国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

磁共振成像技術(shù)在肝臟鐵過載的應(yīng)用進展

2017-09-29 05:41劉華平李文政李海蘭張友明
磁共振成像 2017年6期
關(guān)鍵詞:磁共振準確性定量

劉華平,李文政,李海蘭,張友明

磁共振成像技術(shù)在肝臟鐵過載的應(yīng)用進展

劉華平,李文政*,李海蘭,張友明

原發(fā)性血色素沉著癥、慢性肝病及血液病等均可導致鐵過載,嚴重鐵過載會導致肝臟、心臟、胰腺、甲狀腺和中樞神經(jīng)系統(tǒng)等器官功能障礙,甚至可致死亡。鐵過載較先累及肝臟,磁共振成像(magnetic resonance imaging,MRI)能準確無創(chuàng)評估肝臟鐵過載嚴重程度,且肝臟鐵含量與人體總鐵量具有高度相關(guān),因此肝臟MRI鐵定量技術(shù)對臨床意義重大。本文主要對MRI技術(shù)在肝臟鐵過載的應(yīng)用進展作一綜述。

肝臟;鐵過載;磁共振成像

遺傳血色沉著病、重型地中海貧血、再生障礙性貧血等血液系統(tǒng)疾病均可致鐵過載,嚴重者可致肝臟等器官功能障礙,甚至衰竭,因此,肝臟鐵含量的有效評估有助于指導臨床對引起全身鐵過載疾病的治療及作相應(yīng)療效評估。磁共振成像(magnetic resonance imaging,MRI)已經(jīng)從簡單參數(shù)成像邁向功能成像的時代,定量MRI在肝臟鐵含量(liver iron content,LIC)評估得到越來越多學者的認可,MRI對LIC的評估經(jīng)歷了一個不斷發(fā)展的過程,從最初利用肝臟與椎旁肌肉T2信號比值(signal intensity ratio,SIR)、正反相位信號差異,到以自旋回波為基礎(chǔ)的R2/T2、以梯度回波為基礎(chǔ)的R2*/T2*,及后來顱腦應(yīng)用較成熟的磁敏感成像(susceptibility weighted imaging,SWI)或重T2*加權(quán)血管成像(enhanced T2 star weighted angiography,ESWAN),此外還有將來可能應(yīng)用于腹部的定量磁化率成像(quantitative susceptibility mapping,QSM)。

1 鐵代謝

正常人每天造血需要的鐵(20~25 mg)大部分由衰老破壞的紅細胞(內(nèi)源性鐵)提供,保持體內(nèi)鐵平衡需要每天從食物攝取外源性鐵1~1.5 mg。體內(nèi)鐵分兩部分:一是儲存鐵,主要是鐵蛋白和含鐵血黃素;二是功能鐵,如血紅蛋白鐵、肌紅蛋白鐵、轉(zhuǎn)鐵蛋白、乳鐵蛋白、酶和輔因子結(jié)合的鐵。外源性鐵分為非血紅素鐵(多為Fe3+)和血紅素鐵,兩者吸收機制不同,二價金屬離子轉(zhuǎn)移蛋白(divalent metal transport 1,DMT1) 參與前者的轉(zhuǎn)運,膜鐵轉(zhuǎn)運蛋白(ferroportin 1)負責將鐵轉(zhuǎn)運到血漿,其具體代謝過程見圖1。

致肝鐵過載的疾病可分兩類:一是肝細胞內(nèi)鐵沉積,如原發(fā)性血色素性沉著癥所致;二是網(wǎng)狀內(nèi)皮細胞內(nèi)鐵沉積,可由血液病、腎功能衰竭等疾病治療中反復大量輸血所致[1]。肝細胞內(nèi)鐵可被kupffer細胞吞噬并以含鐵血黃素沉積在內(nèi)皮系統(tǒng),也可在肝細胞內(nèi)以非轉(zhuǎn)鐵蛋白結(jié)合的血漿鐵(nontransferrin-bound plasma iron,NTBI)形式出現(xiàn),NTBI的主要靶器官是肝臟、心臟及中樞神經(jīng)系統(tǒng)等,其中肝臟鐵過載嚴重時會致肝硬化、甚至肝癌。研究認為部分肝癌的演變可能與鐵過載導致細胞增殖、DNA損害有關(guān),氧化應(yīng)激反應(yīng)也起一定的誘導作用,尤其在伴有P53基因突變的患者[2-4]。

