王麗萍,郭咸希,何 文,宋金春
·綜述·
氯氮平的基因遺傳多態(tài)性研究進(jìn)展
王麗萍,郭咸希,何 文,宋金春
氯氮平是非典型抗精神分裂的代表藥物,在治療精神分裂疾病中起到重要作用,臨床實(shí)踐發(fā)現(xiàn),不同個(gè)體對(duì)氯氮平的反應(yīng)有較大差異,研究表明,遺傳因素是導(dǎo)致氯氮平療效產(chǎn)生個(gè)體差異的重要原因之一。本文就氯氮平的基因遺傳多態(tài)性研究進(jìn)展進(jìn)行綜述。
抗精神分裂藥物;氯氮平;基因遺傳多態(tài)性
中樞神經(jīng)系統(tǒng)紊亂是發(fā)達(dá)國(guó)家的第三大健康問題,世界范圍內(nèi)精神分裂癥的患病率為1%[1-3]。對(duì)精神分裂癥的治療方案通常是給予各種類型、不同劑量的抗精神病藥物,但是在臨床實(shí)踐中經(jīng)常遇到藥物療效個(gè)體差異大的難題?;蜻z傳多態(tài)性作為遺傳學(xué)、基因組學(xué)等學(xué)科的交叉研究熱點(diǎn),為尋找抗精神病藥物療效個(gè)體差異的原因提供了新的方向,有利于增加患者的依從性,提高抗精神病藥物療效,降低不良反應(yīng),對(duì)治療精神病藥物的選擇和劑量調(diào)整具有積極的作用,現(xiàn)以治療精神病常用藥物-氯氮平為例進(jìn)行闡述。
氯氮平是1958年由瑞士合成的一種新型三環(huán)類化合物,結(jié)構(gòu)式為C18H19ClN4,通常用于治療精神分裂癥,尤其用于難治性或不能耐受其他傳統(tǒng)抗精神藥物不良反應(yīng)的精神分裂患者[3-4]。在我國(guó),31.7%的精神分裂患者使用氯氮平控制病情,是常用的抗精神病藥物[4]。氯氮平在體內(nèi)生物轉(zhuǎn)化程度高,94%的氯氮平在肝中被代謝[5]。
CYP1A2、CYP3A4酶將氯氮平分別轉(zhuǎn)化為去甲氯氮平和N-氧化氯氮平[3,6],再進(jìn)一步發(fā)生結(jié)合反應(yīng),生成氯氮平及其代謝物葡糖苷酸結(jié)合物。人類服用氯氮平后,在尿液和膽汁中發(fā)現(xiàn)的原形氯氮平和去甲氯氮平分別占全部代謝產(chǎn)物的6%、3%,二者的葡糖苷酸結(jié)合物則占33%~38%[7]。
去甲氯氮平是活性代謝產(chǎn)物,半衰期長(zhǎng)(11~105 h),個(gè)體差異大,能夠影響生物轉(zhuǎn)化活性的因素均可影響去甲氯氮平的產(chǎn)生,如食物、年齡、疾病、CYP酶的活性等。遺傳藥理學(xué)可提高氯氮平的安全性和患者的依從性。氯氮平可與血清素受體、多巴胺受體、組胺受體、腎上腺素受體、毒蕈堿受體結(jié)合,這也是它與其他非典型抗精神病藥物藥效差異的原因[8]。
氯氮平作為非典型抗精神病藥的代表藥物,對(duì)難治性或不能耐受傳統(tǒng)抗精神藥物患者的無效率高達(dá)40%~70%[9];氯氮平的治療窗狹窄,僅為350~600 ng/mL,當(dāng)血藥濃度超過800~1 000 ng/mL時(shí),有發(fā)生嗜中性白細(xì)胞減少癥、心臟毒性、體重增加、抽搐等不良反應(yīng)的風(fēng)險(xiǎn),不僅影響患者的依從性,嚴(yán)重的將危及生命[10-11]。這種個(gè)體間的差異有諸多影響因素,包括年齡、性別、種族、肝腎功能、飲食、酗酒、合并用藥以及疾病的嚴(yán)重程度等,也可從遺傳角度尋找答案。
2.1 與藥代動(dòng)力學(xué)相關(guān)的基因多態(tài)性
