,它可以以有機(jī)氯化合物作為電子受體直接還原脫氯;另一方面,它可為化學(xué)還原脫氯過(guò)程提供生物源Fe(Ⅱ)。我們前期通過(guò)馴化不同的功能菌群發(fā)現(xiàn),鐵還原菌群可以通過(guò)耦合鐵氧化物的還原顯著提高五氯酚(PCP)的還原轉(zhuǎn)化,而且對(duì)PCP還原轉(zhuǎn)化能力的不同主要由菌群群落結(jié)構(gòu)不同導(dǎo)致,其中,我們發(fā)現(xiàn)另一類典型的異化鐵還原菌——地桿菌(Geobater)在該還原脫氯的過(guò)程中起重要作用[49]。此外,在鐵氧化物和腐殖質(zhì)充足的條件下,發(fā)酵型鐵還原菌C. beijerinckiistrain Z可以將大量的Fe(III)還原為Fe(II),生成的吸附態(tài)Fe(II)可以顯著促進(jìn)PCP的脫氯過(guò)程。Wu等[50](2010)研究發(fā)現(xiàn)鐵還原菌Comamonas koreensis CY01可以利用水鐵礦、針鐵礦、纖鐵礦或者赤鐵礦作為最終電子受體,同時(shí)促進(jìn)了有機(jī)氯污染物2,4-二氯苯氧基乙酸(2,4-D)的還原。由此,鐵氧化物界面發(fā)生了鐵還原菌介導(dǎo)的異化還原溶解,并使得有機(jī)氯發(fā)生了鐵物種介導(dǎo)的化學(xué)脫氯反應(yīng),這就形成了生物脫氯與化學(xué)脫氯的耦合反應(yīng)過(guò)程(圖1),進(jìn)一步揭示了氯代有機(jī)污染物的生物與非生物脫氯的交互反應(yīng)以及缺氧的污染區(qū)域中高氯代污染物的自然消解過(guò)程。
圖1 有機(jī)氯脫氯轉(zhuǎn)化的鐵還原菌-鐵氧化物界面交互反應(yīng)機(jī)制示意圖[51]Fig. 1 The mechanism describing the dechlorination of organochlorine in the dissmilatory iron-reducing system of dissimilatory iron reduction bacteria (DIRB) and iron oxide[51]
此外,一些對(duì)鐵還原過(guò)程產(chǎn)生影響的中間物質(zhì)也會(huì)間接影響到有機(jī)氯還原脫氯的過(guò)程,在這一多過(guò)程耦合的過(guò)程中,提高鐵還原速率是強(qiáng)化還原脫氯的關(guān)鍵。溶鐵螯合劑的使用一方面可增加反應(yīng)體系中生物可利用Fe(Ⅲ)的濃度,另一方面還可以提高Fe(Ⅲ)與鐵還原菌直接接觸的機(jī)率,進(jìn)而提高鐵還原的速率[52-53]。電子穿梭體如腐殖質(zhì)、類腐殖質(zhì)物質(zhì)如anthraquinone-2,6-disulfonate (AQDS)等[54-56],以及現(xiàn)在新興的污染修復(fù)材料如可導(dǎo)電的石墨烯、生物炭等[57-58],提高了電子的運(yùn)轉(zhuǎn)效率從而強(qiáng)化了COCs還原脫氯過(guò)程。
目前,硫酸鹽還原作用能否促進(jìn)氯代有機(jī)物的還原消減仍然是一個(gè)有爭(zhēng)議的話題,硫酸根作為電子受體對(duì)還原脫氯影響的兩面性主要取決于硫酸鹽形式和濃度、微生物群落結(jié)構(gòu)的差異以及非生物還原脫氯對(duì)電子供體的競(jìng)爭(zhēng)作用等眾多因素[64]。Chang等[65](2008)和Yuan等[66](2011)研究發(fā)現(xiàn)添加硫酸鹽可使氯代烴和多環(huán)芳烴的降解率分別提高25.5%和50%~77.8%。Yoshida等[67](2007)對(duì)稻田土壤中PCP的消減研究發(fā)現(xiàn),外源添加的硫酸鹽濃度在20 mmol·L-1的時(shí)候會(huì)抑制PCP還原,而10 mmol·L-1的時(shí)候卻不產(chǎn)生抑制作用。而Ehlers等[68](2006)在分批補(bǔ)給反應(yīng)器中研究硫還原條件下硫酸鹽濃度對(duì)2,4,6-三氯酚(2,4,6-TCP)還原消減的影響時(shí)發(fā)現(xiàn),當(dāng)硫酸根濃度在110 mg·L-1時(shí)增強(qiáng)了2,4,6-TCP的還原轉(zhuǎn)化,而在900mg·L-1時(shí)卻抑制了其還原脫氯。我們前期研究也發(fā)現(xiàn),外源添加硫酸鹽對(duì)PCP還原脫氯過(guò)程的影響還與土壤類型有關(guān),在黃斑田與黑土中表現(xiàn)為抑制作用,而對(duì)紅壤和潮土中的PCP脫氯則起到了一定的促進(jìn)作用,且前者的抑制作用隨硫酸根濃度的增加而增強(qiáng)[17]。我們認(rèn)為這種抑制作用可能由兩方面造成,一是外源電子受體與PCP同作為電子受體的形成競(jìng)爭(zhēng),二是硫酸根的氧化性會(huì)提高環(huán)境氧化還原電位初始值并減緩了其下降速度。因此,在缺氧條件下,土壤本底條件、電子供體的種類和數(shù)量以及硫酸根濃度等均會(huì)影響氯代有機(jī)污染物的還原脫氯過(guò)程。
圖2 硫酸鹽還原菌的代謝過(guò)程[63]Fig. 2 The metabolic process of sulfate reducing bacteria[63]
Drzyzga等[69](2001)發(fā)現(xiàn),在以乳酸鹽為碳源且無(wú)硫酸鹽作為電子受體的恒化器培養(yǎng)條件下,硫還原菌Desulfovibrio sp.與脫氯菌Desulfitobacterium frappieri TCE1仍可以共存,作者認(rèn)為二者可以通過(guò)氫氣和電子傳遞形成互營(yíng)關(guān)系并降解四氯乙烯。也有研究發(fā)現(xiàn),在以丁酸鹽(H2釋放基質(zhì))作為碳源的厭氧環(huán)境中,SRB會(huì)通過(guò)對(duì)H2的競(jìng)爭(zhēng)來(lái)抑制四氯乙烯的還原脫氯,而且二者競(jìng)爭(zhēng)的激烈程度取決于氫氣的釋放和消耗速率[70]。但也有研究表明,硫酸鹽還原反應(yīng)對(duì)H2的競(jìng)爭(zhēng)并不是抑制脫氯的原因[71]。此外,有研究發(fā)現(xiàn)SRBs代謝還原產(chǎn)生的產(chǎn)物H2S反過(guò)來(lái)也會(huì)對(duì)微生物產(chǎn)生不利的影響,當(dāng)H2S的濃度達(dá)到547 mg·L-1時(shí)會(huì)完全抑制SRBs的生長(zhǎng)[72]。而硫酸鹽還原過(guò)程雖然會(huì)與還原脫氯過(guò)程爭(zhēng)奪電子,但當(dāng)硫酸鹽被SRB還原成H2S后,其也可能作為強(qiáng)還原性物質(zhì)強(qiáng)化氯代化合物還原脫氯過(guò)程[73]。因此,碳源以及一些代謝中間產(chǎn)物如H2和H2S也可能成為影響硫酸鹽還原過(guò)程和還原脫氯過(guò)程之間關(guān)系的因素之一。
