李迎春,郭子武,楊清平,岳永德,陳雙林
(1.中國(guó)林業(yè)科學(xué)研究院 亞熱帶林業(yè)研究所,浙江 杭州311400;2.國(guó)際竹滕中心,北京 100102)
河竹葉片葉綠素?zé)晒夂湍芰亢纳?duì)持續(xù)淹水脅迫的響應(yīng)
李迎春1,2,郭子武1,楊清平1,岳永德2,陳雙林1
(1.中國(guó)林業(yè)科學(xué)研究院 亞熱帶林業(yè)研究所,浙江 杭州311400;2.國(guó)際竹滕中心,北京 100102)
為揭示河竹Phyllostachys rivalis對(duì)持續(xù)淹水的生理生態(tài)響應(yīng)與適應(yīng)機(jī)制,為河竹在水陸交錯(cuò)帶的應(yīng)用提供理論依據(jù),以2年生河竹盆栽苗為試材,設(shè)置不同深度的淹水處理[水位高出栽培基質(zhì)5 cm(處理Ⅰ),10 cm(處理Ⅱ)和正常供水(ck)],測(cè)定持續(xù)淹水30,90,180,270和360 d時(shí)河竹葉片葉綠素?zé)晒鈪?shù),分析葉片光能的吸收和轉(zhuǎn)化、能量的傳遞與分配、反應(yīng)中心的活性、過剩能量的耗散對(duì)持續(xù)淹水脅迫的響應(yīng)。結(jié)果表明:①持續(xù)淹水脅迫下,河竹葉片能通過維持相對(duì)較高的表觀光合電子傳遞速率(RET),光化學(xué)熒光猝滅(qP)和光化學(xué)反應(yīng)能量(P),增強(qiáng)非光化學(xué)猝滅(qN)來調(diào)節(jié)自身能量代謝,以熱耗散形式散失過多的光能,有效地避免或減輕光抑制和光氧化,河竹吸收光強(qiáng)主要以天線色素耗散(D)為主要光能分配途徑,淹水后期PSⅡ反應(yīng)中心的非光化學(xué)反應(yīng)耗散(E)的恢復(fù)起著重要作用,持續(xù)淹水一定程度上會(huì)損害河竹葉片光系統(tǒng)Ⅱ(PSⅡ),但對(duì)于PSⅡ的功能反應(yīng)中心影響較小。②不同淹水處理葉綠素?zé)晒鈪?shù)存在差異,持續(xù)淹水30,90 d時(shí),處理Ⅰ的初始熒光(Fo),最大熒光(Fm),最大光化學(xué)效率(Fv/Fm), qP和RET等與 ck差異不顯著(P>0.05),而處理Ⅱ在淹水90 d時(shí)與ck差異顯著 (P<0.05),至淹水270,360 d時(shí),各處理間差異均達(dá)顯著水平(P<0.05),持續(xù)淹水脅迫對(duì)葉綠素?zé)晒鈪?shù)及能量耗散的影響存在明顯的水位效應(yīng)。圖4表1參37
植物學(xué);河竹;淹水;葉綠素?zé)晒猓荒芰亢纳?/p>
Abstract:To determine the physiological and biochemical responses and adaptive mechanisms of Phyllostachys rivalis to long-term soil flooding,two-year-old potted seedlings of Ph.rivalis were subjected to different flooding depths.The flooding treatment was set with water levels of 5 cm (TreatmentⅠ) and 10 cm (TreatmentⅡ)higher than the soil surface and normal water supply (ck).Then the chlorophyll fluorescence parameters in leaves were determined after continuous flooding for 30,90,180,270,and 360 d.Responses to the continuous flooding stress for light energy absorption and transformation,energy transfer and distribution,reaction center activity,and excitation energy dissipation in leaves of three leaves per seedlings and three seedlings were measured and analyzed.A one-way analysis of variance with duncan’s test was conducted at a significant level of 0.05.Results showed that the chlorophyll fluorescence parameters varied with different flooding levels.When flooding for 30 d and 90 d,minimal fluorescence (Fo),maximum fluorescence (Fm),photochemical maximum efficiency of PS Ⅱ (Fv/Fm),photochemical quenching coefficient (qP),and electron transport rate (RET) ofTreatmentⅠ were not significantly different(P>0.05) compared with ck;however,TreatmentⅡ when flooding for 90 d compared with ck was significantly increased for Fowhile significantly decreased for Fm,Fv/Fmand RET(P<0.05).With flooding treatments of 270 d and 360 d,Fm,Fv/Fm,qPand RETof Treatment I and Ⅱ were both significant decreased while Fowere significant increased than that of ck (P<0.05).The effect of flooding on chlorophyll fluorescence parameters and energy dissipation was also dependent on the water level.In leaves of Ph.rivalis,Fm,Fv/Fm,and qPwere significantly decreased (P<0.05) with continuous flooding stress;whereas,Foand non-photochemical quenching coefficient (qN) increased gradually but not reached significant level(P>0.05).The amount of absorbed light in photochemistry (P) and excess energy (E)increased first and then decreased (P<0.05),but the energy of dissipation of the antenna heat dissipation (D) observed were opposite.Taken together,Ph.rivalis could maintain a relatively high RET,qP,and P in the early stages of flooding,and enhance qNto regulate their energy metabolism,dissipate excess light energy via heat dissipation,thereby alleviating the light photoinhibition and photooxidation;however,continuous long-term soil flooding could damage photosystemⅡ (PSⅡ)even though there was minimal adverse effect on the functional center of PSⅡ(P<0.05).It can be inferred that Ph.rivalis can tolerate a short term flooding which facilitate its possible application in plantation restoration of riparion zone. [Ch,4 fig.1 tab.37 ref.]