2.1.1 轉(zhuǎn)運(yùn)體 P-gp蛋白是轉(zhuǎn)運(yùn)外源性物質(zhì)的膜蛋白,由位于染色體7q21.1上的基因ABCB1編碼,在人體中分布廣泛。當(dāng)P-gp表達(dá)在血腦屏障中毛細(xì)血管內(nèi)皮細(xì)胞的腔表面時(shí),P-gp可將氯氮平由腦轉(zhuǎn)運(yùn)到血漿中,從而影響氯氮平的分布[12]。很多基因突變對(duì)P-gp的轉(zhuǎn)運(yùn)功能產(chǎn)生影響,常見的是2677G>T、3435C>T點(diǎn)突變。Consoli等[13]研究表明,3435CC和2677GG基因型患者的氯氮平血藥濃度比相應(yīng)的雜合子或TT型基因型患者低;3435CC基因型患者服用(245±142)mg/d才可與CT或TT型患者服用(140±90)mg/d氯氮平達(dá)到相同的血藥濃度;Jaquenoud等[14]驗(yàn)證了3435TT基因型患者的氯氮平血藥濃度是非攜帶者的1.6倍,提示我們可采用測(cè)定患者的基因型指導(dǎo)氯氮平給藥劑量,攜帶有3435CT或TT基因型患者服用氯氮平時(shí)適當(dāng)減量即可達(dá)到治療的目的。另外,rs 7787082 (c.2685+3559 C>A)和rs 10248420 (c.2481+788 T>C)點(diǎn)突變與氯氮平療效相關(guān)。Lee等[15]研究發(fā)現(xiàn),rs 7787082G等位基因和rs 10248420A等位基因的頻率在氯氮平無效組中顯著增高,OR值分別為4.87和4.10,提示攜帶有上述等位基因的患者不建議使用氯氮平治療精神分裂癥。
2.1.2 代謝酶 氯氮平劑量本身與血藥濃度不存在相關(guān)性,這與藥物代謝酶CYP有關(guān),氯氮平的最低有效濃度為1.2 μmol,當(dāng)其血藥濃度大于3.0 μmol,時(shí)發(fā)生不良反應(yīng)的風(fēng)險(xiǎn)大大增加[3],這可能與代謝功能的遺傳改變有關(guān)。CYP1A2是其主要的代謝酶,CYP1A2酶活性改變是氯氮平血藥濃度變化的重要決定因素。CYP1A2的第6內(nèi)含子區(qū)發(fā)生3534G>A點(diǎn)突變,使RNA剪接錯(cuò)誤,進(jìn)而使第6外顯子區(qū)發(fā)生Ser388Arg的點(diǎn)突變和delThr389-Pro417的19個(gè)氨基酸缺失,最終生成一段縮短的無功能區(qū),降低了CYP1A2酶活性,提高氯氮平的血藥濃度[16]。位于第1內(nèi)含子的-164C>A點(diǎn)突變構(gòu)成等位基因*1F,CYP1A2*1F等位基因影響氯氮平療效,是造成精神分裂癥患者氯氮平療效差異的重要因素。CYP1A2*1F/*1F基因型的CYP1A2酶活性是CYP1A2*1/*1或CYP1A2*1/*1F基因型的1.6~1.7倍,在吸煙者中CYP1A2*1F基因突變也使CYP1A2酶活性升高18%[17]。Eap等[18]研究表明,攜帶有CYP1A2*1F/*1F基因型的精神分裂患者對(duì)氯氮平耐受。Balibey等[19]證實(shí)攜帶有CYP1A2*1F等位基因可導(dǎo)致氯氮平療效降低,吸煙患者的氯氮平療效降低15%。Jaquenoud等[9]也證實(shí),吸煙患者的CYP1A2活性是不吸煙患者的1.5倍,吸煙患者的氯氮平、去甲氯氮平血藥濃度分別是不吸煙患者的67%和64%。提示對(duì)吸煙的精神分裂患者進(jìn)行CYP1A2*1F多態(tài)性檢測(cè),有助于氯氮平療效的預(yù)測(cè)和治療方案的確定,不同等位基因的代謝能力不同,在臨床抗精神病藥物劑量上與經(jīng)驗(yàn)給藥模式有所不同,應(yīng)將CYP1A的遺傳代謝納入考慮因素,建議攜帶有CYP1A2*1F等位基因的患者增加劑量或者選用其他藥物治療;吸煙患者增加氯氮平劑量。
2.2 與藥物效應(yīng)學(xué)相關(guān)的基因多態(tài)性
2.2.1 多巴胺受體 氯氮平是高親和力多巴胺受體拮抗劑,且多巴胺系統(tǒng)功能紊亂是精神分裂癥的病因和治療靶點(diǎn),因此,多巴胺受體基因成為影響抗精神病藥物遺傳藥理學(xué)的候選基因。