另外,一些硫還原菌本身也可能具有還原脫氯功能,它們?cè)诼却袡C(jī)化合物消減過(guò)程中起著不可忽視的作用,這些微生物能夠通過(guò)呼吸代謝PCBs、OCPs等氯代有機(jī)污染物,并從中獲取自身生長(zhǎng)所需能量[74]。已有大量研究通過(guò)篩選分離SRB或其富集物進(jìn)行了還原脫氯研究,證實(shí)這些具有硫還原功能的微生物也能夠直接參與脫氯[75-76]。微生物的生物脫氯代謝機(jī)制可以分為共代謝和脫氯呼吸,前者表現(xiàn)為微生物電子傳遞過(guò)程不以氯代有機(jī)物作為最終電子受體進(jìn)行脫氯反應(yīng),而后者則需要以之作為最終電子受體[77],而具有脫氯功能的SRB究竟是以共代謝還是脫氯呼吸機(jī)制對(duì)進(jìn)行脫氯這一關(guān)鍵問(wèn)題目前尚不明確。
產(chǎn)甲烷(methanogensis)是一類可以將無(wú)機(jī)物或有機(jī)物在厭氧發(fā)酵條件下轉(zhuǎn)化為甲烷和二氧化碳的過(guò)程。甲烷產(chǎn)生的過(guò)程主要可分為4步:(1)水解過(guò)程:在好氧、厭氧或兼性微生物的作用下,土壤或其他環(huán)境中沉積的高分子有機(jī)物水解為單分子(如糖苷、脂肪酸和氨基酸等);(2)酸化過(guò)程:在兼性或嚴(yán)格厭氧微生物的作用下,單分子化合物進(jìn)一步酸解為酸性的小分子化合物(如甲酸、乙酸、丙酸等);(3)乙酸生成過(guò)程:厭氧細(xì)菌或同型乙酸細(xì)菌將酸性小分子化合物繼續(xù)轉(zhuǎn)化為乙酸和其他小分子H2和CO2;(4)甲烷形成過(guò)程:產(chǎn)甲烷菌利用少數(shù)幾種C1、C2化合物(如CO2、HCOOH、CH3OH等)與H2還原生成甲烷[78]。產(chǎn)甲烷的發(fā)生要求體系中的氧化還原電位處于一個(gè)比較低的水平,而很多研究表明高氯代化合物還原脫氯過(guò)程的還原條件非常的嚴(yán)格,一般也只會(huì)發(fā)生在強(qiáng)還原條件下,因此,產(chǎn)甲烷環(huán)境也比較利于氯代有機(jī)物實(shí)現(xiàn)還原脫氯和進(jìn)一步降解,產(chǎn)甲烷條件下氯代有機(jī)污染物的厭氧生物降解過(guò)程和機(jī)制也引起了諸多學(xué)者的關(guān)注。
產(chǎn)甲烷菌是一種嚴(yán)格厭氧菌,在生物發(fā)酵池、稻田、濕地,甚至一些溫泉、海底熱水噴口等與氧氣隔絕的極端環(huán)境中,幾乎都有產(chǎn)甲烷菌的存在。由于產(chǎn)甲烷菌處于有機(jī)物厭氧降解末端,但如果沒(méi)有產(chǎn)甲烷菌分解有機(jī)酸產(chǎn)生甲烷的平衡作用,必然導(dǎo)致有機(jī)酸的積累使得發(fā)酵環(huán)境酸化,其可能最主要的作用就是產(chǎn)物抑制作用的消除,使還原脫氯反應(yīng)能夠連續(xù)進(jìn)行。再者,產(chǎn)甲烷菌所能利用的基質(zhì)有限,需要不產(chǎn)甲烷菌先將復(fù)雜有機(jī)物分解為簡(jiǎn)單化合物,因此,前面幾步間接參與產(chǎn)甲烷過(guò)程的其他微生物也可能影響還原脫氯過(guò)程[79-80]。
而在以發(fā)酵型碳源乳酸作為電子供體時(shí),Wen等[84]發(fā)現(xiàn),產(chǎn)甲烷過(guò)程產(chǎn)生的中間產(chǎn)物H2以及產(chǎn)甲烷菌產(chǎn)生的輔酶等促進(jìn)了脫氯菌Dehalococcoides的生長(zhǎng),從而促進(jìn)了TCE的生物降解。Chen等[85]也是發(fā)現(xiàn),SRB和產(chǎn)甲烷菌是濕地中氯仿生物降解過(guò)程中的關(guān)鍵微生物,通過(guò)共代謝的作用促進(jìn)了氯仿的生物脫氯過(guò)程。當(dāng)然,也有研究發(fā)現(xiàn)產(chǎn)甲烷過(guò)程對(duì)還原脫氯過(guò)程并無(wú)影響[86-88],因此,產(chǎn)甲烷過(guò)程對(duì)氯代有機(jī)污染物厭氧還原脫氯過(guò)程的作用與前面提到的氮/鐵/硫還原過(guò)程類似,是多種因素影響下的綜合表現(xiàn)。
綜上所述,厭氧條件下,在自然界中,有多種還原環(huán)境存在,如典型的反硝化環(huán)境、鐵還原環(huán)境、硫酸鹽還原環(huán)境以及產(chǎn)甲烷環(huán)境,很多研究發(fā)現(xiàn)一些難降解的三氯、四氯、五氯等高氯代有機(jī)化合物均能在這些還原環(huán)境中發(fā)生。土壤中天然存在的不同形態(tài)的氮、鐵、硫等活躍的氧化還原能夠顯著影響這些難降解有機(jī)污染物的還原脫氯過(guò)程,反過(guò)來(lái),有機(jī)污染物的種類、生物有效性以及毒性能夠顯著影響這些生源要素的轉(zhuǎn)化。二者的關(guān)系可能表現(xiàn)為抑制、促進(jìn)或無(wú)關(guān),土壤本底條件、電子供/受/穿梭體的種類和數(shù)量、以及參與代謝的微生物及中間產(chǎn)物等均會(huì)影響氯代有機(jī)污染物的還原脫氯過(guò)程。
此外,在厭氧環(huán)境中,氯代有機(jī)污染物的厭氧還原轉(zhuǎn)化與碳、氮、鐵、硫等生源要素生物化學(xué)循環(huán)過(guò)程本質(zhì)上均是微生物呼吸代謝介導(dǎo)的電子傳遞過(guò)程,這種過(guò)程受到電子供、受體之間協(xié)調(diào)性和競(jìng)爭(zhēng)性的影響。但目前對(duì)于這種過(guò)程如何協(xié)調(diào)厭氧環(huán)境中微生物與土壤環(huán)境之間的交互效應(yīng)、誘導(dǎo)微生物種群和關(guān)鍵功能菌的定向變化、并通過(guò)改變電子傳遞路徑最終影響氯代有機(jī)污染物在厭氧環(huán)境中的還原轉(zhuǎn)化過(guò)程和機(jī)制還缺乏系統(tǒng)認(rèn)識(shí)。特別是如何基于改變電子供/受/穿梭體的數(shù)量(濃度)、種類等途徑調(diào)控電子傳遞流向,協(xié)調(diào)污染物快速削減與鐵硫等還原性毒害物質(zhì)產(chǎn)生、以及與溫室氣體排放的關(guān)系,實(shí)現(xiàn)多贏的修復(fù)目標(biāo),在未來(lái)的土壤污染控制與修復(fù)研究中顯得尤為重要。
[1] 王菊思, 趙麗輝. 合成有機(jī)化合物的生物降解性研究[J]. 環(huán)境化學(xué), 1993, 12(3): 161-172