Key words:botany;Phyllostachys rivalis;flooding;chlorophyll fluorescence characteristics;excitation energy dissipation
淹水脅迫對(duì)植物生長(zhǎng)的抑制作用除了低氧環(huán)境引起的根系活力下降、呼吸抑制以及礦質(zhì)元素吸收受阻外,長(zhǎng)時(shí)間淹水脅迫引起的葉綠素合成受阻與降解加速導(dǎo)致了葉光合色素含量下降、光能利用與轉(zhuǎn)化活性改變,進(jìn)而引起光合能力的大幅度下降[1]。光合作用是植物生存和繁衍的物質(zhì)基礎(chǔ),在這個(gè)復(fù)雜的生理生化過程中,受到傷害的最原初部位是與光系統(tǒng)Ⅱ(PSⅡ)緊密聯(lián)系的[2-5]。植物淹水后會(huì)導(dǎo)致PSⅡ光化學(xué)活性和電子傳遞速率降低[6],PSⅡ捕光色素蛋白復(fù)合物(LHCⅡa,LHCⅡb,LHCⅡc)各組分的變化,從而引起光合二氧化碳同化效率的降低[7]。另一方面,植物也可以以熱的形式耗散過剩光能[8],PSⅡ反應(yīng)中心的失活和周轉(zhuǎn)[9]及Mehler反應(yīng)[10]等減輕光抑制過程,從而保護(hù)光合機(jī)構(gòu)免受破壞。葉綠素?zé)晒鈪?shù)最大光化學(xué)效率(Fv/Fm), PSⅡ?qū)嶋H光化學(xué)效率(Fv′/Fm′), 光化學(xué)熒光猝滅系數(shù)(qP)和非光化學(xué)猝滅系數(shù)(qN),PSⅡ的實(shí)際光化學(xué)量子產(chǎn)量(Yyield),表觀光合電子傳遞速率(RET)等的變化可反映逆境脅迫對(duì)PSⅡ的損傷程度[11-12],已經(jīng)廣泛應(yīng)用于光抑制、水分、高溫、低溫等逆境生理研究[13-14]。竹子是集經(jīng)濟(jì)、生態(tài)和社會(huì)效益于一體的優(yōu)良林種,是區(qū)域農(nóng)村經(jīng)濟(jì)社會(huì)發(fā)展的重要資源和生態(tài)環(huán)境保護(hù)的重要屏障。水分、溫度、光照等環(huán)境條件的變化直接影響著竹子的生長(zhǎng)發(fā)育和分布。隨著全球氣候的變化,水資源不均勻分布造成近年來極端干旱和洪澇災(zāi)害頻發(fā),水分脅迫已經(jīng)成為影響竹子生長(zhǎng)發(fā)育的主要逆境因子之一,研究竹子對(duì)水分脅迫的適應(yīng)能力越來越受到關(guān)注[15]。目前,國(guó)內(nèi)外相關(guān)研究主要集中在短期干旱或水淹對(duì)竹子生長(zhǎng)和生理生態(tài)的影響[16-21],而對(duì)于長(zhǎng)期處于浸漬環(huán)境中的竹子生理生態(tài)響應(yīng)及其機(jī)制研究甚少[22]。河竹Phyllostachys rivalis隸屬禾本科Gramineae倭竹族Shibataeeae剛竹屬Phyllostachys,主要分布于浙江、福建等地,生于溪澗邊、山溝旁,性喜水濕,鞭根系統(tǒng)極為發(fā)達(dá),竹鞭韌皮部密生一圈肉眼可見的氣孔,具有耐淹植物的特征。我們前期的研究表明,河竹鞭根系統(tǒng)可以通過抗氧化系統(tǒng)平衡調(diào)節(jié)、生物量合理分配和異速生長(zhǎng)調(diào)節(jié)等來適應(yīng)長(zhǎng)期淹水環(huán)境,維持生長(zhǎng)和更新[23-24],而長(zhǎng)期水淹脅迫下河竹葉綠素?zé)晒庾兓卣鳌⒛芰亢纳⑦^程及其與河竹耐受水淹的關(guān)系尚不清楚。為此,本研究以2年生河竹盆栽苗為試材,設(shè)置不同的水淹深度處理,測(cè)定分析不同水淹時(shí)間下葉片熒光參數(shù)和能量耗散的變化規(guī)律,探討持續(xù)淹水對(duì)河竹光能的吸收和轉(zhuǎn)化、能量的傳遞與分配、反應(yīng)中心的活性、過剩能量的耗散以及光合作用的光抑制和光破壞等的影響,并從光合系統(tǒng) “內(nèi)在性”揭示河竹對(duì)持續(xù)淹水的響應(yīng)與適應(yīng)機(jī)制。
試驗(yàn)地位于浙江省臨安市太湖源觀賞竹種園內(nèi)。該地屬中亞熱帶濕潤(rùn)季風(fēng)氣候區(qū),年平均氣溫為15.4℃,極端低溫-10.3℃,極端高溫44.5℃,年日照時(shí)數(shù)為1 850~1 950 h,日均高于10℃活動(dòng)積溫為5 100℃,年平均無霜期為235 d,年降水量為1 250~1 600 mm,年平均空氣相對(duì)濕度80%以上。
2012年2月在河竹種苗林中挖取2年生小叢狀竹苗,竹苗地徑(1.0±0.2)cm,全高(1.0±0.4)m,保留5~6盤枝,選擇規(guī)格基本一致的竹苗移栽到加侖盆中(上端直徑32.0 cm,下端直徑23.0 cm,高度27.0 cm), 以 V(紅壤)∶V(細(xì)沙)=3∶1 為培養(yǎng)基質(zhì), 填充基質(zhì)約 15.0 kg·盆-1, 栽植竹苗 10 株·盆-1。 移栽后正常噴灌和清除竹筍、雜草等管理。