DRD2受體:精神分裂癥患者紋狀體中的DRD2密度顯著增高,提示DRD2與精神分裂癥發(fā)病相關(guān),DRD2R也因此成為抗精神病藥物的主要作用靶點(diǎn)。DRD2R由染色體11q22-23的DRD2基因編碼,啟動(dòng)子區(qū)的-141CIns/Del基因多態(tài)性與氯氮平療效的關(guān)系是研究的熱點(diǎn)[20-21]。Zhang等[22]的Meta分析顯示,DRD2啟動(dòng)子區(qū)的-141CIns/Del基因多態(tài)性影響氯氮平療效,Del攜帶者使用抗精神分裂藥物比Ins/Ins基因型患者效果差。
多巴胺D3(DRD3)受體:氯氮平是高親和力多巴胺D3受體拮抗劑,DRD3受體由位于染色體3q13.3的DRD3基因編碼,集中分布在與認(rèn)知、情感、內(nèi)分泌相關(guān)的邊緣系統(tǒng)[23]。Ser9Gly基因突變與精神分裂癥、遲發(fā)性運(yùn)動(dòng)障礙、靜坐不能、自發(fā)性運(yùn)動(dòng)障礙、眼球運(yùn)動(dòng)失調(diào)相關(guān)[24-25]。有研究表明,對(duì)氯氮平無效的患者中攜帶Ser/Ser基因型的頻率更高[26];Ser9Gly基因突變導(dǎo)致受體與多巴胺親和力增強(qiáng),攜帶DRD3的Ser等位基因患者采用氯氮平治療效果差,因此,建議Ser等位基因攜帶者換用其他藥物治療精神分裂癥[27]。
多巴胺D4(DRD4)受體:DRD4受體由位于人類染色體11p15.5的DRD4基因編碼,主要分布在額葉皮質(zhì)中,參與認(rèn)知行為及情緒、情感反應(yīng)[28]。DRD4受體基因突變影響DRD4受體的功能和表達(dá)量,目前研究較多的是DRD4基因第3外顯子48 bp可重復(fù)序列多態(tài)性(DRD4 exon Ⅲ48bp VNTR)。DRD4 exon Ⅲ48bp VNTR最常見的是2-(2R)、4-(4R)、5-(5R)、7-(7R)倍重復(fù),通過調(diào)節(jié)有環(huán)磷酸腺苷依賴性蛋白激酶的磷酸化位點(diǎn),改變識(shí)別、偶聯(lián)G蛋白的能力,進(jìn)而調(diào)節(jié)一系列細(xì)胞內(nèi)效應(yīng),與受體功能密切相關(guān),最終影響氯氮平的療效。攜帶有4R等位基因患者的腦功能激活和反應(yīng)時(shí)間比攜帶有7R等位基因患者更快[29],Hwang等[30]研究發(fā)現(xiàn),攜帶有4R突變的患者服用氯氮平治療精神分裂的療效優(yōu)于DRD4受體基因野生型患者。Rietschel等[31]研究發(fā)現(xiàn),攜帶有大于6R突變患者使用抗精神病藥的療效差,因此,建議攜帶有大于6R突變患者采取其他治療方案控制病情。
2.2.2 其他影響CLZ藥效學(xué)的生物靶點(diǎn) 5-羥色胺2A受體(5-HT2AR):5-HT2AR是大多數(shù)非典型抗精神病藥的主要分子靶點(diǎn),氯氮平對(duì)5-HT2AR的親和力最高(Ki=2.5 nmol),遠(yuǎn)高于其他神經(jīng)受體,5-HT2AR在氯氮平抗精神分裂中發(fā)揮重要作用[32]。5-HT2AR是與磷脂酶相關(guān)的G-蛋白偶聯(lián)受體,由染色體13q14-21編碼,人體中的5-HT2AR主要分布于中樞神經(jīng)系統(tǒng)和外周組織中,在額葉和顳葉皮質(zhì)中的密度最高[33]。研究較多的是I197V、His452Tyr、102T>C等突變。Davies等[33]研究發(fā)現(xiàn),在HEK-293細(xì)胞系中,含有I197V突變的5-HT2A受體對(duì)氯氮平的拮抗效能是野生型的10倍。5-HT2A的His452Tyr基因突變可使鈣離子活化能力下降,攜帶有Tyr等位基因的患者服用氯氮平療效降低[27]。102T>C點(diǎn)突變對(duì)陰性癥狀的控制較好,對(duì)陽性癥狀無明顯改變;Arranz等[34]研究發(fā)現(xiàn),位于編碼區(qū)的102T>C點(diǎn)突變影響氯氮平療效,CC基因型在氯氮平無效組中比例是氯氮平有效組的2.12倍,建議攜帶有CC基因型患者采用其他藥物治療精神分裂癥。氯氮平對(duì)于不同癥狀的患者效果不同,可能由于102T>C與-1438G>A存在連鎖不平衡所致[35]。
