呂寧寧,蘇 暢,楊金星,鐘 磊,王海川,陳翰林
(安徽工業(yè)大學(xué)冶金工程學(xué)院,安徽馬鞍山243032)
CaO-SiO2-FeO-P2O5-Al2O3脫磷渣系中組元活度的計(jì)算
呂寧寧,蘇 暢,楊金星,鐘 磊,王海川,陳翰林
(安徽工業(yè)大學(xué)冶金工程學(xué)院,安徽馬鞍山243032)
2CaO·SiO2-3CaO·P2O5含磷固溶體的生成可提高轉(zhuǎn)爐液相渣的脫磷能力,減少渣量.但目前CaO-SiO2-FeO-P2O5-Al2O3渣系中各組元活度的變化規(guī)律尚不明確,無(wú)法為分析含磷固溶體的形成機(jī)理提供理論依據(jù).為此,本文依據(jù)分子離子共存理論建立了熔渣組元的活度模型,分析了不同條件下組元活度的變化規(guī)律.結(jié)果表明:隨渣中Al2O3含量的增加,2CaO·SiO2、3CaO·P2O5、3FeO·P2O5的活度逐漸降低;隨著堿度的增大,3CaO·P2O5的活度升高,2CaO·SiO2、3FeO·P2O5的活度則呈先升高后降低的趨勢(shì);隨著渣中FeO含量的增加,2CaO·SiO2、3FeO·P2O5及CaO·Al2O3的活度逐漸增大,并在w(FeO)為15%時(shí)達(dá)到最大值,之后逐漸降低;升高溫度會(huì)導(dǎo)致CaO、3CaO·SiO2的活度增大,2CaO·SiO2的活度降低.
脫磷渣;2CaO·SiO2-3CaO·P2O5固溶體;組元活度;計(jì)算模型
轉(zhuǎn)爐煉鋼過(guò)程中,在低溫下造高堿度和高氧化性爐渣是實(shí)現(xiàn)快速脫磷的主要手段之一,而為了快速化渣,需向熔渣中添加CaF2等助熔劑.近年來(lái),CaF2對(duì)環(huán)境及人體的危害已被逐漸認(rèn)識(shí),其在轉(zhuǎn)爐冶煉過(guò)程中也被限制使用[1-2].為此,部分學(xué)者開展了低氟或無(wú)氟熔渣脫磷的研究,如以Al2O3替代CaF2,以降低脫磷渣系的熔點(diǎn)[3-6].此外,為了提高脫磷效率,降低石灰的使用量,人們對(duì)非均相渣中磷的富集機(jī)理開展了研究[7-8],即利用熔渣中2CaO·SiO2等固相與液相共存的特點(diǎn),將液相中的磷最大限度地富集到2CaO·SiO2-3CaO·P2O5固溶體中,從而達(dá)到提高液相渣脫磷的目的.相關(guān)研究主要包括CaO-SiO2-FeO-P2O5渣系中2CaO·SiO2-3CaO·P2O5固溶體的形成機(jī)理、磷在固溶體與液相渣中的分配比等[9-11],而針對(duì)CaO-SiO2-FeO-P2O5-Al2O3五元渣系中含磷固溶體生成的研究較少,相關(guān)熱力學(xué)理論研究比較缺乏,組元活度的變化規(guī)律尚不明確,無(wú)法為合理解釋含磷固溶體的形成機(jī)理提供理論依據(jù).為此,本文擬依據(jù)熔渣的分子離子共存理論,建立高溫下熔渣中各組元的活度模型,明確渣中各組元的存在形態(tài),為研究CaO-SiO2-FeO-P2O5-Al2O3渣系與固相CaO間的反應(yīng)過(guò)程及機(jī)理提供理論基礎(chǔ).
依據(jù)熔渣的分子離子共存理論建立組元的活度模型;該理論已被廣泛應(yīng)用于熔渣的活度計(jì)算[12-13],即根據(jù)已有的化學(xué)平衡熱力學(xué)數(shù)據(jù),構(gòu)建平衡關(guān)系式,得出溶液中各組元的作用濃度,即活度.
