付佳媛,張志蘭
(中國傳媒大學(xué)理學(xué)院,北京100024)
N=2的Loop Ramond超共型代數(shù)的導(dǎo)子和自同構(gòu)
付佳媛,張志蘭
(中國傳媒大學(xué)理學(xué)院,北京100024)
給出了N=2的Loop Ramond超共型代數(shù)RL的定義,并進(jìn)一步確定了其導(dǎo)子代數(shù)和自同構(gòu)群.
N=2的Loop Ramond超共型代數(shù);導(dǎo)子;自同構(gòu)群
超共型代數(shù)是近些年新興的一類李超代數(shù).Kac等[1-2]已經(jīng)給出了超共型代數(shù)的所有分類.對于N=2 的超共型代數(shù),目前也有了一些研究結(jié)果.[2-5]文獻(xiàn)[6]給出了N=2 Ramond超共型代數(shù)中間序列模的分類.
李超代數(shù)運算定義如下:
[Litk,Ljtl]=(i-j)Li+jtk+l, [Hitk,Hjtl]=0,
(1)
記RL的導(dǎo)子代數(shù)為DerRL,內(nèi)導(dǎo)子代數(shù)為adRL.易知
(DerRL)i={D∈DerRL|D(RL)j?(RL)i+j,j∈Z}.
對于Di∈(DerRL)i,稱Di為i次齊次導(dǎo)子.不難證明下面結(jié)論:
引理2.1 對任意的D∈DerRL,則D有如下形式:
這里Di∈(DerRL)i,且對任意的x∈RL,只有有限個i∈Z使得Di(x)≠0.
引理2.2 對任意的i≠0,D∈(DerRL)i是內(nèi)導(dǎo)子.
D(Litk)=Litkfi,k(t),D(Hitk)=Hitkfi,k(t),
(2)
D(Xitk)=Xitkfi,k(t),
D(X0t)=0,
即f0,1(t)=0.令f1,0(t)=f(t)∈F[t,t-1],則fi,k(t)=if(t),因此
D(Xitk)=iXitkf(t).
顯然D=-ad(L0f(t))∈adRL,從而得到下面引理.
D=ad(L0f(t)+H0g(t))=Dρ,
即ρ(tk)=itk(-f(t)±g(t)),從而g(t)=0.令k=0,則-if(t)=ρ(1)=0,i∈Z,即D=0.
綜上,有下面結(jié)論成立.
記RL的自同構(gòu)群為AutRL,則L0,H0是RL的ad-局部有限元,從而下面結(jié)論成立.
引理3.1σ(L0),σ(H0)∈spanF{L0,H0},?σ∈AutRL.
令σ(L0)=a1L0+a2H0,σ(H0)=b1L0+b2H0,則可求出a1=±1.將σ作用在[H0,Hitk]=0上可求得b1=0.故上式可改寫為
σ(L0)=±L0+aH0,σ(H0)=bH0.
(3)
對于映射η:Z×Z→F[t,t-1],記η(i,k)=ηi,k(t)∈F[t,t-1],F(xiàn)inv[t,t-1]為F[t,t-1]中可逆多項式集.易知Finv[t,t-1]是一個乘法群.
引理3.2 對任意的σ∈AutRL,存在η∈Hom(Z×Z,F(xiàn)[t,t-1]),ε,ξ∈{±1},a∈F,q(t)∈Finv[t,t-1],使得:
σ(Litk)=ηi,k(t)(εLεi+aHεi),σ(Hitk)=ξηi,k(t)Hεi,
(4)
其中ηi,k(t)∈F[t,t-1]滿足η0,0(t)=1,且ηi+j,k+l(t)=ηi,k(t)ηj,l(t),?i,j,k,l∈Z.
證明分情況證明此命題.
情形1σ(L0)=L0+aH0.
σ(Litk)=Liηi,k(t)+aHiηi,k(t),σ(Hitk)=Hiηi,k(t),
其中ηi+j,k+l(t)=ηi,k(t)ηj.l(t),η0,0(t)=1,a∈F,p(t)∈Finv[t,t-1].
σ(Litk)=Liηi,k(t)+aHiηi,k(t),σ(Hitk)=-Hiηi,k(t),
其中ηi+j,k+l(t)=ηi,k(t)ηj,l(t),η0,0(t)=1,a∈F,q(t)∈Finv[t,t-1].