軸突蛋白(Neurexins):軸突蛋白是一類高度多態(tài)性的細(xì)胞表面蛋白,由NRXN1-3三種非連鎖基因編碼,在哺乳類動(dòng)物大腦的神經(jīng)元分化、成熟、穩(wěn)定過程中起關(guān)鍵的調(diào)節(jié)作用。Neurexin1由位于染色體2p16.3的基因NRXN1編碼,與神經(jīng)認(rèn)知紊亂、神經(jīng)系統(tǒng)發(fā)育相關(guān)[36]。NRXN1可產(chǎn)生多種亞型,其中由上游啟動(dòng)子轉(zhuǎn)錄生成較長(zhǎng)的α-neurexin蛋白亞型與氯氮平的藥效發(fā)揮具有相關(guān)性。rs 12467557 (c.772+12370 T>C)和rs 10490162 (c.772+6983 A>G)點(diǎn)突變可降低氯氮平的療效。Jenkins等[37]發(fā)現(xiàn),上述各個(gè)突變位點(diǎn)的AA純合子基因型患者服用氯氮平后,其陽性癥狀、思考障礙和陰性癥狀都有明顯改善,而攜帶有G等位基因的患者服用氯氮平無效,建議攜帶有上述位點(diǎn)的AA純合子基因型患者服用氯氮平,而攜帶有突變位點(diǎn)的患者換藥。多巴胺轉(zhuǎn)運(yùn)體(DAT)由位于染色體5p15.3的基因SLC6A3編碼,分布于多巴胺(DA)能神經(jīng)末梢,主要攝取突觸間隙的DA入突觸前膜[38]。研究較多的是5′-UTR的844T>C、71T>A點(diǎn)突變和第1內(nèi)含子的A1491C位點(diǎn)突變。Xu等[39]研究發(fā)現(xiàn),這3個(gè)多態(tài)性位點(diǎn)的單倍型與氯氮平療效相關(guān),TTA單倍型在氯氮平有效組中比例更高(χ2=6.919,P=0.008 5,OR=2.177,95%CI=1.187~3.675),而CAC單倍型在氯氮平無效組中比例更高(χ2=6.789,P=0.009 2,OR=0.432,95%CI0.221~0.836),提示攜帶有TTA單倍型患者使用氯氮平療效好,而不建議CAC單倍體攜帶者服用氯氮平控制病情。
G-蛋白:G-蛋白偶聯(lián)信號(hào)系統(tǒng)可對(duì)多巴胺和血清素系統(tǒng)發(fā)揮重要的傳導(dǎo)作用。G-蛋白由α、β、γ亞基組成,其中β3亞基由位于染色體12p13的GNB3基因編碼。GNB3的825C>T點(diǎn)突變與氯氮平的療效具有相關(guān)性。Muller等[40]研究發(fā)現(xiàn),攜帶有CC純合子基因型患者服用氯氮平后,精神分裂癥狀能夠得到更好的改善;Kohlrausch等[41]研究發(fā)現(xiàn),TT純合子基因型在氯氮平無效組比例更高(χ2=7.708,P=0.021),且發(fā)生驚厥風(fēng)險(xiǎn)也更大(χ2=7.279,P=0.007)。提示攜帶CC基因型患者服用氯氮平可達(dá)到治療目的,而TT基因型患者應(yīng)換其他抗精神病藥物進(jìn)行治療。
由于氯氮平具有治療精神分裂效果好,錐體外系反應(yīng)和血清泌乳素升高等不良反應(yīng)發(fā)生率低的特點(diǎn),在臨床具有獨(dú)特的優(yōu)勢(shì),是非典型抗精神病藥的代表藥物。由于精神分裂患者需長(zhǎng)期甚至終身服藥,故可能出現(xiàn)一些不良反應(yīng),包括粒性白細(xì)胞缺乏癥(CIA)、高泌乳素血癥、糖尿病、肥胖等[42]。不良反應(yīng)不僅影響患者對(duì)氯氮平的依從性,也可能危及患者生命,目前,氯氮平的不良反應(yīng)已成為臨床和科學(xué)研究工作者關(guān)注的焦點(diǎn),包括對(duì)精神分裂癥患者進(jìn)行基因多態(tài)性檢測(cè),發(fā)現(xiàn)其攜帶的發(fā)生不良風(fēng)險(xiǎn)率高的基因突變位點(diǎn),從而對(duì)治療方案進(jìn)行調(diào)整,制定針對(duì)患者個(gè)體的治療方案,達(dá)到提高患者的耐受性、依從性的目的?,F(xiàn)將與氯氮平不良反應(yīng)相關(guān)的基因多態(tài)性歸納如下,見表1。