參考CaO-SiO2-FeO-P2O5、 CaO-SiO2-Al2O3、 CaO-Al2O3-P2O5、 FeO-Al2O3相圖[14], CaO-SiO2-FeO-P2O5-Al2O3渣系中存在的結(jié)構(gòu)單元有:Ca2+、 Fe2+、 O2-、 Al2O3、 P2O5、 SiO2、 CaO·Al2O3、 CaO·2Al2O3、 CaO·6Al2O3、 3CaO·Al2O3、 FeO·Al2O3、 3FeO·P2O5、 4FeO·P2O5、 2CaO·P2O5、 3CaO·P2O5、 4CaO·P2O5、 CaO·SiO2、 2CaO·SiO2、 3CaO·SiO2、 2FeO·SiO2、 CaO·Al2O3·2SiO2、 2CaO·Al2O3·SiO2.
設(shè)b1=∑xCaO,b2=∑xFeO,b3=∑xSiO2,b4=∑xP2O5,b5=∑xAl2O3,N1=NCaO,N2=NFeO,N3=NSiO2,N4=NP2O5,N5=NAl2O3,N6=N3CaO·SiO2,N8=NCaO·SiO2, .N9=N2FeO·SiO2,N10=N2CaO·P2O5,N11=N3CaO·P2O5,N12=N4CaO·P2O5,N13=N3FeO·P2O5,N14=N4FeO·P2O5,N15=NCaO·Al2O3,N16=NCaO·2Al2O3,N17=NCaO·6Al2O3,N18=N3CaO·Al2O3,N19=NFeO·Al2O3,N20=NCaO·Al2O3·2SiO2,N21=N2CaO·Al2O3·SiO2.
其中,b1、b2、b3、b4、b5分別為反應(yīng)前CaO、 FeO、 SiO2、 P2O5、 Al2O3的物質(zhì)的量∑x,為假定100 g爐渣平衡時(shí)各結(jié)構(gòu)單元總的物質(zhì)的量,Ni(i=1,2,3,……,21)為反應(yīng)達(dá)到平衡時(shí)爐渣中各組元的作用濃度.
各活度間的關(guān)系可由以下化學(xué)反應(yīng)方程式建立.
3(Ca2++O2-)+(SiO2)=(3CaO·SiO2)
(1)
2(Ca2++O2-)+(SiO2)=(2CaO·SiO2)
(2)
(Ca2++O2-)+(SiO2)=(CaO·SiO2)
N8=K3N1N3
(3)
2(Fe2++O2-)+(SiO2)=(2FeO·SiO2)
(4)
2(Ca2++O2-)+(P2O5)=(2CaO·P2O5)
(5)
3(Ca2++O2-)+(P2O5)=(3CaO·P2O5)
(6)
4(Ca2++O2-)+(P2O5)=(4CaO·P2O5)
(7)
3(Fe2++O2-)+(P2O5)=(3FeO·P2O5)
(8)
4(Fe2++O2-)+(P2O5)=(4FeO·P2O5)
(9)
(Ca2++O2-)+(Al2O3)=(CaO·Al2O3)
N15=K10N1N5
(10)
(Ca2++O2-)+2(Al2O3)=(CaO·2Al2O3)
(11)
(Ca2++O2-)+6(Al2O3)=(CaO·6Al2O3)
(12)
3(Ca2++O2-)+(Al2O3)=(3CaO·Al2O3)
(13)
(Fe2++O2-)+(Al2O3)=(FeO·Al2O3)
N19=K19N2N5
(14)
(Ca2++O2-)+(Al2O3)+2(SiO2)=
(CaO·Al2O3·2SiO2)
(15)
2(Ca2++O2-)+(Al2O3)+(SiO2)=
(2CaO·Al2O3·SiO2)
(16)
根據(jù)物料平衡可得:
(17)
即,
N1+N2+N3+……+N21=1
(18)
此外,
(19)
(20)
b3=(N3+N6+N7+N8+N9+2N20+N21)∑x
(21)
b4=(N4+N10+N11+N12+N13+N14)∑x
(22)
b5=(N5+3N15+2N16+6N17+N18+N19+N20+N21)∑x
(23)
聯(lián)立式(19)和式(20)、 式(20)和式(21)、 式(21)和式(22)、 式(22)和式(23)分別消去∑x,可得:
(24)
(25)
b4(N3+N6+N7+N8+N9+2N20+N21)=b3(N4+N10+N11+N12+N13+N14)
(26)
b5(N4+N10+N11+N12+N13+N14)=b4(N5+N15+2N16+6N17+N18+N19+N20+N21)
(27)
聯(lián)立式(1)~(17)及式(24)~(27),利用Matlab軟件求解非線性方程組,即可求得CaO-SiO2-FeO-P2O5-Al2O3渣系中各組元的活度.