Wang J S, Zhao L H. A survey on the microbial degradation of synthetic organic compounds [J]. Environmental Chemistry, 1993, 12(3): 161-172 (in Chinese)
[2] Atuanya E I, Purohit H J, Chakrabarti T. Anaerobic and aerobic biodegradation of chlorophenols using UASB and ASG bioreactors [J]. World Journal of Microbiology & Biotechnology, 2000, 16(1): 95-98
[3] Bergauer P, Fonteyne P, Nolard N, et al. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts [J]. Chemosphere, 2005, 59(7): 909-918
[4] 孟紫強(qiáng). 環(huán)境毒理學(xué)[M]. 北京: 中國(guó)環(huán)境科學(xué)出版社, 2000: 202-207
[5] 傅旭慶, 呂德偉, 汪叔雄. 生物處理含氯代脂肪烴廢水的研究進(jìn)展[J]. 環(huán)境科學(xué),1994, 15(3): 84-87
Fu X Q, Lu D W, Wang S X. Progress in research on the biological treatment of wastewater containing chlorinated aliphatics [J]. Chinese Journal of Environmental Science, 1994, 15(3): 84-87 (in Chinese)
[6] 瞿福平, 張曉健, 呂昕, 等. 氯代芳香化合物的生物降解性研究進(jìn)展[J]. 環(huán)境科學(xué), 1997, 18(2): 74-78
Qu F P, Zhang X J, Lv X, et al. Advances on research of biodegradability for the chlorinated aromatic compounds [J]. Chinese Journal of Environmental Science, 1997, 18(2): 74-78 (in Chinese).
[7] Nielsen L P, Risgaard-Petersen N, Fossing H, et al. Electric currents couple spatially separated biogeochemical processes in marine sediment [J]. Nature, 2010, 463(7284): 1071-1074
[8] Adriaens P, Chang P R, Barkovskii A L. Dechlorination of PCDD/F by organic and inorganic electron transfer molecules in reduced environments [J]. Chemosphere, 1996, 32(2): 433-441
[9] Paul G F, Tom F, Edward F D. The microbial engines that drive earth's biogeochemical cycles [J]. Science, 2008, 320(5879): 1034-1039
[10] Achtnich C, Bak F, Conrad R. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil [J]. Biology and Fertility of Soils, 1995, 19(1): 65-72
[11] Klueglein N, Kappler A. Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe (II) oxidizer Acidovorax sp. BoFeN1-questioning the existence of enzymatic Fe (II) oxidation [J]. Geobiology, 2013, 11(2): 180-190
[12] Rosswall T. The internal nitrogen cycle between microorganisms, vegetation and soil [J]. Ecological Bulletins, 1976, 22: 157-167
[13] 郭建華, 彭永臻. 異養(yǎng)硝化, 厭氧氨氧化及古菌氨氧化與新的氮循環(huán)[J]. 環(huán)境科學(xué)學(xué)報(bào), 2008, 28(8): 1489-1498
Guo J H, Peng Y Z. Heterotrophic nitrification,anaerobic ammonia oxidation and archaeal ammonia oxidation in a new nitrogen cycle [J]. Acta Science Circumstantiae, 2008, 28(8): 1489-1498 (in Chinese)
[14] Philippot L. Denitrifying genes in bacterial and Archaeal genomes [J]. Biochimca Biophysica Acta, 2002, 1577(3): 355-376
[15] Moura I, Moura J J. Structural aspects of denitrifying enzymes [J]. Current Opinion in Chemical Biology, 2001, 5(2): 168-175
[16] Postma D, Jakobsen R. Redox zonation: Equilibrium constraints on the Fe (III)/SO4-reduction interface [J]. Geochimica et Cosmochimica Acta, 1996, 60(17): 3169-3175
[17] Lin J, He Y, Xu J, et al. Verticalprofiles of pentachlorophenol and the microbial community in a paddy soil: Influence of electron donors and acceptors [J]. Journal of Agricultural and Food Chemistry, 2014, 62(41): 9974-9981