2013年4月15日選擇生長(zhǎng)狀況一致的河竹盆栽苗進(jìn)行淹水處理。設(shè)3個(gè)梯度,即對(duì)照(ck),處理Ⅰ和處理Ⅱ。對(duì)照實(shí)行正常澆水,使盆栽基質(zhì)相對(duì)含水率保持85.0%±5.0%;處理Ⅰ淹水水位高于土壤表面5.0 cm;處理Ⅱ淹水水位高于土壤表面10.0 cm。試驗(yàn)盆栽苗置于長(zhǎng)度4.3 m,寬度3.3 m和深度0.5 m的方形水泥池中進(jìn)行淹水處理,試驗(yàn)期間保持設(shè)定水位。設(shè)置重復(fù)10個(gè)·處理-1,即盆栽苗10盆。
根據(jù)已有報(bào)道,自然消落帶淹水時(shí)間平均3個(gè)月左右,最長(zhǎng)時(shí)間可達(dá)6個(gè)月[8]。而前期試驗(yàn)表明,淹水360 d后,河竹仍能正常生長(zhǎng),且表現(xiàn)出一定的更新能力。為了解河竹葉片熒光參數(shù)和能量耗散等方面對(duì)持續(xù)淹水的響應(yīng),本研究設(shè)置淹水處理時(shí)間分別為30,90,180,270和360 d。在設(shè)定時(shí)間,隨機(jī)選取3盆·處理-1河竹盆栽苗,在9:00-10:00,采用PAM-2500便攜式脈沖調(diào)制葉綠素?zé)晒鈨x(德國(guó)Walz公司)測(cè)定葉片葉綠素?zé)晒鈪?shù)。對(duì)河竹頂部倒數(shù)第3~4盤枝選擇4~7片成熟葉片,先將測(cè)定植株葉片用黑色布袋子罩住,暗適應(yīng)30 min,使得待測(cè)葉片所處光環(huán)境一致,全部使用儀器提供的測(cè)量光、光化光及飽和脈沖光測(cè)定葉片的初始熒光(Fo)和最大熒光(Fm)。作用光打開后測(cè)定光下最小熒光(Fo′)和光下最大熒光(Fm′), 以熒光慢誘導(dǎo)模式測(cè)定光系統(tǒng)Ⅱ(PSⅡ)的 Fv/Fm, Fv′/Fm′, qP, qN, Yyield和 RET。 PSⅡ吸收光能分配百分率參照 Demmig Adams 和 Adams 公式計(jì)算[25]: 光化學(xué)反應(yīng)的能量(P)= Fv′/Fm′×qP; 非光化學(xué)反應(yīng)耗散的能量(E)=(1-qP)×Fv′/Fm′; 天線色素耗散的能量(D)=1-Fv′/Fm′。
采用SPSS 20.0統(tǒng)計(jì)軟件進(jìn)行單因素方差分析(One-way ANOVA),用Duncan方法進(jìn)行多重比較,用Excel 2010繪制圖表。
由圖1可知:隨淹水時(shí)間的延長(zhǎng),淹水處理的河竹葉片F(xiàn)o總體呈升高趨勢(shì),而Fm總體呈下降趨勢(shì)。短期淹水處理(30 d)對(duì)河竹葉片F(xiàn)o和Fm并無明顯影響,但淹水時(shí)間進(jìn)一步延長(zhǎng),處理間差異增大,水深效應(yīng)也日趨明顯,至淹水90 d和180 d時(shí),處理Ⅱ的河竹葉片F(xiàn)o顯著高于處理Ⅰ和ck(P<0.05),而Fm顯著低于處理Ⅰ和ck(P<0.05),且后兩者Fo和Fm均無顯著差異(P>0.05),其后至淹水處理結(jié)束,淹水處理的河竹葉片F(xiàn)o持續(xù)升高,F(xiàn)m總體上持續(xù)下降,且水位效應(yīng)更加明顯,處理間差異均達(dá)顯著水平(P<0.05)。
圖1 持續(xù)淹水下河竹葉片初始熒光和最大熒光Figure 1 Effects of long-term flooding on Foand Fmin leaves of Phyllostachys rivalis
隨著淹水時(shí)間的延長(zhǎng)和淹水深度的增大,河竹葉片F(xiàn)v/Fm呈下降趨勢(shì),F(xiàn)v′/Fm′呈先升高后降低的趨勢(shì)(圖2)。相對(duì)ck,短期淹水(30 d),河竹葉片F(xiàn)v/Fm降低,但處理間差異并不顯著(P>0.05),而Fv′/Fm′則升高,且處理Ⅱ顯著高于ck(P<0.05);至淹水90 d和180 d時(shí),淹水處理河竹葉片F(xiàn)v/Fm明顯下降,處理Ⅱ顯著低于處理Ⅰ和ck(P<0.05),而后兩者間無顯著差異(P>0.05);其后至淹水處理結(jié)束,淹水處理河竹葉片F(xiàn)v/Fm持續(xù)下降,處理間差異達(dá)顯著水平(P<0.05),水位效應(yīng)明顯,但處理Ⅰ和處理Ⅱ仍有ck的89.4%和55.4%。河竹葉片F(xiàn)v′/Fm′較Fv/Fm對(duì)淹水脅迫更敏感,短期淹水即會(huì)引起Fv′/Fm′的明顯升高,淹水處理30 d時(shí),處理Ⅱ就顯著高于ck(P<0.05),處理90 d時(shí),處理Ⅰ和處理Ⅱ均顯著高于ck(P<0.05),但至處理180 d時(shí)各處理的Fv′/Fm′均明顯下降,且處理間并無顯著差異(P>0.05),其后淹水處理的Fv′/Fm′顯著下降,水位效應(yīng)較為明顯。