2.1 Al2O3含量對(duì)組元活度的影響
圖1示出了Al2O3含量對(duì)熔渣(堿度即w(CaO)/w(SiO2) 為1.5,P2O5質(zhì)量分?jǐn)?shù)為10%,F(xiàn)eO質(zhì)量分?jǐn)?shù)為20%)中各組元活度的影響,由圖1可知,渣中活度較高的組元為2CaO·SiO2、 CaO·SiO2、 3FeO·P2O5及CaO·Al2O3,隨著渣中Al2O3含量的增加,CaO·Al2O3、 CaO·SiO2、 2CaO·Al2O3·SiO2的活度逐漸升高,而2CaO·SiO2、 3CaO·SiO2、 3CaO·P2O5、 3FeO·P2O5、 CaO、 FeO的活度呈降低的趨勢(shì),這主要是因?yàn)锳l2O3的加入,會(huì)消耗一部分氧化鈣,導(dǎo)致2CaO·SiO2、 3FeO·P2O5、 3CaO·P2O5的生成量減少,進(jìn)而會(huì)導(dǎo)致2CaO·SiO2-3CaO·P2O5固溶體相的生成量減少.
圖1 1 673 K下渣中Al2O3含量對(duì)組元活度的影響Fig.1 Influence of Al2O3 content on activities of the components in the slag at 1 673 K
2.2 堿度對(duì)組元活度的影響
圖2示出了堿度對(duì)熔渣(Al2O3質(zhì)量分?jǐn)?shù)為6%,P2O5質(zhì)量分?jǐn)?shù)為10%,F(xiàn)eO質(zhì)量分?jǐn)?shù)為20%)中各組元活度的影響,由圖2可知,隨著熔渣堿度的增大,CaO、 FeO、 3CaO·SiO2、 3CaO·P2O5的活度呈升高的趨勢(shì),3CaO·SiO2及SiO2的活度逐漸降低.當(dāng)堿度小于2時(shí),2CaO·SiO2、 3FeO·P2O5、 3CaO·P2O5的活度隨堿度的增大逐漸升高,因此,2CaO·SiO2-3CaO·P2O5固溶體的生成量會(huì)逐漸增大;而當(dāng)堿度大于2后,2CaO·SiO2、 3FeO·P2O5的活度降低,盡管3CaO·P2O5的活度升高,但其含量較低,這說(shuō)明堿度較高時(shí),CaO與各化合物的反應(yīng)基本完成,多余的CaO會(huì)以自由CaO的形式存在,且導(dǎo)致爐渣的熔點(diǎn)升高,黏度增大,各元素的傳質(zhì)困難,因此,磷在2CaO·SiO2-3CaO·P2O5固溶體中的富集反應(yīng)不宜在較高堿度下進(jìn)行.
圖2 1 673 K下堿度對(duì)渣中組元活度的影響Fig.2 Influence of basicity on activities of the components in the slag at 1 673 K
2.3 FeO含量對(duì)組元活度的影響
圖3示出了FeO含量對(duì)熔渣(Al2O3質(zhì)量分?jǐn)?shù)為6%,P2O5質(zhì)量分?jǐn)?shù)為10%,堿度為1.5)中各組元活度的影響,由圖3可知,隨著渣中FeO含量的增加,2CaO·SiO2、 3FeO·P2O5及CaO·Al2O3的活度均呈先升高后降低的趨勢(shì),均在w(FeO) 為15%時(shí)達(dá)到最大值;FeO的活度逐漸增大,CaO·SiO2、 SiO2及3CaO·P2O5的活度則逐漸降低.以上的結(jié)果說(shuō)明,當(dāng)w(FeO)為15%時(shí),F(xiàn)eO與P2O5的反應(yīng)已經(jīng)達(dá)到平衡,繼續(xù)增加w(FeO),將會(huì)有大量的FeO存在于渣中并稀釋CaO,不利于2CaO·SiO2-3CaO·P2O5固溶體的生成.