2 磁共振成像在肝鐵過載的應(yīng)用

2.1 T2信號強度比

在T2信號強度比值(SIR)中,早期研究經(jīng)常選擇一些沒有鐵沉積的組織作為參考值,如脂肪、椎旁肌肉或者體外的脂肪等[5-8],其中最典型的運用要屬Gandon等[8]于2004年發(fā)表在Lancet的研究,采用多回波梯度回波序列,研究中試驗組患者(n=139)同時用肝穿刺及T2SIR (1.5 T MRI,gradient recalled echo)分別評定LIC并分析兩者相關(guān)性,統(tǒng)計校正MRI評定模式,然后在驗證組(n=35)中驗證此模式,最后證實當肝臟/椎旁肌肉(L/M)小于0.88時,MRI提示肝臟鐵過載的敏感性為89%、特異性為80%,且在此閾值下,可以發(fā)現(xiàn)臨床60 umol/g<LIC<375 umol/g (正常<36 umol/g)的患者,兩者在此范圍內(nèi)具有高度相關(guān),并在驗證組中得到類似相關(guān)性。但該方法無法準確定量,只能間接評估,且當肝臟鐵過載嚴重(LIC>375 umol/g)時,信號丟失較嚴重,SIR與LIC相關(guān)性減低,此外,由于背景肝(肝硬化或脂肪肝等)信號差異、不同MR掃描儀之間的差異性等均會對評估結(jié)果造成影響,因此,該方法逐漸被淘汰。

2.2 正反相位圖像信號強度差異

Virtanen等[9]首次通過MRI正反相位信號差異來評估肝臟LIC,在該項研究中,作者依據(jù)正反相位圖像肝臟信號強度差異將肝鐵沉積分為4級,以正反相位相對信號強度(relative signal intensity,rSI,公式1)計算LIC(公式2),結(jié)果顯示這種通過影像科醫(yī)生對正反相位信號強度差異進行的簡單分級具有較高準確性,且在LIC<151 umol/g時,不同閱片者間的陽性預測值及陰性預測值達100%。

圖1 A為鐵代謝正常路徑,B為腸粘膜細胞局部微觀鐵代謝路徑Fig. 1 A: The normal path of iron metabolism, B: Local iron metabolism pathway of intestinal mucosa cells at the micro level.

該方法最大的優(yōu)點是簡單快捷,且無需特殊后處理,影像科醫(yī)生能早期快速評估患者鐵過載情況,但缺點是興趣層面選擇及興趣區(qū)勾畫易受主觀影響、背景肝脂肪沉積造成正反相位信號差值增大等均可造成最終評估偏差。

2.3 R2/T2

R2為弛豫率,T2為時間常量,兩者均為自旋回波序列獲得參數(shù),且互為倒數(shù)。早期多項研究都指出LIC和R2呈線性關(guān)系[10-13],但由于這些研究樣本量不足,研究結(jié)果可能掩蓋兩者間的復雜非線性關(guān)系。Pierre等[14]在2005年發(fā)表的研究結(jié)果表明患者LIC (n=105)與R2存在復雜的非線性關(guān)系,并證實當LIC在一定閾值時,R2有高度準確性及特異性,且該研究的MRI評估方法得到美國FDA審批,成為一種商用技術(shù)FerriScan[15]。之后,St Pierre等[16]的研究采用FerriScan評估233例患者肝臟鐵過載的情況,并將其與肝穿刺活檢鐵定量結(jié)果對比,證實FerriScan技術(shù)可作為一種無創(chuàng)安全評估方法,并提供準確的肝鐵過載信息。Yassin等[17]通過采用FerriScan評估一位靜脈鐵中毒患者口服鐵螯合劑療效發(fā)現(xiàn),F(xiàn)erriScan可以很好地評估肝鐵過載程度,并指導臨床治療??傊?,對R2/T2而言,回波時間(echo time,TE)的最優(yōu)設(shè)置應(yīng)使首個回波時間盡量短(少于5 ms),末個回波時間盡量長且確保不會導致運動或呼吸等偽影(一般15~30 ms),最佳回波數(shù)量未統(tǒng)一,應(yīng)在不超過最大采集時間范圍內(nèi)盡可能增加回波數(shù)量。此外,R2的準確性會隨著肝臟LIC的升高而降低,嚴重鐵過載時無法準確評估;另一方面,單次激發(fā)自旋回波(single-shot spin echo,SSE)較長的掃描時間會增加呼吸運動偽影,這也是R2的主要缺點(FerriScan掃描一次大約10~20 min)[15]。但是,F(xiàn)erriScan (R2)相對SIR及正反相位信號強度差異,能對LIC進行相對準確的定量評估,Peng等[18]在兔子模型中證實R2相對于SIR具有更好的相關(guān)性,但FerriScan (R2)作為一項商用技術(shù),掃描時間長、花費高阻礙了其廣泛推廣應(yīng)用。