表1 基因多態(tài)性與氯氮平誘導(dǎo)的不良反應(yīng)
13%~85%的患者在服用氯氮平后體重增加,有的患者在服用氯氮平1年后甚至增加50 kg[2]。很多環(huán)境因素、生理因素導(dǎo)致體重增加,如不健康飲食、吸煙、疏于運(yùn)動(dòng)等。研究證實(shí),遺傳因素對(duì)抗精神病藥所致的體重增加貢獻(xiàn)率達(dá)60%~80%[49]。Wang等[50]認(rèn)為,GNB3的825C>T點(diǎn)突變與體重增加相關(guān),TT基因型攜帶者體重增加程度比TC或CC基因型攜帶者高。Tsai等[51]則認(rèn)為,825C>T多態(tài)性與體重增加無關(guān)。此外,研究者對(duì)TNF-α、DRD2、PRKAR2B、TBC1D1、ADRA1A、ADRA2A、ADRB3、GABRA2、COMT、GNB3、SNAP-25、MC4R、DBNF、NPY5R、PMCH、CNR1、PPARγ2、MTHFR、CYP2D6、ABCB1、INSIG2、INSIG1、LPR基因進(jìn)行了遺傳學(xué)分析,發(fā)現(xiàn)服用氯氮平導(dǎo)致的體重增加與基因多態(tài)性尚無確定的結(jié)論,同一突變有時(shí)出現(xiàn)相反的結(jié)論,這可能與性別、種族、實(shí)驗(yàn)樣本量、實(shí)驗(yàn)持續(xù)時(shí)間等因素有關(guān)[52-59]。
氯氮平在臨床中廣泛應(yīng)用于難治性或其他傳統(tǒng)藥物不能耐受的精神分裂,療效良好,但在治療過程中可能出現(xiàn)療效不可預(yù)知性及存在個(gè)體差異。研究者對(duì)于基因遺傳多態(tài)性的研究致力于改變臨床藥物傳統(tǒng)的經(jīng)驗(yàn)給藥模式,強(qiáng)調(diào)藥物反應(yīng)性的個(gè)體差異,幫助有不同藥物相關(guān)基因型的患者選擇最合適的藥物、劑量和給藥方式,指導(dǎo)患者合理用藥,以得到最佳的療效和最低的不良反應(yīng)發(fā)生率。隨著個(gè)體化醫(yī)學(xué)在臨床中的不斷推廣和應(yīng)用,以及遺傳藥理學(xué)的不斷發(fā)展和完善,期待精神分裂患者的氯氮平給藥劑量進(jìn)入“一人一量”的精準(zhǔn)醫(yī)學(xué)時(shí)代。
[1] Cacabelos R,Hashimoto R,Takeda M.Pharmacogenomics of antipsychotics efficacy for schizophrenia[J].Psychiatry Clin Neurosci,2011,65(1):3-19.
[2] Basile VS,Masellis M,Potkin SG,et al.Pharmacogenomics in schizophrenia:the quest for individualized therapy[J].Hum Mol Genet,2002,11(20):2517-2530.
[3] Murray M.Role of CYP pharmacogenetics and drug-drug interactions in the efficacy and safety of atypical and other antipsychotic agents[J].J Pharm Pharmacol,2006,58(7):871-885.
[4] Li LJ,Shang DW,Li WB,et al.Population pharmacokinetics of clozapine and its primary metabolite norclozapine in Chinese patients with schizophrenia[J].Acta Pharmacol Sin,2012,33(11):1409-1416.