圖3 1 673 K下FeO含量對(duì)渣中組元活度的影響Fig.3 Influence of FeO content on activities of the components in the slag at 1 673 K
2.4 溫度對(duì)組元活度的影響
圖4示出了溫度對(duì)熔渣(Al2O3質(zhì)量分?jǐn)?shù)為6%,P2O5質(zhì)量分?jǐn)?shù)為10%,F(xiàn)eO質(zhì)量分?jǐn)?shù)為20%,堿度為1.5)中組元活度的影響,由圖4可知,隨著溫度的升高,CaO、 3CaO·SiO2的活度呈升高的趨勢(shì),其中3CaO·SiO2的活度變化幅度較大,2CaO·SiO2的活度逐漸降低,而其他物相的活度變化不明顯.這可能是因?yàn)闇囟壬呤沟肅aO的活度增大,3CaO·SiO2的生成趨勢(shì)增大,2CaO·SiO2的生成量減低,從而導(dǎo)致2CaO·SiO2-3CaO·P2O5固溶體的生成量也會(huì)降低.
圖4 溫度對(duì)渣中組元活度的影響Fig.4 Influence of temperature on activities of the components in the slag
(1) 隨著渣中Al2O3含量的增加,CaO·Al2O3、 CaO·SiO2、 2CaO·Al2O3·SiO2的活度逐漸升高,2CaO·SiO2、 3CaO·SiO2、 3CaO·P2O5、 3FeO·P2O5、 CaO及FeO的活度逐漸降低.
(2) 在含Al2O3的熔渣中,隨著堿度的增大,CaO、 FeO、 3CaO·SiO2、 3CaO·P2O5的活度呈增大的趨勢(shì),3CaO·SiO2及SiO2的活度逐漸降低,而2CaO·SiO2、 3FeO·P2O5、 CaO·Al2O3的活度則呈先升高后降低的趨勢(shì).
(3) 隨著FeO含量的增加,F(xiàn)eO的活度逐漸增大,CaO·SiO2、 SiO2及3CaO·P2O5的活度則逐漸降低;2CaO·SiO2、 3FeO·P2O5及CaO·Al2O3的活度在w(FeO)為15%時(shí)達(dá)到最大值,之后逐漸降低.
(4) 隨著溫度的升高,CaO、 3CaO·SiO2的活度增大,而2CaO·SiO2的活度則逐漸降低.
[1]王多剛, 李杰, 夏云進(jìn), 等. CaO-SiO2-Al2O3-Fe2O3渣系脫磷行為[J]. 鋼鐵研究學(xué)報(bào), 2016, 28(7): 20-25. (Wang Duogang, Li Jie, Xia Yunjin,etal. Dephosphorization behavior in CaO-SiO2-Al2O3-Fe2O3slag system[J]. Journal of Iron and Steel Research, 2016, 28(7): 20-25.)
[2]王世俊, 董元篪, 周云, 等. 鐵水預(yù)處理脫磷渣低氟化研究[J]. 中國(guó)稀土學(xué)報(bào), 2010, 28: 500-504. (Wang Shijun, Dong Yuanchi, Zhou Yun,etal. Study on low fluoride dephosphorization slag of hot metal[J]. Journal of Chinese Rare Earth Society, 2010, 28: 500-504.)
[3]Li J, Wang S J, Xia Y J,etal. Study on dephosphorisation of hot metal pretreatment with Al2O3to replace Ca2F in slag[J]. Ironmaking and Steelmaking, 2015, 42(1): 70.
[4]Deo B, Halder J, Snoeijer B,etal. Effect of MgO and Al2O3variations in oxygen steelmaking (BOF) slag on slag morphology and phosphorus distribution [J]. Ironmaking and Steelmaking, 2005, 32(1): 54-61.
[5]Li G, Hamano T, Tsukihashi F. The effect of Na2O and Al2O3on dephosphorization of molten steel by high basicity MgO saturated CaO-FeOx-SiO2slag[J]. ISIJ International, 2005, 45(1): 12-18.