[18] Klüber H D, Conrad R. Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil [J]. FEMS Microbiology Ecology, 1998, 25(3): 301-318
[19] Lee T H, Yoshimi M, Ike M, et al. Characterization of an anaerobic soil enrichment capable of dechlorinating high concentrations of tetrachloroethylene [J]. Water Science and Technology, 1997, 36(6-7): 117-124
[20] Holliger C. The anaerobic microbiology and biotreatment of chlorinated ethenes [J]. Current Opinion in Biotechnology, 1995, 6(3): 347-351
[21] Yu H, Wang Y, Chen P, et al. Effect of nitrate addition on reductive transformation of pentachlorophenol in paddy soil in relation to iron(III) reduction [J]. Journal of Environmental Management, 2014, 132: 42-48
[22] Borch T, Ambus P, Laturnus F, et al. Biodegradation of chlorinated solvents in a water unsaturated topsoil [J]. Chemosphere, 2003, 51(2): 143-152
[23] Eisenbeis M, Bauer-Kreisel P, Scholz-Muramatsu H. Studies on the dechlorination of tetrachloroethene to cis-1,2-dichloroethene by Dehalospirillum multivorans in biofilms [J]. Water Science and Technology, 1997, 36(1): 191-198
[24] Gerritse J, Drzyzga O, Kloetstra G, et al. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1 [J]. Applied and Environmental Microbiology, 1999, 65(12): 5212-5221
[25] Liu T, Li X, Zhang W, et al. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17 [J]. Journal of Colloid and Interface Science, 2014, 423: 25-32
[26] Kumaraswamy R, Ebert S, Gray M R, et al. Molecular- and cultivation-based analyses of microbial communities in oil field water and in microcosms amended with nitrate to control H2S production [J]. Applied Microbiology and Biotechnology, 2011, 89(6): 2027-2038
[27] Korte H L, Saini A, Trotter V V, et al. Independence of nitrate and nitrite inhibition of Desulfovibrio vulgaris Hildenborough and use of nitrite as a substrate for growth [J]. Environmental Science & Technology, 2015, 49(2): 924-931
[28] Zhang W, Li X, Liu T, et al. Competitive reduction of nitrate and iron oxides by Shewanella putrefaciens 200 under anoxic conditions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 445: 97-104
[29] Stumm W, Morgan J J. Aquatic Chemistry [M]. New York: Wiley, 1981: 780
[30] Lovley D R. Dissimilatory Fe (III) and Mn(IV) reduction [J]. Microbiological Reviews, 1991, 55(2): 259-287
[31] 譚盈盈, 鄭平, 姜辛. 微生物作用下鐵(Ⅲ)對(duì)有機(jī)污染物的氧化[J]. 浙江大學(xué)學(xué)報(bào): 農(nóng)業(yè)與生命科學(xué)版, 2002, 28(3): 350-354
Tan Y Y, Zheng P, Jiang X. Organic contaminants bio-degradation with Fe(III) [J]. Journal of Zhejiang University: Agriculture & Life Sciences, 2002, 28(3): 350-354 (in Chinese)
[32] Paul L, Herrmann S, Bender Koch C, et al. Inhibition of microbial trichloroethylene dechorination by Fe (III) reduction depends on Fe mineralogy: A batch study using the bioaugmentation culture KB-1 [J]. Water Research, 2013, 47(7): 2543-2554