2.4 R2*/T2*

在多回波梯度回波序列中,T2*是時間常量,R2*是弛豫率,兩者關(guān)系為R2*=R2+R2',R2'=1/T2',T2*與T2的關(guān)系可表示為公式(3)。由于歷史原因,MRI檢測的肝鐵濃度由R2和R2*表示,而心臟鐵濃度由T2和T2*表示[14,19-21]。依賴于GRE序列的R2*/T2*[22]是一種快速肝臟鐵定量技術(shù),并在此基礎(chǔ)上開發(fā)了水脂分離技術(shù),一次掃描即可生成水像、脂像、水/脂相位圖、R2*圖,如西門子公司的IDEAL-IQ、GE公司的多回波m DIXON技術(shù)等[23-24],其掃描時間較R2/T2明顯縮短,后處理簡單高效,費用明顯降低。

T2*早期在英國首先被用于臨床評價地中海貧血患者心肌鐵過載情況,有助于臨床評估鐵螯合治療效果,這對臨床有效緩解疾病進展起了重要作用[25]。如果不考慮數(shù)據(jù)擬合運算及掃描參數(shù)的差異性,對相對正?;蜉p度鐵沉積的患者,R2*評價LIC的準確性及穩(wěn)定性都比較高,但是隨著鐵沉積的加重,信號丟失越來越嚴重,甚至在TE為1~2 ms時信號已完全丟失,由于R2*綜合了R2和R2'的影響,R2*信號衰減要快于R2[26]。為了通過R2*更準確評估LIC,在采集方法方面,首個TE同樣要求時間盡可能短,因為這決定了R2*的最大值(或者T2*的最小值),即LIC最大值。另外,通過回波補償[27]、在頻率編碼方向減小矩陣來縮短回波間隔,采取最優(yōu)像素大小和層厚獲取最佳信噪比(signal noise ratio,SNR)及減少主磁場漂移造成的偽影[26]。在后處理方面,適當?shù)慕翟肽J?如萊斯分布、高斯分布等模式)、更高級的擬合運算(如非線性加權(quán)最小二乘法、極大似然反卷積等),均能提高R2*評估的穩(wěn)定性及準確性[28-29]。

在同樣場強不同的機型條件下,R2*和肝臟活檢、FerriScan LIC 有很好的線性相關(guān)及可重復性[30-32]。研究表明R2*相對于R2具有更高的敏感性,R2曲線在高LIC時趨向于飽和,而R2*仍呈線性關(guān)系[20,33-34]。SIR和R2在早期臨床上運用較多,相比之下,R2*更能快速及準確地評估LIC[15]。另有研究通過比較R2、R2*與肝穿刺3種方法在評估肝臟鐵過載螯合治療效果中發(fā)現(xiàn),前兩種MRI方法與肝穿刺的監(jiān)測效果具有可比性,前兩者準確性甚至要高于肝穿刺,且在隨訪間隔為12 w和24 w時,R2*準確性及穩(wěn)定性最高,但在隨訪間期為48 w時,這種優(yōu)勢不明顯[35];另一篇去鐵治療的研究[36]也指出MRI定量檢測(T2*)較血清鐵蛋白(serum ferritin,SF)能更好地反映鐵過載程度差異,因為規(guī)律去鐵治療半年后SF有顯著變化,而LIC變化不大,因此需要更長時間去鐵治療才能觀察到臟器鐵過載的改善。此外,有研究者對肝硬化患者在標準T2*多回波序列中加用脂肪抑制序列,發(fā)現(xiàn)加用脂肪抑制的T2*值更低,更能真實地反映鐵過載的情況[37]??傊鄬τ谏鲜龈鞣NMRI方法,R2*/T2*具有準確性高、費用低、掃描時間短、后處理簡單高效等多種優(yōu)勢,且由于T2*對鐵非常敏感,T2*相對于T2對輕度鐵過載患者具有更高的敏感性,準確性更高[20-21]。但是不同的掃描參數(shù)及不同的擬合運算法則,可以得到不同的R2*-LIC校準曲線,因此需要統(tǒng)一規(guī)范化掃描參數(shù)、后處理模式及鐵過載嚴重程度MRI分級標準。