圖2 持續(xù)淹水下河竹葉片PSⅡ的最大光化學(xué)效率和PSⅡ?qū)嶋H光化學(xué)效率Figure 2 Effects of long-term flooding on Fv/Fmand Fv′Fm′in leaves of Phyllostachys rivalis
由圖3可知:隨著淹水時(shí)間的延長(zhǎng),不同淹水處理下的河竹葉片qP總體呈下降趨勢(shì),qN呈升高趨勢(shì),不同處理間變化幅度不同。相對(duì)ck,淹水30 d時(shí),處理Ⅱ的qP顯著升高(P<0.05);淹水90 d時(shí),河竹葉片qP開始降低,但處理Ⅰ和處理Ⅱ與ck差異不顯著(P>0.05);淹水180 d時(shí)至處理結(jié)束,河竹葉片qP為ck>處理Ⅰ>處理Ⅱ,各處理間均有顯著差異(P<0.05),水位效應(yīng)明顯。整個(gè)淹水過程中,河竹葉片qN基本上為ck<處理Ⅰ<處理Ⅱ,總體上淹水處理顯著高于ck(P<0.05),水位效應(yīng)也較為明顯。
圖3持續(xù)淹水下河竹葉片光化學(xué)熒光猝滅系數(shù)和非光化學(xué)猝滅系數(shù)Figure 3 Effects of long-term flooding on qPand qNin leaves of Phyllostachys rivalis
由圖4可知:不同淹水處理的河竹葉片Yyield和RET的變化不同。隨著淹水時(shí)間的延長(zhǎng),處理Ⅰ的Yyield先升高后降低,RET先升高后降低再升高,在淹水90 d時(shí)均達(dá)最高值。在處理180 d后,各處理間河竹葉片Yyield和RET總體上差異顯著(P<0.05);處理Ⅱ的Yyield和RET均隨著淹水時(shí)間的延長(zhǎng)而逐漸降低,各處理時(shí)間點(diǎn)上均顯著低于ck(P<0.05)。至淹水180 d后,河竹葉片的Yyield和RET均隨著淹水深度的增大而顯著降低(P<0.05),存在明顯的水位效應(yīng)。
圖4 持續(xù)淹水下河竹葉片PSⅡ?qū)嶋H化學(xué)量子產(chǎn)量和電子傳遞速率Figure 4 Effects of long-term flooding on Yyieldand RETin leaves of Phyllostachys rivalis
由表1可知:隨著淹水時(shí)間的延長(zhǎng),處理Ⅰ和處理Ⅱ的河竹葉片光化學(xué)反應(yīng)能量(P)均呈先升高后下降的變化趨勢(shì)。淹水30 d和90 d時(shí),處理Ⅰ和處理Ⅱ的P較ck升高,且處理Ⅱ與ck差異顯著(P<0.05);淹水180,270和360 d時(shí),處理Ⅰ和處理Ⅱ的P均顯著低于ck(P<0.05),且處理Ⅰ和處理Ⅱ間差異顯著(P<0.05),水位效應(yīng)明顯。天線色素耗散能量(D)隨著淹水時(shí)間的延長(zhǎng)呈先降低后升高的變化趨勢(shì)。淹水30 d和90 d時(shí),處理Ⅰ和處理Ⅱ的D均顯著低于ck(P<0.05);淹水180 d時(shí),處理Ⅰ和處理Ⅱ的D仍低于ck,但未達(dá)顯著差異水平(P>0.05);淹水270 d和360 d時(shí),處理Ⅰ和處理Ⅱ的D均顯著高于ck(P<0.05)。整個(gè)淹水處理過程中,河竹葉片天線色素耗散能量(D)的水位效應(yīng)總體上并不明顯。在淹水30,90和180 d時(shí),處理Ⅰ和處理Ⅱ的非光化學(xué)反應(yīng)耗散能量(E)較ck顯著升高(P<0.05),但處理Ⅰ和處理Ⅱ之間差異并不顯著(P>0.05);淹水270 d時(shí),處理Ⅰ的E較ck顯著降低(P<0.05);淹水360 d時(shí),處理Ⅰ和處理Ⅱ的E較對(duì)照降低(P>0.05),河竹葉片非光化學(xué)反應(yīng)耗散能量(E)的水位效應(yīng)總體上也并不明顯。
表1 持續(xù)淹水對(duì)河竹葉片吸收光能分配的影響Table 1 Effects of long-term flooding on characteristics fractions of absorbed light utilized in leaves of Phyllostachys rivalis