[5] Spina E,Avenoso A,Facciolà G,et al.Relationship between plasma concentrations of clozapine and norclozapine and therapeutic response in patients with schizophrenia resistant to conventional neuroleptics[J].Psychopharmacology (Berl),2000,148(1):83-89.
[6] Erickson-Ridout KK,Sun D,Lazarus P.Glucuronidation of the second-generation antipsychotic clozapine and its active metabolite N-desmethylclozapine.Potential importance of the UGT1A1 A(TA)(7)TAA and UGT1A4 L48V polymorphisms[J].Pharmacogenet Genomics,2012,22(8):561-576.
[7] Schaber G,Wiatr G,Wachsmuth H,et al.Isolation and identification of clozapine metabolites in patient urine[J].Drug Metab Dispos,2001,29(6):923-931.
[8] Mitjans M,Catalán R,Vázquez M,et al.Hypothalamic-pituitary-adrenal system,neurotrophic factors and clozapine response:association with FKBP5 and NTRK2 genes[J].Pharmacogenet Genomics,2015,25(5):274-277.
[9] Rietschel M,Naber D,Oberlnder H,et al.Efficacy and side-effects of clozapine:testing for association with allelic variation in the dopamine D4 receptor gene[J].Neuropsychopharmacology,1996,15(5):491-496.
[10]Haddad PM,Sharma SG.Adverse effects of atypical antipsychotics:differential risk and clinical implications[J].CNS Drugs,2007,21(11):911-936.
[11]Jaquenoud SE,Knezevic B,Morena GP,et al.ABCB1 and cytochrome P450 polymorphisms:clinical pharmacogenetics of clozapine[J].J Clin Psychopharmacol,2009,29(4):319-326.
[13]Consoli G,Lastella M,Ciapparelli A,et al.ABCB1 polymorphisms are associated with clozapine plasma levels in psychotic patients[J].Pharmacogenomics,2009,10(8):1267-1276.
[14]Jaquenoud SE,Knezevic B,Morena GP,et al.ABCB1 and cytochrome P450 polymorphisms:clinical pharmacogenetics of clozapine[J].J Clin Psychopharmacol,2009,29(4):319-326.
[15]Lee ST,Ryu S,Kim SR,et al.Association study of 27 annotated genes for clozapine pharmacogenetics:validation of preexisting studies and identification of a new candidate gene,ABCB1,for treatment response[J].J Clin Psychopharmacol,2012,32(4):441-448.
[16]Allorge D,Chevalier D,Lo-Guidice JM,et al.Identification of a novel splice-site mutation in the CYP1A2 gene[J].Br J Clin Pharmacol,2003,56(3):341-344.
[17]Sachse C,Brockm?ller J,Bauer S,et al.Functional significance of a C-->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine[J].Br J Clin Pharmacol,1999,47(4):445-449.
[18]Eap CB,Bender S,Jaquenoud SE,et al.Nonresponse to clozapine and ultrarapid CYP1A2 activity:clinical data and analysis of CYP1A2 gene[J].J Clin Psychopharmacol,2004,24(2):214-219.
[19]Balibey H,Basoglu C,Lundgren S,et al.CYP1A2*1F Polymorphism decreases clinical response to clozapine in patients with schizophrenia[J].Klinik Psikofarmakoloji Bulteni-Bulletin of Clinical Psychopharmacology,2011,21(2):93-99.
[20]Hwang R,Shinkai T,De Luca V,et al.Association study of 12 polymorphisms spanning the dopamine D(2) receptor gene and clozapine treatment response in two treatment refractory/intolerant populations[J].Psychopharmacology (Berl),2005,181(1):179-187.
[21]Arranz MJ,Li T,Munro J,et al.Lack of association between a polymorphism in the promoter region of the dopamine-2 receptor gene and clozapine response[J].Pharmacogenetics,1998,8(6):481-484.
[22]Zhang JP,Lencz T,Malhotra AK.D2 receptor genetic variation and clinical response to antipsychotic drug treatment:a meta-analysis[J].Am J Psychiatry,2010,167(7):763-772.
[23]胡曉鳳,王芳,郁昊,等.多巴胺D3受體基因Ser9Gly多態(tài)性與阿立哌唑及利培酮治療效應(yīng)的關(guān)聯(lián)研究[J].中國(guó)神經(jīng)精神疾病雜志,2012,38(8):454-458.
[24]Hashem IAT,Yaqoob I,Anuar NB,et al.The rise of “big data” on cloud computing:review and open research issues[J].Information Systems,2015,47(C):98-115.