用類似方法可討論a=-1的情況.
情形2σ(L0)=-L0+aH0.
子情形2.1
σ(Litk)=-L-iηi,k(t)+aH-iηi,k(t),σ(Hitk)=H-iηi,k(t),
這里ηi+j,k+l(t)=ηi,k(t)ηj,l(t),η0,0(t)=1,a∈F,p(t)∈Finv[t,t-1].
子情形2.2
σ(Litk)=-L-iηi,k(t)+aH-iηi,k(t),σ(Hitk)=-H-iηi,k(t),
這里ηi+j,k+l(t)=ηi,k(t)ηj,l(t),η0,0(t)=1,a∈F,q(t)∈Finv[t,t-1].
記Hom(Z×Z,F(xiàn)*)為加群Z×Z到乘群F*的同態(tài),μθ為其單位元.記Hom(Z×Z,F(xiàn))為Z×Z到F的加群同態(tài),νθ為其單位元.
若ηi,k(t)∈F[t,t-1],滿足ηi+j,k+l(t)=ηi,k(t)+ηj,l(t)以及η0,0(t)=1,易知
ηi,k(t)=μ(i,k)tν(i,k)∈Finv[t,t-1],
其中μ∈Hom(Z×Z,F(xiàn)*),ν∈Hom(Z×Z,F(xiàn)).由引理3.2,
AutRL={σ(μ,ν,ε,ξ,a,q(t))|μ∈Hom(Z×Z,F(xiàn)*),ν∈Hom(Z×Z,F(xiàn)),
ε,ξ∈AutZ,a∈F,q(t)∈Finv[t,t-1]},
AutRL的單位元是σ(μθ,νθ,1,1,0,1),并且
其中
μ(i,k)=μ2(i,k)μ1(ε2i,ν2(i,k)),ν(i,k)=ν1(ε2i,ν2(i,k)).
(5)
易證μ∈Hom(Z×Z,F(xiàn)*),ν∈Hom(Z×Z,F(xiàn)).
令τ=〈σ(μ,ν,1,1,a,q(t))|σ∈AutRL〉,易證τ是AutRL的自同構(gòu)群,從而有如下定理:
定理3.1 (1) AutRL同構(gòu)于
Hom(Z×Z,F(xiàn)*)×Hom(Z×Z,F(xiàn))×AutZ×AutZ×F×Finv[t,t-1];
[1] KAC V G,VAN DE LEUER.On classification of superconformal Algebras[M].Singapore:World Scientific,1988:1-30.
[2] CHENG S,KAC VG.A newN=6 superconformal algebra[J].Comm Math Phys,1997,186:219-231.
[3] DORRZAPF M.Superconformal field theories and their representations [D].Cambridge:University of Cambridge,1995.
[4] DORRZAPF M.The embedding structure of unitaryN=2 minimal model [J].Nucl Phys B,1998,529:639-655.
[5] FU J Y,JIANG Q F,SU Y C.Classification of modules of intermediate series over RamondN=2 supercomformal algebras [J].J Math Phy,2007,48(4):105-110.
[6] KIRITSIS E.Character formula and the structure of the represetations of theN=1,N=2 superconformal algebras [J].Int J Mod Phys A,1988,3:1871-1906.
(責(zé)任編輯:李亞軍)
DerivationandautomorphismgroupofLoopRamondN=2superconformalalgebra
FU Jia-yuan,ZHANG Zhi-lan
(School of Science,Communication University of China,Beijing 100024,China)
The definition of the Loop RamondN=2 superconformal algebras is proposed.The derivation algebra and the automorphism group are investigated.
Loop RamondN=2 superconformal algebra;derivation;automorphism group
1000-1832(2017)03-0001-04
10.16163/j.cnki.22-1123/n.2017.03.001
2015-12-01
國家自然科學(xué)基金資助項目(11271056).
付佳媛(1978—),女,博士,副教授,主要從事李(超)代數(shù)研究;通信作者:張志蘭(1989—),女,碩士,主要從事李(超)代數(shù)研究.
O 152.5 [學(xué)科代碼] 110·21
A