[33] Paul L, Smolders E. Inhibition of iron(III) minerals and acidification on the reductive dechlorination of trichloroethylene [J]. Chemosphere, 2014, 111: 471-477
[34] Stucki J W. A review of the effects of iron redox cycles on smectite properties [J]. Comptes Rendus Geoscience, 2011, 343(2-3): 199-209
[35] Neumann A, Petit S, Hofstetter T B. Evaluation of redox-active iron sites in smectites using middle and near infrared spectroscopy [J]. Geochimica et Cosmochimica Acta, 2011, 75(9): 2336-2355
[36] Li F, Wang X, Li Y, et al. Enhancement of the reductive transformation of pentachlorophenol by polycarboxylic acids at the iron oxide-water interface [J]. Journal of Colloid and Interface Science, 2008, 321(2): 332-341
[37] Chen M, Tao L, Li F, et al. Reductions of Fe(III) and pentachlorophenol linked with geochemical properties of soils from Pearl River Delta [J]. Geoderma, 2014, 217-218: 201-211
[38] Kouznetsova I, Mao X, Robinson C, et al. Biological reduction of chlorinated solvents: Batch-scale geochemical modeling [J]. Advances in Water Resources, 2010, 33(9): 969-986
[39] He Q, Sanford R A. Characterization of Fe(III) reduction by chlororespiring Anaeromxyobacter dehalogenans [J]. Applied and Environmental Microbiology, 2003, 69(5): 2712-2718
[40] Krumholz L R, Sharp R, Fishbain S S. A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation [J]. Applied and Environmental Microbiology, 1996, 62(11): 4108-4113
[41] Li X, Li Y, Li F, et al. Interactively interfacial reaction of iron-reducing bacterium and goethite for reductive dechlorination of chlorinated organic compounds [J]. Science Bulletin, 2009, 54(16): 2800-2804
[42] Chen M, Cao F, Li F, et al. Anaerobic transformation of DDT related to iron(III) reduction and microbial community structure in paddy soils [J]. Journal of Agricultural and Food Chemistry, 2013, 61(9): 2224-2233
[43] Niggemyer A, Spring S, Stackebrandt E, et al. Isolation and characterization of a novel As (V)-reducing bacterium:Implications for arsenic mobilization and the genus Desulfitobacterium [J]. Applied and Environmental Microbiology, 2001, 67(12): 5568-5580
[44] De Wever H, Cole J R, Fettig M R, et al. Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogenes gen. nov., sp. nov [J]. Applied and Environmental Microbiology, 2000, 66(6): 2297-2301
[45] Sung Y, Ritalahti K M, Sanford R A, et al. Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov [J]. Applied and Environmental Microbiology, 2003, 69(5): 2964-2974
[46] 王旭剛. 土壤膠體界面五氯酚的還原轉(zhuǎn)化研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2007: 9-11
Wang X G. Kinetic study of PCP reduction transformation on surface soil colloids [D]. Yangling: Northwest Sci-Tech University of Agriculture and Forestry, 2007: 9-11 (in Chinese)
[47] 陶亮, 周順桂, 李芳柏. 土壤有機(jī)氯脫氯轉(zhuǎn)化的界面交互反應(yīng)[J]. 化學(xué)進(jìn)展, 2009(4): 791-800
Tao L, Zhou S G, Li F B. Interactive reaction of polychlorinated compound dechlorinating transformation at the soil interface [J]. Progress in Chemistry, 2009(4): 791-800 (in Chinese)