2.5 SWI、ESWAN及QSM

SWI一次掃描獲得幅度圖及相位圖,通過一定技術(shù)處理并將兩者相乘得到完整的圖像,這樣的圖像既能夠表現(xiàn)組織的對比度信息,又能夠反映出不同組織之間磁化率的差異。ESWAN是以SWI為基礎(chǔ)開發(fā)的磁敏感衍生序列,是一種多回波采集的重度T2*加權(quán)的三維梯度回波序列,相較于SWI,提高了圖像信噪比,最終可以獲得4個定量參數(shù),即幅度值、相位值、T2*、R2*。QSM是近年來在SWI或ESWAN基礎(chǔ)上發(fā)展的一種新技術(shù),是利用預處理后的局部場圖相位信息,并通過進一步反演計算得出每一個體素內(nèi)的內(nèi)在磁化率,從而準確地反映組織內(nèi)鐵含量,其最大特點是圖像對比完全源自圖像相位而非磁敏感信號的幅度,并且反映的是不同物質(zhì)所產(chǎn)生的磁敏感效應(yīng)[38-41]。

SWI、ESWAN及QSM均是與磁敏感相關(guān)依次發(fā)展衍生的磁共振技術(shù),它們在顱腦的運用比較成熟,但在肝臟的應(yīng)用研究非常少。SWI在肝硬化中含鐵小結(jié)(siderotic nodule,SN)的探測,相對于T2*具有更高的敏感性[42-43]。另外,SWI還能運用于肝臟腫塊出血的探及和肝硬化的分級[44-45]。而在肝臟鐵定量方面的研究僅見國內(nèi)少量研究報道并認為SWI相位值可能能對LIC進行評估[46-47],但沒有得到臨床研究證實。蔡春仙等[48]利用磁敏感加權(quán)成像定量測定正常肝脾鐵含量,探討正常人群肝脾鐵含量的分布特點,發(fā)現(xiàn)正常人肝脾鐵含量均隨著年齡的增加而增加,但肝鐵含量增加程度低于脾,T2*值及R2*值均可以作為測量肝脾鐵含量的敏感指標。國外Yuan等[49]發(fā)現(xiàn)2D ESWAN對肝臟SN的探測相對于T2*具有更高的準確性。QSM多數(shù)研究[50-52]發(fā)現(xiàn)阿爾茲海默病、帕金森病、多發(fā)性硬化等疾病均與灰質(zhì)核團鐵沉積有關(guān)。2012年Langkammer等的研究證實QSM測定的腦灰質(zhì)鐵含量和經(jīng)尸體解剖化學測定值有高度相關(guān)(r=0.84),證實QSM在顱腦鐵定量的可行性。2015年Sun等[53]通過對比分析QSM與標本鐵染色(r=0.86)、R2*(r=0.87)對顱腦鐵含量測定,發(fā)現(xiàn)QSM與后兩者均具有高度相關(guān)性。2016年Langkammer等[54]更進一步證實QSM對特發(fā)性帕金森病患者灰質(zhì)核團鐵沉積敏感性比R2*更高,且更能詳細全面真實地反映患者情況。基于此,有學者嘗試將QSM應(yīng)用于肝臟,但面臨背景噪聲濾除、呼吸運動、脂肪信號影響及嚴重鐵過載導致信號丟失等一系列技術(shù)挑戰(zhàn),有關(guān)研究尤為少見,僅2015年Sharma等[55]將QSM運用于肝臟鐵過載的定量分析,發(fā)現(xiàn)通過QSM得出的肝臟磁化率與Ferriscan-LIC (R2)及R2*具有高度相關(guān),初步證實了QSM在肝臟鐵過載運用的可行性,但其應(yīng)用價值還有待更多臨床研究證實??偠灾?,上述各MRI技術(shù)優(yōu)缺點可概括如表1所示。