環(huán)境脅迫影響植物的光合作用過程,造成光化學(xué)轉(zhuǎn)換效率和電子傳遞速率與能量分配之間產(chǎn)生矛盾,從而影響光合碳同化能力, PSⅡ反應(yīng)中心生理功能的穩(wěn)定性是植物抵抗逆境脅迫的能力體現(xiàn)[26-28]。葉綠素?zé)晒鈪?shù)從能量代謝與轉(zhuǎn)換的角度反映光合機(jī)構(gòu)受逆境脅迫傷害的程度[29-31],F(xiàn)m,F(xiàn)v/Fm降低表明植物葉片發(fā)生光抑制[10],而Fv/Fm下降的同時(shí)Fo上升,表明PSⅡ反應(yīng)中心受到損傷[29]。本研究中,處理Ⅰ在淹水30 d至180 d時(shí),F(xiàn)o,F(xiàn)m和Fv/Fm變化不顯著,說明淹水深度5 cm持續(xù)淹水180 d,河竹葉片PSⅡ的活性一直維持在正常水平,具有良好的適應(yīng)能力,至淹水270 d時(shí),處理Ⅰ的Fo顯著升高,F(xiàn)m和Fv/Fm降低,說明此時(shí)河竹葉片PSⅡ反應(yīng)中心的內(nèi)稟光能轉(zhuǎn)化效率和活性隨淹水時(shí)間持續(xù)而降低,光合作用的原初反應(yīng)受到抑制,不利于河竹葉片捕獲光能的轉(zhuǎn)化。而處理Ⅱ在淹水90 d時(shí),F(xiàn)o顯著上升,F(xiàn)m和Fv/Fm下降,說明淹水深度10 cm持續(xù)淹水90 d,河竹葉片PSⅡ開始受到損傷。淹水360 d,相對(duì)對(duì)照,處理Ⅰ和處理Ⅱ河竹葉片的Fv/Fm顯著降低,但仍具有相對(duì)較高的水平,這與長(zhǎng)期水淹后楓楊Pterocarya stenoptera幼苗[8]的研究結(jié)果一致。說明長(zhǎng)期淹水影響河竹葉片PSⅡ反應(yīng)中心的活性,但對(duì)PSⅡ的功能反應(yīng)中心影響較小。
熒光猝滅是植物內(nèi)光合量子效率調(diào)節(jié)的一個(gè)方面,分為光化學(xué)熒光猝滅(qP)和非光化學(xué)猝滅(qN)2類[32]。qP值的大小反映PSⅡ反應(yīng)中心開放部分的比例及電子傳遞速率[33-34]。本研究中,淹水30 d時(shí),處理Ⅰ維持相穩(wěn)定對(duì)的qP,Yyield和RET值,有效地避免或減輕因PSⅡ吸收而引起的光抑制和光氧化,保護(hù)了光合機(jī)構(gòu)正常運(yùn)轉(zhuǎn)。處理Ⅱ的qP值上升,說明初期水淹有利于河竹葉片PSⅡ反應(yīng)中心電子傳遞能力的提高,促進(jìn)捕獲的光能更高效地用于光合作用。淹水180 d后,處理Ⅰ和處理Ⅱ的qP均顯著下降,說明PSⅡ反應(yīng)中心電子傳遞受阻,在一定程度上降低了河竹葉片PSⅡ的活性。非光化學(xué)猝滅(qN)常用來評(píng)價(jià)植物耗散過剩激發(fā)能的能力[4,35]。本研究中,淹水處理Ⅰ和處理Ⅱ條件下河竹葉片的qN隨著淹水深度及持續(xù)時(shí)間而增高,熱耗散保護(hù)性作用增強(qiáng)。這可能是河竹適應(yīng)淹水環(huán)境而形成的自我保護(hù)機(jī)制。
通過葉片的化學(xué)反應(yīng)的能量(P),天線色素耗散的能量(D)和非光化學(xué)反應(yīng)耗散的能量(E)及其占總吸收光能的比例,可以了解植物逆境環(huán)境下的光能利用能力[36]。本研究表明,淹水30 d和90 d時(shí),處理Ⅰ和處理Ⅱ的P,E顯著升高,D降低,說明淹水初期不同水位處理均提高了光合作用碳同化電子需求,E的增加可能會(huì)引起光合機(jī)構(gòu)的可逆失活甚至破壞[10]。淹水360 d時(shí),處理Ⅰ和處理Ⅱ的P明顯減少,D顯著升高,而E恢復(fù)對(duì)照水平,減輕了PSⅡ的激發(fā)壓,從而能及時(shí)的使單線態(tài)葉綠素(1Chl)返回三線態(tài)葉綠素(3Chl)[37],降低了形成單線態(tài)氧(1O2)的機(jī)會(huì),表明長(zhǎng)期淹水后河竹葉片PSⅡ能力恢復(fù),天線色素耗散的能量 (D)上升,可減少PSⅡ和電子傳遞的過分還原,從而防止過剩光能對(duì)光合機(jī)構(gòu)的破壞。持續(xù)淹水環(huán)境下,河竹吸收光強(qiáng)主要以天線色素耗散(D)為主要光能分配途徑,淹水后期PSⅡ反應(yīng)中心的非光化學(xué)反應(yīng)耗散(E)的恢復(fù)起著重要作用,這種變化充分反映了河竹對(duì)淹水的適應(yīng)能力。
綜上所述,淹水環(huán)境下河竹能通過維持相對(duì)較高的RET,qP和P值,增強(qiáng)qN來調(diào)節(jié)自身能量代謝,以熱耗散形式散失過多的光能,有效地避免或減輕光抑制和光氧化,河竹吸收光強(qiáng)主要以天線色素耗散(D)為主要光能分配途徑,淹水后期PSⅡ反應(yīng)中心的非光化學(xué)反應(yīng)耗散(E)的恢復(fù)起著重要作用。這些可能是河竹適應(yīng)淹水環(huán)境的自我保護(hù)機(jī)制。
[1] DREENWAY H,ARMSTRONG W,COLMER T D.Conditions leading to high CO2(>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism [J].Ann Bot,2006,98(1):9 - 32.
[2] WEIS E,BERRY J A.Plants and high temperature stress [J].Symp Soc Exp Biol,1988,42:329 - 346.