[25]Lφvlie R,Thara R,Padmavathi R,et al.Ser9Gly dopamine D3 receptor polymorphism and spontaneous dyskinesia in never-medicated schizophrenic patients[J].Mol Psychiatry,2001,6(1):6-7.
[26]Scharfetter J,Chaudhry HR,Hornik K,et al.Dopamine D3 receptor gene polymorphism and response to clozapine in schizophrenic Pakastani patients[J].Eur Neuropsychopharmacol,1999,10(1):17-20.
[27]Cichon S,N?then MM,Rietschel M,et al.Pharmacogenetics of schizophrenia[J].Am J Med Genet,2000,97(1):98-106.
[28]季衛(wèi)東,李寧,鄭宏,等.DRD4exonⅢ基因多態(tài)性與抽動(dòng)穢語綜合征共病抑郁的關(guān)系[J].上海交通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2014,34(4):426-430.
[29]Szekely A,Balota DA,Duchek JM,et al.Genetic factors of reaction time performance:DRD4 7-repeat allele associated with slower responses[J].Genes Brain Behav,2011,10(2):129-136.
[30]Hwang R,Tiwari AK,Zai CC,et al.Dopamine D4 and D5 receptor gene variant effects on clozapine response in schizophrenia:replication and exploration[J].Prog Neuropsychopharmacol Biol Psychiatry,2012,37(1):62-75.
[31]Rietschel M,Naber D,Oberl?nder H,et al.Efficacy and side-effects of clozapine:testing for association with allelic variation in the dopamine D4 receptor gene[J].Neuropsychopharmacology,1996,15(5):491-496.
[32]Burnet PW,Harrison PJ.Genetic variation of the 5-HT2A receptor and response to clozapine[J].Lancet,1995,346(8979):909.
[33]Davies MA,Setola V,Strachan RT,et al.Pharmacologic analysis of non-synonymous coding h5-HT2A SNPs reveals alterations in atypical antipsychotic and agonist efficacies[J].Pharmacogenomics J,2006,6(1):42-51.
[34]Arranz M,Collier D,Sodhi M,et al.Association between clozapine response and allelic variation in 5-HT2A receptor gene[J].Lancet,1995,346(8970):281-282.
[35]Malhotra AK.The relevance of pharmacogenetics to schizophrenia[J].Current Opinion in Psychiatry,2003,16(2):171-174.
[36]Béna F,Bruno DL,Eriksson M,et al.Molecular and clinical characterization of 25 individuals with exonic deletions of NRXN1 and comprehensive review of the literature[J].Am J Med Genet B Neuropsychiatr Genet,2013,162B(4):388-403.
[37]Jenkins A,Apud JA,Zhang F,et al.Identification of candidate single-nucleotide polymorphisms in NRXN1 related to antipsychotic treatment response in patients with schizophrenia[J].Neuropsychopharmacology,2014,39(9):2170-2178.
[38]Bannon MJ,Michelhaugh SK,Wang J,et al.The human dopamine transporter gene:gene organization,transcriptional regulation,and potential involvement in neuropsychiatric disorders[J].Eur Neuropsychopharmacol,2001,11(6):449-455.
[39]Xu M,Xing Q,Li S,et al.Pharacogenetic effects of dopamine transporter gene polymorphisms on response to chlorpromazine and clozapine and on extrapyramidal syndrome in schizophrenia[J].Prog Neuropsychopharmacol Biol Psychiatry,2010,34(6):1026-1032.
[40]Müller DJ,De Luca V,Sicard T,et al.Suggestive association between the C825T polymorphism of the G-protein beta3 subunit gene (GNB3) and clinical improvement with antipsychotics in schizophrenia[J].Eur Neuropsychopharmacol,2005,15(5):525-531.
[41]Kohlrausch FB,Salatino-Oliveira A,Gama CS,et al.G-protein gene 825C>T polymorphism is associated with response to clozapine in Brazilian schizophrenics[J].Pharmacogenomics,2008,9(10):1429-1436.
[42]Wang YC,Bai YM,Chen JY,et al.Genetic association between TNF-alpha -308 G>A polymorphism and longitudinal weight change during clozapine treatment[J].Hum Psychopharmacol,2010,25(4):303-309.
[43]Athanasiou MC,Dettling M,Cascorbi I,et al.Candidate gene analysis identifies a polymorphism in HLA-DQB1 associated with clozapine-induced agranulocytosis[J].J Clin Psychiatry,2011,72(4):458-463.