表1 肝臟鐵定量的MRI技術(shù)優(yōu)缺點Tab.1 The advantages and disadvantages of MRI for quantification of hepatic iron overload

3 小結(jié)

綜上所述,SIR和R2是早期臨床上評估LIC可行的MRI技術(shù),其中Ferriscan-LIC (R2)是國際公認的相對金標準,但R2商用軟件費用較高,且成像時間長其偽影較難控制;R2*/T2*掃描時間短,后處理簡單,對輕度鐵過載測量敏感性及準確性相對R2更高,是目前多國鐵過載治療的專家指南推薦的檢查手段,但缺乏標準化掃描參數(shù)及后處理模式、鐵過載分度MRI診斷標準,新技術(shù)QSM直接測量肝臟磁化率,具有相對R2*更為精準的定量值,雖然技術(shù)有難點,但具有廣闊的應(yīng)用前景,將來可能代替R2*在肝臟鐵過載定量分析中的運用。

[References]

[1] Yu DX, Li CF, Research development of hepatic iron overload and the non-invasive assessment by MRI. Int J Med Radiol, 2009, 32(2):150-152.于德新, 李傳福. 肝鐵過載及MRI無創(chuàng)評估研究進展. 國際醫(yī)學放射學雜志, 2009, 32(2): 150-152.

[2] Cariou S, Hubert N, Leroyer P, et al. Iron may induce both DNA synthesis and repair in rat hepatocytes stimulated by EGF/pyruvate. J Hepatology, 1997, 26(3): 650-658.

[3] Kowdley KV. Iron, hemochromatosis, and hepatocellular carcinoma.Gastroenterology, 2004, 127(5 Suppl 1): S79-S86.

[4] Marrogi AJ, Khan MA, van Gijssel HE, et al. Oxidative stress and p53 mutations in the carcinogenesis of iron overload-associated hepatocellular carcinoma. J Natl Cancer Inst, 2001, 93(21):1652-1655.

[5] Gandon Y, Guyader D, Heautot JF, et al. Hemochromatosis: diagnosis and quantification of liver iron with gradient-echo MR imaging.Radiology, 1994, 193(2): 533-538.

[6] Ernst O, Sergent G, Bonvarlet P, et al. Hepatic iron overload:diagnosis and quantification with MR imaging. AJR Am J Roentgenol, 1997, 168(5): 1205-1208.

[7] Bonkovsky HL, Rubin RB, Cable EE, et al. Hepatic iron concentration: noninvasive estimation by means of MR imaging techniques. Radiology, 1999, 212(1): 227-234.

[8] Gandon Y, Olivié D, Guyader D, et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet, 2004, 363(9406): 357-362.

[9] Virtanen JM, Pudas TK, Ratilainen JA, et al. Iron overload: accuracy of in-phase and out-of-phase MRI as a quick method to evaluate liver iron load in haematological malignancies and chronic liver disease.Br J Radiol, 2012, 85(1014): 162-167.

[10] Israel J, Unger E, Buetow K, et al. Correlation between liver iron content and magnetic resonance imaging in rats. Magn Reson Med,1989, 7(6): 629-634.

[11] Kaltwasser JP, Gottschalk R, Schalk KP, et al. Non-invasive quantitation of liver iron-overload by magnetic resonance imaging.Br J Haematol, 1990, 74(3): 360-363.

[12] Dixon RM, Styles P, Al-Refaie FN, et al. Assessment of hepatic iron overload in thalassemic patients by magnetic resonance spectroscopy.Hepatology, 1994, 19(4): 904-910.

[13] Wang ZJ, Haselgrove JC, Martin MB, et al. Evaluation of iron overload by single voxel MRS measurement of liver T2. J Magn Reson Imaging, 2002, 15(4): 395-400.

[14] Pierre TGS, Clark PR, Chua-Anusorn W, et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood, 2005, 105(2): 855-861.

[15] Hernando D, Levin YS, Sirlin CB, et al. Quantification of liver iron with MRI: State of the art and remaining challenges. J Magn Reson Imaging, 2014, 40(5): 1003-1021.