[6]刁江. Al2O3和Na2O對(duì)高磷鐵水脫磷的影響[J]. 鋼鐵研究學(xué)報(bào), 2013, 25(2): 9-13. (Diao jiang. Effect of Al2O3and Na2O on dephosphorization of high phosphorus hot metal[J]. Journal of Iron and Steel Research, 2013, 25(2): 9-13.)
[7]Hamano T, Fukagai S, Tsukihashi F. Reaction mechanism between solid CaO and FeOx-CaO-SiO2-P2O5slag at 1573K [J]. ISIJ International, 2006, 46(4): 490-495.
[8]Yang X, Matsuura H, Tsukihashi F. Reaction behavior of P2O5at the interface between solid 2CaO·SiO2and liquid CaO-SiO2-FeOx-P2O5slags saturated with solid 5CaO·SiO2·P2O5at 1573K [J]. ISIJ International, 2010, 50(5): 702-711.
[9]蘇暢, 于景坤, 王洪章. 2CaO·SiO2-3CaO·P2O5固溶體形成機(jī)理[J]. 東北大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 34(10): 1434-1437. (Su Chang, Yu Jingkun, Wang Hongzhang. Formation mechanism of 2CaO·SiO2-3CaO·P2O5solid solution[J]. Journal of Northeastern University(Natural Science), 2013, 34(10): 1434-1437.)
[10]Inoue R, Suito H. Phosphorous partition between 2CaO·SiO2particles and CaO-SiO2-FetO slags [J]. ISIJ International, 2006, 46(2): 174-179.
[11]Yang X, Matsuura H, Tsukihashi F. Formation behavior of phosphorous compounds at the interface between solid 2CaO·SiO2and FeOx-CaO-SiO2-P2O5slag at 1673K [J]. Tetsu-to-Hagané, 2009, 95(3): 268-274.
[12]Li J Y, Zhang M, Guo M,etal. Enrichment mechanism of phosphate in CaO-SiO2-FeO-Fe2O3-P2O5steelmaking slags [J]. Metallurgical and Materials Transactions B, 2014, 45(B): 1666-1682.
[13]Yang X, Duan J, Shi C, et a1. A Thermodynamic model of phosphorus distribution ratio between CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5slags and molten steel[J]. Metallurgical and Materials Transactions B, 2011, 42B: 738-770.
[14]陳家祥. 煉鋼常用圖表數(shù)據(jù)手冊(cè)(第2版)[M]. 北京: 冶金工業(yè)出版社, 2010. (Chen Jiaxiang. Handbook of commonly used chart data in steelmaking (second edition)[M]. Beijing: Metallurgical Industry Press, 2010.)
[15]張鑒. 熔體熱力學(xué)計(jì)算手冊(cè)[M]. 北京: 冶金工業(yè)出版社, 2007. (Zhang Jian. Computational thermodynamics of metallurgical melts and solutions[M]. Beijing: Metallurgical Industry Press, 2007.)
Activity calculation of components in CaO-SiO2-FeO-P2O5-Al2O3dephosphorization slag
Lv Ningning, Su Chang, Yang Jinxing, Zhong Lei, Wang Haichuan, Chen Hanlin
(School of Metallurgyical Engineering, Anhui University of Technology, Ma’anshan 243032, China)
Formation of 2CaO·SiO2-3CaO·P2O5solid solution can improve the ability of dephosphorization for liquid phase slag and reduce the slag amount, In order to understand the change regulation of activity for the components in CaO-SiO2-FeO-P2O5-Al2O3slag system a calculation model was established according to the coexistence theory of molecule and ion. The results showed that with increase of Al2O3content, activities of 2CaO·SiO2, 3CaO·P2O5, 3FeO·P2O5gradually decrease. When basicity of the slag increases, activity of 3CaO·SiO2increases, while activities of 2CaO·SiO2, 3FeO·P2O5increase at first and then decrease. With increase of FeO content, activities of 2CaO·SiO2, 3FeO·P2O5and CaO·Al2O3increase at first and then decrease, the maximum values occur whenw(FeO) is 15%. When temperature rises, activity of CaO, 3CaO·SiO2, gradually increases, while activity of 2CaO·SiO2decreases.
dephosphorization slag; 2CaO·SiO2-3CaO·P2O5solid solution; activity of components, calculation model
10.14186/j.cnki.1671-6620.2017.03.003
TF 711
:A
:1671-6620(2017)03-0171-06