[48] He Y T, Wilson J T, Wilkin R T. Transformation of reactive iron minerals in a permeable reactive barrier (biowall) used to treat TCE in groundwater [J]. Environmental Science & Technology, 2008, 42(17): 6690-6696
[49] 馮小莉. 水稻土混合菌群耦合鐵氧化物對(duì)五氯酚還原轉(zhuǎn)化的作用與機(jī)制[D]. 杭州: 浙江大學(xué), 2014: 59-60
Feng X L. Reductive transformation and mechanism of pentachlorophenol by anaerobic microbial communities enriched from paddy soil coupled with iron oxides [D].Hangzhou: Zhejiang University, 2014: 59-60 (in Chinese)
[50] Wu C Y, Zhuang L, Zhou S G, et al. Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01 [J]. FEMS Microbiology Ecology, 2010, 71(1): 106-113
[51] Li X M, Zhou S G, Li F B, et al. Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17 [J]. Journal of Applied Microbiology, 2009, 106(1): 130-139
[52] Scott D T, McKnight D M, Blunt-Harris E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms [J]. Environmental Science & Technology, 1998, 32(19): 2984-2989
[53] Doong R, Schink B. Cysteine-mediated reductive dissolution of poorly crystalline iron(III) oxides by Geobacter sulfurreducens [J]. Environmental Science & Technology, 2002, 36(13): 2939-2945
[54] Chen M, Shih K, Hu M, et al. Biostimulation of indigenous microbial communities for anaerobic transformation of pentachlorophenol in paddy soils of southern China [J]. Journal of Agricultural and Food Chemistry, 2012, 60(12): 2967-2975
[55] Xu Y, He Y, Feng X, et al. Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an iron-reducing bacterium Clostridium beijerinckii Z [J]. Science of The Total Environment, 2014, 473: 215-223
[56] Okutman Tas D, Pavlostathis S G. The influence of iron reduction on the reductive biotransformation of pentachloronitrobenzene [J]. European Journal of Soil Biology, 2007, 43(5-6): 264-275
[57] Yu L, Yuan Y, Tang J, et al. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens [J]. Scientific Reports, 2015, 5: 16221
[58] Tong H, Hu M, Li F B, et al. Biochar enhances the microbial and chemical transformation of pentachlorophenol in paddy soil [J]. Soil Biology and Biochemistry, 2014, 70: 142-150
[59] 郭瑩. 硫酸鹽還原條件下三氯乙烯的降解研究[D]. 合肥: 合肥工業(yè)大學(xué), 2014: 34-46
Guo Y. The degradation of trichlorethylene under sulfate-reducing conditions [D]. Hefei:Hefei University of Technology, 2014: 34-46 (in Chinese)
[60] Gibson G R. Physiology and ecology of the sulphate-reducing bacteria [J]. Journal of Applied Bacteriology, 1990, 69(6): 769-797
[61] Muyzer G, Stams A J M. The ecology and biotechnology of sulphate-reducing bacteria [J]. Nature Reviews Microbiology, 2008, 6(6): 441-454
[62] H?ggblom M M, Young L Y. Chlorophenol degradation coupled to sulfate reduction [J]. Applied and Environmental Microbiology, 1990, 56(11): 3255-3260
[63] 李永峰, 李巧燕, 王兵,等. 環(huán)境生物技術(shù):典型厭氧環(huán)境微生物過(guò)程[M]. 哈爾濱: 哈爾濱工業(yè)大學(xué)出版社, 2014: 403-404
[64] Stuart S L, Woods S L, Lemmon T L, et al. The effect of redox potential changes on reductive dechlorination of pentachlorophenol and the degradation of acetate by a mixed, methanogenic culture [J]. Biotechnology and Bioengineering, 1999, 63(1): 69-78