[16] St Pierre TG, El-Beshlawy A, Elalfy M, et al. Multicenter validation of spin-density projection-assisted R2-MRI for the noninvasive measurement of liver iron concentration. Magn Reson Med, 2014,71(6): 2215-2223.

[17] Yassin M, Soliman AT, De Sanctis V, et al. A young adult with unintended acute intravenous iron intoxication treated with oral chelation: the use of liver ferriscan for diagnosing and monitoring tissue iron load. Mediterr J Hematol Infect Dis, 2017, 9(1):e2017008.

[18] Peng P, Huang Z, Long L, et al. Liver iron quantification by 3 tesla MRI: Calibration on a rabbit model. J Magn Reson Imaging, 2013,38(6): 1585-1590.

[19] Wood JC. Guidelines for quantifying iron overload. Hematology/the education program of the American society of hematology. American Society of Hematology. Education Program, 2014, 2014(1): 210-215.

[20] Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2*mapping accurately estimates hepatic iron concentration in transfusiondependent thalassemia and sickle cell disease patients. Blood, 2005,106(4): 1460-1465.

[21] Anderson LJ, Holden S, Davis B, et al. Cardiovascular T2-star(T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J, 2001, 22(23): 2171-2179.

[22] Ibrahim E, Khalifa AM, Eldaly AK. The influence of the analysis technique on estimating liver iron overload using magnetic resonance imaging T2*quantification. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, 2014: 4639-4642.

[23] Guo RM, Tang WJ, Zhu YQ, et al. Diagnostic value of MRI IDEALIQ sequence to hepatic steatosis and hepatic iron-overloaded. J Sun Yat?Sen University (Medical Sciences), 2015, 36(5): 689-692.郭若汨, 唐文杰, 朱葉青, 等. 磁共振IDEAL-IQ序列對肝臟脂肪變性和鐵過載的診斷價值. 中山大學學報(醫(yī)學科學版), 2015, 36(5):689-692.

[24] Qi S, Zhao DW, Zhao J, et al. The preliminary study of role of multiecho GRE dixon in the diagnosis of primary hepatocarcinoma. Chin J Magn Reson Imaging, 2015, 6(8): 626-630.齊石, 趙大偉, 趙晶, 等. 相位校正多回波GRE Dixon序列在原發(fā)性肝癌診斷價值的初步探討. 磁共振成像, 2015, 6(8): 626-630.

[25] Anderson LJ. Assessment of iron overload with T2*magnetic resonance imaging. Progress in Cardiovascular Diseases, 2011,54(3): 287-294.

[26] Yokoo T, Browning JD. Fat and iron quantification in the liver: past,present, and future. Top Magn Reson Med, 2014, 23(2): 73-94.

[27] Ryden H, Skorpil M. Quantification of severe liver iron overload using MRI offset echoes. Acta Radiologica Open, 2015, 4(5): 1-4.

[28] Yokoo T, Yuan Q, Dimitrov I. Systematic investigation of variousstrategies for T2*mapping for liver iron quantification in the presence of noise. ISMRM 21st Annual Meeting & Exhibition, 20-26 April 2013, Salt Lake City, Utah, USA.

[29] Yokoo T, Yuan Q, Senegas J, et al. Quantitative R2*MRI of the liver with rician noise models for evaluation of hepatic iron overload:simulation, phantom, and early clinical experience. J Magn Reson Imaging, 2015, 42(6): 1544-1559.

[30] Kirk P, He T, Anderson LJ, et al. International reproducibility of single breathhold T2*MR for cardiac and liver iron assessment among five thalassemia centers. J Magn Reson Imaging, 2010, 32(2):315-319.

[31] Tanner MA, He T, Westwood MA, et al. Multi-center validation of the transferability of the magnetic resonance T2*technique for the quantification of tissue iron. Haematologica, 2006, 91(10):1388-1391.

[32] Chan WC, Tejani Z, Budhani F, et al. R2*as a surrogate measure of ferriscan iron quantification in thalassemia. J Magn Reson Imaging,2014, 39(4): 1007-1011.

[33] Girard OM, Ramirez R, Mccarty S, et al. Toward absolute quantification of iron oxide nanoparticles as well as cell internalized fraction using multiparametric MRI. Contrast Media Mol Imaging,2012, 7(4): 411-417.