[3] HAVAUX M,TARDY F.Temperature-dependent adjustment of the thermal stability of photosystem Ⅱ in vivo:possible involvement of xanthophyll-cycle pigments [J].Planta,1996,198(3):324 - 333.
[4] 史勝青,袁玉欣,楊敏生,等.水分脅迫對(duì)4種苗木葉綠素?zé)晒獾墓饣瘜W(xué)淬滅和非光化學(xué)淬滅的影響[J].林業(yè)科學(xué), 2004, 40(1): 168 - 172.SHI Shengqing,YUAN Yuxin,YANG Minsheng,et al.Effects of water stress on photochemical quenching and nonphotochemical quenching of chlorophyll a fluorescence in four tree seedlings [J].Sci Silv Sin,2004,40(1):168 - 172.
[5] 羅俊,張木清,呂建林,等.水分脅迫對(duì)不同甘蔗品種葉綠素a熒光動(dòng)力學(xué)的影響[J].福建農(nóng)業(yè)大學(xué)學(xué)報(bào),2000, 29(1): 18 - 22.LUO Jun,ZHANG Muqing,Lü Jianglin,et al.Effects of water stress on the chlorophyll a fluorescence induction kinetics of sugarcane genotypes [J].J Fujian Agric Univ,2000,29(1):18 - 22.
[6] 衣英華,樊大勇,謝宗強(qiáng),等.模擬淹水對(duì)楓楊和栓皮櫟氣孔交換、葉綠素?zé)晒夂退畡?shì)的影響[J].植物生態(tài)學(xué)報(bào), 2006, 30(6): 960 - 968.YI Yinghua,FAN Dayong,XIE Zongqiang,et al.Effects of waterlogging on the gas exchange,chlorophyll fluorescence and water potential of Quercus variabilis and Pterocarya stenoptera [J].J Plant Ecol,2006,30(6):960 - 968.
[7] 韋振泉,林宏輝,何軍賢,等.水分脅迫對(duì)小麥捕光色素蛋白復(fù)合物的影響[J].西北植物學(xué)報(bào),2000,20(4): 555 - 560.WEI Zhenquan,LIN Honghui,HE Junxian,et al.Effects of water stress on the light-harvesting complexes in wheat leaves [J].Acta Bot Boreal-Occident Sini,2000,20(4):555 - 560.
[8] 賈中民,魏虹,田曉峰,等.長(zhǎng)期水淹對(duì)楓楊幼苗光合生理和葉綠素?zé)晒馓匦缘挠绊懀跩].西南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2009, 31(5): 124 - 129.JIA Zhongmin,WEI Hong,TIAN Xiaofeng,et al.Effects of long-term flooding on photosynthesis and chlorophyll fluorescence parameters of Pterocarya stenoptera seedlings [J].J Southwest Univ Nat Sci Ed,2009,31(5):124 - 129.
[9] 陳貽竹,李曉萍,夏麗,等.葉綠素?zé)晒饧夹g(shù)在植物環(huán)境脅迫研究中的應(yīng)用[J].熱帶亞熱帶植物學(xué)報(bào),1995, 3(4): 79 - 86.CHEN Yizhu,LI Xiaoping,XIA Li,et al.The application of chlorophyll fluorescence technique in the study of responses of plants to environmental stresses [J].J Trop Subtrop Bot,1995,3(4):79 - 86.
[10] 胡文海,肖宜安,喻景權(quán),等.低夜溫后不同光強(qiáng)對(duì)榕樹葉片PSⅡ功能和光能分配的影響[J].植物研究,2005, 25(2): 159 - 162.HU Wenhai,XIAO Yian,YU Jingquan,et al.Effects of different light intensity after low night temperature stress on PSⅡ functions and absorbed light allocation in leaves of Ficus microcarpa [J].Bull Bot Res,2005,25(2):159 - 162.
[11] 劉云峰,秦洪文,石雷,等.水淹對(duì)水芹葉片結(jié)構(gòu)和光系統(tǒng)Ⅱ光抑制的影響[J].植物學(xué)報(bào),2010,45(4):426-434.LIU Yunfeng,QIN Hongwen,SHI Lei,et al.Effects of submergence on leaf anatomy and photoinhibition of photosystem Ⅱin Oenanthe javanica plants [J].Chin Bull Bot,2010,45(4):426-434.
[12] 趙竑緋,趙陽(yáng),張馳,等.模擬淹水對(duì)杞柳生長(zhǎng)和光合特性的影響[J].生態(tài)學(xué)報(bào),2013,33(3):898-906.ZHAO Hongfei,ZHAO Yang,ZHANG Chi,et al.Effect of flooding stress on growth and photosynthesis characteristics of Salix integra [J].Acta Ecol Sin,2013,33(3):898 - 906.
[13] 李鵬民,高輝遠(yuǎn),STRASSER R J.快速葉綠素?zé)晒庹T導(dǎo)動(dòng)力學(xué)分析在光合作用研究中的應(yīng)用[J].植物生理與分子生物學(xué)學(xué)報(bào),2005,31(6):559-566.LI Pengmin,GAO Huiyuan,STRASSER R J.Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study [J].J Plant Physiol Mol Biol,2005,31(6):559 - 566.
[14] 王樹鳳,孫海菁,陳益泰,等.模擬干旱脅迫下弗吉尼亞櫟苗木葉片相關(guān)生理參數(shù)的分析[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011, 35(6): 6 - 10.WANG Shufeng,SUN Haijing,CHEN Yitai,et al.Analysis of physiological indexes of Quercus virginiana under drought stress [J].J Nanjing For Univ Nat Sci Ed,2011,35(6):6 - 10.