[65] Chang B, Chang I T, Yuan S Y. Anaerobic degradation of phenanthrene and pyrene in mangrove sediment [J]. Bulletin of Environmental Contamination and Toxicology, 2008, 80(2): 145-149
[66] Yuan S Y, Chen S J, Chang B V. Anaerobic degradation of tetrachlorobisphenol-A in river sediment [J]. International Biodeterioration & Biodegradation, 2011, 65(1): 185-190
[67] Yoshida N, Yoshida Y, Handa Y, et al. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil [J]. Science of the Total Environment, 2007, 381(1-3): 233-242
[68] Ehlers G A, Rose P D. The potential for reductive dehalogenation of chlorinated phenol in a sulphidogenic environment in in situ enhanced biodegradation [J]. Water SA, 2006, 32(2): 243-248
[69] Drzyzga O, Gerritse J, Dijk J A, et al. Coexistence of a sulphate-reducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1 in defined chemostat cultures grown with various combinations of sulphate and tetrachloroethene [J]. Environmental Microbiology, 2001, 3(2): 92-99
[70] Aulenta F, Beccari M, Majone M, et al. Competition for H2between sulfate reduction and dechlorination in butyrate-fed anaerobic cultures [J]. Process Biochemistry, 2008, 43(2): 161-168
[71] Nelson D K, Hozalski R M, Clapp L W, et al. Effect ofnitrate and sulfate on dechlorination by a mixed hydrogen-fed culture [J]. Bioremediation Journal,2002, 6(3): 225-236
[72] Reis M A M, Almeida J S, Lemos P C, et al. Effect of hydrogen sulfide on growth of sulfate reducing bacteria [J]. Biotechnology and Bioengineering, 1992, 40(5): 593-600
[73] 左劍惡, 肖晶華, 陳莉莉. 氯代有機(jī)污染物在厭氧條件下還原脫氯的研究進(jìn)展[J]. 環(huán)境污染治理技術(shù)與設(shè)備,2003, 4(6): 43-48
Zuo J E, Xiao J H, Chen L L. A review on reductive dechlorination of chlorinated organic pollutants under anaerobic condition [J].Techniques and Equipment for Environmental Pollution Control, 2003, 4(6): 43-48 (in Chinese)
[74] Barbour J P, Smith J A, Chiou C T. Sorption of aromatic organic pollutants to grasses from water [J]. Environmental Science & Technology, 2005, 39(21): 8369-8373
[75] Guerrero-Barajas C, García-Pea E I. Evaluation of enrichments of sulfate reducing bacteria from pristine hydrothermal vents sediments as potential inoculum for reducing trichloroethylene [J]. World Journal of Microbiology and Biotechnology, 2010, 26(1): 21-32
[76] Bao P, Hu Z, Wang X, et al. Dechlorination of p,p′-DDTs coupled with sulfate reduction by novel sulfate-reducing bacterium Clostridium sp. BXM [J]. Environmental Pollution, 2012, 162: 303-310
[77] Hiraishi A. Biodiversity of dehalorespiring bacteria with special emphasis on polychlorinated biphenyl/dioxin dechlorinators [J]. Microbes and Environments, 2008, 23(1): 1-12
[78] 曾志華. 閩江河口區(qū)鹽度梯度下潮汐沼澤濕地產(chǎn)甲烷菌群落結(jié)構(gòu)及對(duì)環(huán)境因子的響應(yīng)[D]. 福州: 福建師范大學(xué), 2014: 5-8
Zeng Z H. The structure of methanogen comminities in marsh soil of salinity gradient in the main river estuary and response to environmental factors [D]. Fuzhou: Fujian Normal University, 2014: 5-8 (in Chinese)