[34] Ghugre NR, Coates TD, Nelson MD, et al. Mechanisms of tissueiron relaxivity: nuclear magnetic resonance studies of human liver biopsy specimens. Magn Reson Med, 2005, 54(5): 1185-1193.

[35] Wood JC, Zhang P, Rienhoff H, et al. Liver MRI is more precise than liver biopsy for assessing total body iron balance: a comparison of MRI relaxometry with simulated liver biopsy results. Magn Reson Med, 2015, 33(6): 761-767.

[36] Zhang Q, Hou B, Wang L, et al. MRI monitoring in diagnosis and follow-up of iron overload. Chin J Hematol, 2015, 36(4): 302-306.張倩, 侯波, 王璐, 等. 磁共振成像技術(shù)在鐵過載診斷及隨訪中的應(yīng)用. 中華血液學雜志, 2015, 36(4): 302-306.

[37] Sanches-Rocha L, Serpa B, Figueiredo E, et al. Comparison between multi-echo T2*with and without fat saturation pulse for quantification of liver iron overload. Magn Reson Med, 2013, 31(10):1704-1708.

[38] Liu T, Khalidov I, de Rochefort L, et al. A novel background field removal method for MRI using projection onto dipole fields (PDF).NMR Biomed, 2011, 24(9): 1129-1136.

[39] Schweser F, Deistung A, Lehr BW, et al. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism?. Neuroimage, 2011,54(4): 2789-2807.

[40] Haacke EM, Liu S, Buch S, et al. Quantitative susceptibility mapping: current status and future directions. Magn Reson Med,2015, 33(1): 1-25.

[41] Wang M, Li CF. Quantitative susceptibility maping and its application in quantification of brain iron. Chin Imaging J Integrated Traditional and Western Medicine, 2016, 14(1): 105-108.王敏,李傳富. 定量磁化率成像及其在腦鐵定量中的研究進展.中國中西醫(yī)結(jié)合影像學雜志, 2016, 14(1): 105-108.

[42] Dai Y, Zeng M, Li R, et al. Improving detection of siderotic nodules in cirrhotic liver with a multi-breath-hold susceptibility-weighted imaging technique. J Magn Reson Imaging, 2011, 34(2): 318-325.

[43] Liu S, Buch S, Chen Y, et al. Susceptibility-weighted imaging:current status and future directions. NMR in Biomedicine, 2017 Apr;30(4). doi: 10.1002/nbm.3552. Epub 2016 May 18.

[44] Li RK, Zeng MS, Rao SX, et al. Using a 2D multibreath-hold susceptibility-weighted imaging to visualize intratumoral hemorrhage of hepatocellular carcinoma at 3.0 T MRI: correlation with pathology.J Magn Reson Imaging, 2012, 36(4): 900-906.

[45] Balassy C, Feier D, Peck-Radosavljevic M, et al. Susceptibilityweighted MR imaging in the grading of liver fibrosis: a feasibility study. Radiology, 2014, 270(1): 149-158.

[46] Tao R, Cui JG, Zhang JQ, et al. Assessment of liver iron overload using susceptibility-weighted imaging in patients with hepatic cirrhosis: correlation with level of serum ferritin. Chin J Med Imaging, 2012, 20(5): 328-330.陶冉, 崔進國, 張久權(quán), 等. 應(yīng)用磁敏感加權(quán)成像評價肝硬化患者肝臟鐵沉積及其與血清鐵蛋白含量的相關(guān)性. 中國醫(yī)學影像學雜志, 2012, 20(5): 328-330.

[47] Yan D. The investigation in quantitative assessment of iron deposition in patients with chronic hepatits B using SWI. Nanning:Guangxi Medical University, 2014.嚴達. 磁共振SWI相位值及T2*值定量測定慢性乙型肝炎合并肝鐵沉積. 南寧: 廣西醫(yī)科大學, 2014.

[48] Cai CX, Wei CH, Zhao SH, et al. Quantitative determination of iron content in normal liver and spleen using susceptibility weighted imaging. Chin J Med Imaging, 2013, 21(9): 656-658.蔡春仙, 魏常輝, 趙世勝, 等. 磁敏感加權(quán)成像定量測定正常肝脾鐵含量. 中國醫(yī)學影像學雜志, 2013, 21(9): 656-658.