[44]Dettling M,Schaub RT,Mueller-Oerlinghausen B,et al.Further evidence of human leukocyte antigen-encoded susceptibility to clozapine-induced agranulocytosis independent of ancestry[J].Pharmacogenetics,2001,11(2):135-141.
[45]Young RM,Lawford BR,Barnes M,et al.Prolactin levels in antipsychotic treatment of patients with schizophrenia carrying the DRD2*A1 allele[J].Br J Psychiatry,2004,185:147-151.
[46]Lerer B,Segman RH,Fangerau H,et al.Pharmacogenetics of tardive dyskinesia:combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism[J].Neuropsychopharmacology,2002,27(1):105-119.
[47]Basile VS,Masellis M,Potkin SG,et al.Pharmacogenomics in schizophrenia:the quest for individualized therapy[J].Hum Mol Genet,2002,11(20):2517-2530.
[48]Irvin MR,Wiener HW,Perry RP,et al.Genetic risk factors for type 2 diabetes with pharmacologic intervention in African-American patients with schizophrenia or schizoaffective disorder[J].Schizophr Res,2009,114(1-3):50-56.
[49]Gebhardt S,Theisen FM,Haberhausen M,et al.Body weight gain induced by atypical antipsychotics:an extension of the monozygotic twin and sib pair study[J].J Clin Pharm Ther,2010,35(2):207-211.
[50]Wang YC,Bai YM,Chen JY,et al.C825T polymorphism in the human G protein beta3 subunit gene is associated with long-term clozapine treatment-induced body weight change in the Chinese population[J].Pharmacogenet Genomics,2005,15(10):743-748.
[51]Tsai SJ,Yu YW,Lin CH,et al.Association study of adrenergic beta3 receptor (Trp64Arg) and G-protein beta3 subunit gene (C825T) polymorphisms and weight change during clozapine treatment[J].Neuropsychobiology,2004,50(1):37-40.
[52]Wang YC,Bai YM,Chen JY,et al.Genetic association between TNF-alpha -308 G>A polymorphism and longitudinal weight change during clozapine treatment[J].Hum Psychopharmacol,2010,25(4):303-309.
[53]Gagliano SA,Tiwari AK,Freeman N,et al.Protein kinase cAMP-dependent regulatory type II beta (PRKAR2B) gene variants in antipsychotic-induced weight gain[J].Hum Psychopharmacol,2014,29(4):330-335.
[54]Brandl EJ,Tiwari AK,Lett TA,et al.Exploratory study on association of genetic variation in TBC1D1 with antipsychotic-induced weight gain[J].Hum Psychopharmacol,2013,28(2):183-187.
[55]Lett TA,Wallace TJ,Chowdhury NI,et al.Pharmacogenetics of antipsychotic-induced weight gain:review and clinical implications[J].Mol Psychiatry,2012,17(3):242-266.
[56]Kuo PH,Kao CF,Chen PY,et al.Polymorphisms of INSIG2,MC4R,and LEP are associated with obesity- and metabolic-related traits in schizophrenic patients[J].J Clin Psychopharmacol,2011,31(6):705-711.
[57]Ferentinos P,Dikeos D.Genetic correlates of medical comorbidity associated with schizophrenia and treatment with antipsychotics[J].Curr Opin Psychiatry,2012,25(5):381-390.
[58]Hong CJ,Liou YJ,Bai YM,et al.Dopamine receptor D2 gene is associated with weight gain in schizophrenic patients under long-term atypical antipsychotic treatment[J].Pharmacogenet Genomics,2010,20(6):359-366.
[59]Zai CC,Tiwari AK,Chowdhury NI,et al.Association study of GABAA α2 receptor subunit gene variants in antipsychotic-associated weight gain[J].J Clin Psychopharmacol,2015,35(1):7-12.
Anupdateongeneticpolymorphismofclozapine
WANG Li-ping,GUO Xian-xi,HE Wen,SONG Jin-chun
(Department of Pharmacy,Renmin Hospital of Wuhan University,Wuhan 430060,China)
Clozapine is an atypical antipsychotic drug which plays an important role in schizophrenia.However,it was found out that different patients had different responses after taking clozapine in clinical practice.Genetic factor may be one of the explanations of this phenomenon.Now,we try to discuss the advances of genetic polymorphism of clozapine.
Antipsychotic drug;Clopazine;Genetic polymorphism
2016-12-07
武漢大學(xué)人民醫(yī)院藥學(xué)部,武漢 430060
10.14053/j.cnki.ppcr.201709027