[79] Heimann A C, Batstone D J, Jakobsen R. Methanosarcina spp. drive vinyl chloride dechlorination via interspecies hydrogen transfer [J]. Applied and Environmental Microbiology, 2006, 72(4): 2942-2949
[80] Ozuolmez D, Na H, Lever M A, et al. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: Teamwork or coexistence? [J]. Frontiers in Microbiology, 2015, 6: 492
[81] Hu J, Hu Z, Cui X, et al. 2-bromoethanesulfonate (BES)enhances sulfate-reducing bacterial population and dichlorodiphenyltrichloroethane (DDT) dechlorination in an anaerobic paddy soil[J]. Soil and Sediment Contamination: An International Journal, 2012, 21(6): 732-738
[82] Men Y, Lee P K H, Harding K C, et al. Characterization of four TCE-dechlorinating microbial enrichments grown with different cobalamin stress and methanogenic conditions [J]. Applied Microbiology and Biotechnology, 2013, 97(14): 6439-6450
[83] Delgado A G, Parameswaran P, Fajardo-Williams D, et al. Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes [J]. MicrobialCell Factories, 2012, 11(1): 128
[84] Wen L, Zhang Y, Pan Y, et al. The roles of methanogens and acetogens in dechlorination of trichloroethene using different electron donors [J]. Environmental Science and Pollution Research, 2015, 22(23): 19039-19047
[85] Chen Y, Wen Y, Zhou J, et al. Transformation of chloroform in model treatment wetlands: From mass balance to microbial analysis [J]. Environmental Science & Technology, 2015, 49(10): 6198-6205
[86] Chiu P C, Lee M. 2-Bromoethanesulfonate affects bacteria in a trichloroethene-dechlorinating culture [J]. Applied and Environmental Microbiology, 2001, 67(5): 2371-2374
[87] Lv Y, Chen Y, Song W, et al. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge [J]. Journal of Hazardous Materials, 2014, 280: 134-142
[88] Loffler F E, Ritalahti K M, Tiedje J M. Dechlorination of chloroethenes is inhibited by 2-bromoethanesulfonate in the absence of methanogens [J]. Applied and Environmental Microbiology, 1997, 63(12): 4982-4985
◆
EffectsandMechanismsofSoilRedoxProcessesonReductiveDechlorinationofChlorinatedOrganicPollutants
Feng Xi1,2, Zhu Min1,2, He Yan1,2,*
1. Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China2. Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
10.7524/AJE.1673-5897.20170114004
2017-01-14錄用日期2017-04-30
1673-5897(2017)3-151-11
X171.5
A
國(guó)家自然科學(xué)基金項(xiàng)目(41322006, 41771269); 國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0800207);中組部青年拔尖人才支持基金
馮曦(1992-),男,碩士研究生,研究方向?yàn)橛袡C(jī)污染土壤修復(fù),E-mail:13588221213@163.com
*通訊作者(Corresponding author), E-mail: yhe2006@zju.edu.cn
馮曦, 朱敏, 何艷. 土壤還原過(guò)程對(duì)氯代有機(jī)污染物還原脫氯的影響與機(jī)制[J]. 生態(tài)毒理學(xué)報(bào),2017, 12(3): 151-161
Feng X, Zhu M, He Y. Effects and mechanisms of soil redox processes on reductive dechlorination of chlorinated organic pollutants [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 151-161 (in Chinese)