[49] Yuan Z, Shen Z, Guo L, et al. Improving detection of siderotic nodules in patients with liver disease using 2D ESWAN technique.Acad Radiol, 2014, 21(8): 971-976.

[50] Juhas M, Sun H, Brown MR, et al. Deep grey matter iron accumulation in alcohol use disorder. Neuroimage, 2017, 148: 115-122.

[51] Wang Y, Spincemaille P, Liu Z, et al. Clinical quantitative susceptibility mapping (QSM): Biometal imaging and its emerging roles in patient care. J Magn Reson Imaging, 2017 Mar 10. doi:10.1002/jmri.25693. [Epub ahead of print].

[52] Eskreis-Winkler S, Zhang Y, Zhang J, et al. The clinical utility of QSM: disease diagnosis, medical management, and surgical planning. NMR Biomed, 2017, 30(4): doi: 10.1002/nbm.3668. Epub 2016 Dec 1.

[53] Sun H, Walsh AJ, Lebel RM, et al. Validation of quantitative susceptibility mapping with Perls' iron staining for subcortical gray matter. Neuroimage, 2015, 105: 486-492.

[54] Langkammer C, Pirpamer L, Seiler S, et al. Quantitative susceptibility mapping in parkinson's disease. PLoS One, 2016,11(9): e162460.

[55] Sharma SD, Hernando D, Horng DE, et al. Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload. Magn Reson Med, 2015, 74(3): 673-683.

MRI evaluation of hepatic iron overload: recent advances

LIU Hua-ping, LI Wen-zheng*, LI Hai-lan, ZHANG You-ming
Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China

Iron overload can be caused by hereditary hemochromatosis, hematological diseases, chronic liver disease and so on. Severe iron overload can result in liver, heart,pancreas, thyroid organs, the central nervous system, and other organ dysfunction,or even can cause death. Iron overload can result in liver damage firstly, and the liver iron concentration bring into correspondence with the body iron content. MRI can accurately noninvasive assess and monitor the liver iron concentration, provide guidance for clinical treatment. This article mainly introduces MRI-based methods for quantification of liver iron, including remaining challenges, unsolved problems and potential application prospect.

Liver; Iron overload; Magnetic resonance imaging

24 Feb 2017, Accepted 7 Apr 2017

作者單位:
中南大學湘雅醫(yī)院放射科,長沙410008

中南大學湘雅醫(yī)院臨床科研基金項目(編號:2014L05)

李文政,E-mail:liwenzhenghuazi@163.com

2017-02-24

接受日期:2017-04-07

R445.2;R575.5

A

10.12015/issn.1674-8034.2017.06.016

劉華平, 李文政, 李海蘭, 等. 磁共振成像技術(shù)在肝臟鐵過載的應(yīng)用進展. 磁共振成像, 2017, 8(6): 475-480.

*Correspondence to: Li WZ, E-mail:liwenzhenghuazi@163.com

ACKNOWLEDGMENTSThis work was part of Clinical Research Fund of Xiangya Hospital, Central South University (No. 2014L05).

猜你喜歡
磁共振準確性定量
淺談如何提高建筑安裝工程預算的準確性
顯微定量法鑒別林下山參和園參
磁共振有核輻射嗎
當歸和歐當歸的定性與定量鑒別
磁共振有核輻射嗎
磁共振彌散加權(quán)成像對急性腦梗死的診斷作用探討
10 種中藥制劑中柴胡的定量測定
影響紫外在線監(jiān)測系統(tǒng)準確性因子分析
論股票價格準確性的社會效益
慢性HBV感染不同狀態(tài)下HBsAg定量的臨床意義
荆州市| 仁寿县| 花莲市| 赤城县| 凉山| 阳春市| 石景山区| 永寿县| 乌拉特后旗| 乌鲁木齐市| 伊吾县| 嫩江县| 略阳县| 图木舒克市| 南汇区| 景德镇市| 措美县| 普格县| 富顺县| 荔波县| 成安县| 正定县| 尖扎县| 阿图什市| 叶城县| 永福县| 鞍山市| 行唐县| 阳东县| 康保县| 邵东县| 麦盖提县| 乌兰察布市| 琼海市| 宝坻区| 桐城市| 临桂县| 彭山县| 荔波县| 礼泉县| 西宁市|