[15] 胡俊靖,陳衛(wèi)軍,郭子武,等.水分脅迫對(duì)竹子生理特性影響的研究進(jìn)展[J].西南林業(yè)大學(xué)學(xué)報(bào),2015,35(1): 91 - 95.HU Junjing,CHEN Weijun,GUO Ziwu,et al.Review of the water stress on the physiological characteristics of bamboo [J].J Southwest For Univ,2015,35(1):91 - 95.
[16] 李在軍,蔡孔瑜,陳桂芳,等.干旱脅迫和復(fù)水對(duì)麻竹滲透調(diào)節(jié)物質(zhì)及細(xì)胞膜透性的影響[J].四川林業(yè)科技, 2010, 31(3): 55 - 59.LI Zaijun,CAI Kongyu,CHEN Guifang,et al.Effect of continuous drought stress and rewatering on osmo-regulation substances and cell membrane permeability in leaves of Dendrocalamus latiflorus [J].J Sichuan For Sci Technol,2010,31(3):55 - 59.
[17] 應(yīng)葉青,郭璟,魏建芬,等.自然干旱脅迫及復(fù)水處理對(duì)紅稈寒竹生理特性的影響[J].浙江林學(xué)院學(xué)報(bào),2010, 27(4): 513 - 517.YING Yeqing,GUO Jing,WEI Jianfen,et al.Physiological characteristics of Chimonobambusa marmoreal f.variegate with natural drought stress and rewetting [J].J Zhejiang For Coll,2010,27(4):513 - 517.
[18] 應(yīng)葉青,郭璟,魏建芬,等.干旱脅迫對(duì)毛竹幼苗生理特性的影響[J].生態(tài)雜志,2011,30(2):262-266.YING Yeqing,GUO Jing,WEI Jianfen,et al.Effects of drought stress on physiological characteristics of Phyllostachys edulis seedlings [J].Chin J Ecol,2011,30(2) :262 - 266.
[19] 趙蘭,邢新婷,江澤慧,等.4種地被觀賞竹的抗旱性研究[J].林業(yè)科學(xué)研究,2010,23(2):221-226.ZHAO Lan,XING Xinting,JIANG Zehui,et al.Study on drought resistance of four dwarf ornamental bamboos [J].For Res,2010,23(2):221 - 226.
[20] 顧大形,陳雙林.四季竹對(duì)土壤水分脅迫的生理適應(yīng)[J].西北植物學(xué)報(bào),2012,32(4):751-758.GU Daxing,CHEN Shuanglin.Physiological adaptation of Oligostachyum lubricum under water stress [J].Acta Bot Boreal-Occident Sin,2012,32(4):751 - 758.
[21] 張艷華,劉國(guó)華,王福升.淹水脅迫下5種竹子生理生化指標(biāo)的變化[J].林業(yè)科技開發(fā),2009,23(5):71-74.ZHANG Yanhua,LIU Guohua,WANG Fusheng.Variation of inner physiological and biochemical characteristics of five bamboos under flooding stress [J].China For Sci Technol,2009,23(5):71 - 74.
[22] 劉玉芳,陳雙林,李迎春,等.河竹鞭根對(duì)長(zhǎng)期淹水環(huán)境的生理響應(yīng)[J].林業(yè)科學(xué)研究,2014,27(5):621-625.LIU Yufang,CHEN Shuanglin,LI Yingchun,et al.Physiological response of Phyllostchys rivalis rhizome roots to long-term water stress [J].For Res,2014,27(5):621-625.
[23] 劉玉芳,陳雙林,郭子武,等.淹水對(duì)河竹鞭根系統(tǒng)生物量分配及異速生長(zhǎng)模式的影響[J].林業(yè)科學(xué)研究,2015, 28(4): 502 - 507.LIU Yufang,CHEN Shuanglin,GUO Ziwu,et al.Effect of waterlogging on biomass allocation and allometric pattern of rhizome and root system of Phyllostachys rivalis [J].For Res,2015,28(4):502 - 507.
[24] 劉玉芳,陳雙林,李迎春,等.淹水環(huán)境下河竹鞭根養(yǎng)分吸收和積累的適應(yīng)性調(diào)節(jié)[J].生態(tài)學(xué)報(bào),2016,36(10): 2926 - 2933.LIU Yufang,CHEN Shuanglin,LI Yingchun,et al.Adaptive adjustment to nutrient absorption and accumulation of Phyllostachys rivalis rhizome-roots under waterlogged conditions [J].Acta Ecol Sin,2016,36(10):2926 - 2933.
[25] DEMMING-ADAMS B,ADAMS Ⅲ W W,BARKER D H,et al.Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation [J].Physiol Plant,1996,98(2):253-264.
[26] 張會(huì)慧,張秀麗,王娟,等.利用快相葉綠素?zé)晒鈪?shù)綜合評(píng)價(jià)3種丁香的耐鹽性[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 37(5): 13 - 19.ZHANG Huihui,ZHANG Xiuli,WANG Juan,et al.A comprehensive evaluation of salt resistance in three clove varieties by the fast fluorescence transient parameters [J].J Nanjing For Univ Nat Sci Ed,2013,37(5):13 - 19.
[27] 王海珍,陳加利,韓路,等.地下水位對(duì)胡楊Populus euphratica和灰胡楊Populus pruinosa葉綠素?zé)晒夤忭憫?yīng)與光合色素含量的影響[J].中國(guó)沙漠, 2013, 33(4): 1054 - 1063.WANG Haizhen,CHEN Jiali,HAN Lu,et al.Effects of groundwater levels on photosynthetic pigments and light response of chlorophyll fluorescence parameters of Populus euphratica and Populus pruinosa [J].J Desert Res,2013,33(4):1054 - 1063.
[28] 吳雪霞,陳建林,查丁石.低溫脅迫對(duì)茄子幼苗葉綠素?zé)晒馓匦院湍芰亢纳⒌挠绊懀跩].植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2009, 15(1): 164 - 169.WU Xuexia,CHEN Jianlin,ZHA Dingshi.Effects of low temperature stress on chlorophyll fluorescence characteristics and excitation energy dissipation in eggplant seeding leaves [J].Plant Nutr Fert Sci,2009,15(1):164 - 169.
[29] van KOOTEN O,SNEL J F.The use of chlorophyll fluorescence nomenclature in plant stress physiology [J].Photosynth Res,1990,25(3):147 - 150.
[30] 師生波,李天才,李妙,等.土壤干旱和強(qiáng)光對(duì)高山蒿草葉片PSⅡ反應(yīng)中心非光化學(xué)猝滅的交互影響分析[J].植物生理學(xué)報(bào), 2015, 51(10): 1687 - 1686.SHI Shengbo,LI Tiancai,LI Miao,et al.Interaction effect analysis of soil drought and strong light on PSⅡnonphotochemical quenching in Kobresia pygmaea leaves [J].Plant Physiol J, 2015,51(10):1687 - 1686.
[31] 王巧,聶鑫,劉秀梅,等.遮光對(duì)松屬3個(gè)樹種幼樹光合特性和熒光參數(shù)的影響[J].浙江農(nóng)林大學(xué)學(xué)報(bào),2016, 33(4): 643 - 651.WANG Qiao,NIE Xin,LIU Xiumei,et al.Photosynthetic characteristics and chlorophyll fluorescence of three Pinus tree species with shading [J].J Zhejiang A&F Univ,2016,33(4):643 - 651.
[32] 徐凱,郭延平,張上隆,等.草莓葉片光合作用對(duì)強(qiáng)光的響應(yīng)及其機(jī)理[J].應(yīng)用生態(tài)學(xué)報(bào),2005,16(1):73-78.XU Kai,GUO Yanping,ZHANG Shanglong,et al.Response of strawberry leaves photosynthesis to strong light and its mechanism [J].Chin J Appl Ecol,2005,16(1):73 - 78.
[33] 溫國(guó)勝,田海濤,張明如,等.葉綠素?zé)晒夥治黾夹g(shù)在林木培育中的應(yīng)用[J].應(yīng)用生態(tài)學(xué)報(bào),2006,17(10): 1973-1977.WEN Guosheng,TIAN Haitao,ZHANG Mingru,et al.Application of chlorophyll fluorescence analysis in forest tree cultivation [J].Chin J Appl Ecol,2006,17(10):1973 - 1977.
[34] 黃磊,姜國(guó)斌,朱玉,等.高溫對(duì)北高叢藍(lán)莓葉片氣孔交換及葉綠素?zé)晒鈪?shù)的影響[J].生態(tài)學(xué)雜志,2016, 35(4): 871 - 879.HUANG Lei,JIANG Guobin,ZHU Yu,et al.Effects of high temperature on leaf gas exchange and chlorophyll fluorescence parameters of the north highbush blueberry [J].Chin J Ecol,2016,35(4):871 - 879.
[35] 宮麗丹,魏麗萍,倪書邦,等.持續(xù)干旱對(duì)油棕幼苗葉綠素?zé)晒鈩?dòng)力學(xué)參數(shù)的影響[J].中國(guó)農(nóng)業(yè)通報(bào),2016, 32(13): 1 - 6.GONG Lidan,WEI Liping,NI Shubang,et al.Effect of persistent drought stress on chlorophyll fluorescence parameters in leaves of oil palm [J].Chin Agric Sci Bull,2016,32(13):1 - 6.
[36] 周艷虹,黃黎鋒,喻景權(quán).持續(xù)低溫弱光對(duì)黃瓜葉片氣孔交換、葉綠素?zé)晒忖绾臀展饽芊峙涞挠绊懀跩].植物生理與分子生物學(xué)學(xué)報(bào),2004,30(2):153-160.ZHOU Yanhong,HUANG Lifeng,YU Jingquan.Effects of sustained chilling and low light on gas exchange,chlorophyll fluorescence quenching and absorbed light allocation in cucumber leaves [J].J Plant Physiol Mol Biol,2004,30(2):153 - 160.
[37] ASADA K.The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons[J].Annu Rev Plant Physiol Plant Mol Boil,1999,50:601 - 639.
Chlorophyll fluorescence and excitation energy dissipation of pot-grown Phyllostachys rivalis leaves after long-term flooding
LI Yingchun1,2,GUO Ziwu1,YANG Qingping1,YUE Yongde2,CHEN Shuanglin1
(1.Research Institute of Subtropical Forestry,Chinese Academy of Forestry,Hangzhou 311400,Zhejiang,China;2.International Center for Bamboo and Rattan,Beijing 100102,China)
S718.3
A
2095-0756(2017)05-0878-09
2016-09-29;
2016-11-05
浙江省中國(guó)林業(yè)科學(xué)研究院省院合作項(xiàng)目(2012SY05);浙江省自然科學(xué)基金資助項(xiàng)目(LY13C160001);中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(RISF2016005)
李迎春,助理研究員,博士研究生,從事竹林生理生態(tài)研究。E-mail:yingchunli001@126.com。通信作者:陳雙林,研究員,博士,從事竹林培育與生態(tài)研究。E-mail:cslbamboo@126.com