姚 其,曾 玲,梁廣文,陸永躍
(華南農(nóng)業(yè)大學(xué)昆蟲學(xué)系,廣州 510642)
高效氯氰菊酯不同汰選頻度條件下桔小實(shí)蠅高抗品系抗藥性發(fā)展動(dòng)態(tài)
姚 其,曾 玲,梁廣文*,陸永躍*
(華南農(nóng)業(yè)大學(xué)昆蟲學(xué)系,廣州 510642)
為了研究高效氯氰菊酯不同施用強(qiáng)度對(duì)桔小實(shí)蠅Bactroceradorsalis(Hendel)高抗品系抗藥性發(fā)展動(dòng)態(tài)的影響,為指導(dǎo)田間科學(xué)合理使用高效氯氰菊酯防治該蟲提供理論依據(jù),本文以室內(nèi)培育的桔小實(shí)蠅對(duì)高效氯氰菊酯高抗品系成蟲為研究對(duì)象,以高效氯氰菊酯對(duì)敏感品系的毒力作為毒力基準(zhǔn)線,按高效氯氰菊酯汰選間隔時(shí)間長短設(shè)置30 d、60 d、90 d、120 d 4個(gè)處理,以在不接觸藥劑常規(guī)條件下飼養(yǎng)的高抗品系作對(duì)照,采用藥膜法進(jìn)行抗藥性汰選和毒力測(cè)定,每30天試驗(yàn)1次,共計(jì)試驗(yàn)10次,獲得致死中濃度(LC50)和抗性倍數(shù)(Rm),分析抗性發(fā)展動(dòng)態(tài)與汰選間隔時(shí)間的關(guān)系。研究結(jié)果表明270 d后,不同間隔時(shí)間長度汰選處理,桔小實(shí)蠅高抗品系對(duì)高效氯氰菊酯的抗藥性發(fā)展動(dòng)態(tài)存在明顯差異,總體表現(xiàn)為汰選間隔時(shí)間越短,抗性增長越快。30 d汰選1次處理,高效氯氰菊酯對(duì)桔小實(shí)蠅成蟲的致死中濃度從第1次的582.7 mg/L上升到1133.6 mg/L,抗性倍數(shù)從98.0倍上升到190.7倍;60 d汰選1次處理,致死中濃度上升為828.0 mg/L,抗性倍數(shù)上升為139.3倍;90 d汰選1次處理,致死中濃度為529.2 mg/L,抗性倍數(shù)為89.0倍;120 d汰選1次處理,致死中濃度、抗性倍數(shù)分別為511.3 mg/L、86.0倍;未進(jìn)行汰選的抗性品系致死中濃度由582.7 mg/L下降到368.1 mg/L,抗性倍數(shù)也從98.0倍下降到61.9倍。建立了270 d后高效氯氰菊酯汰選間隔時(shí)間與桔小實(shí)蠅成蟲抗藥性增長比率之間的關(guān)系方程為Y=11.427X-0.529。由實(shí)驗(yàn)室模擬實(shí)驗(yàn)結(jié)果預(yù)測(cè)當(dāng)果園中連續(xù)兩次使用間隔時(shí)間在99 d以上時(shí),應(yīng)可降低桔小實(shí)蠅對(duì)高效氯氰菊酯的抗性繼續(xù)上升的風(fēng)險(xiǎn)。
桔小實(shí)蠅;高效氯氰菊酯;高抗品系;汰選間隔時(shí)間;抗性發(fā)展
桔小實(shí)蠅Bactroceradorsalis(Hendel)是我國尤其是華南地區(qū)重要的果蔬害蟲(劉玉章,1981;李文蓉,1988;林進(jìn)添等,2004;黃素青和韓日疇,2005)。該蟲原產(chǎn)于亞洲熱帶和亞熱帶地區(qū),最早發(fā)現(xiàn)于1911年臺(tái)北郊區(qū)柑橘園,目前主要分布于亞洲東南部及太平洋沿岸一些國家,如印度、巴基斯坦、孟加拉國、中國南部、柬埔寨、尼泊爾、越南、老撾、緬甸、泰國、斯里蘭卡、夏威夷、法屬波利尼西亞等(劉玉章,1981;Clarkeetal.,2005;Stephensetal.,2007;Wanetal.,2012)。上世紀(jì)80年代,我國華南地區(qū)桔小實(shí)蠅僅僅局部發(fā)生,危害較輕,90年代以來為害急劇加重,并逐漸擴(kuò)散至長江以北,目前主要分布于華南和西南大部分地區(qū)、華中和華東部分地區(qū)(梁廣勤,1985;侯柏華和張潤杰,2005;Wanetal.,2011)。該蟲以幼蟲在果實(shí)內(nèi)蛀食為害,造成落果、爛果,嚴(yán)重影響產(chǎn)量和品質(zhì),田間危害率一般在20%-30%,在部分地區(qū)、對(duì)部分水果種類危害率可達(dá)80%以上,經(jīng)濟(jì)損失巨大(林進(jìn)添等,2004;黃素青和韓日疇,2005;黃月英和陳軍,2006;梁帆等,2008)。
由于桔小實(shí)蠅具食性范圍廣、潛藏危害、成蟲壽命長、繁殖力強(qiáng)、傳播速度快等生物特性,防治十分困難。近三十年來,國內(nèi)外在該蟲治理方面開展了大量研究工作,開發(fā)并推廣應(yīng)用了多種防治技術(shù)措施(Purcelletal.,1994;Seewooruthunetal.,1997;Armstrong and Follett,2007;孟倩倩等,2012;潘志萍等,2015)。因成本相對(duì)較低、操作簡單、見效快,化學(xué)防治一直是世界各國防治桔小實(shí)蠅的主要方法(劉玉章,1981;李文蓉,1988;林進(jìn)添等,2004)。但是,長期大范圍、不合理使用農(nóng)藥導(dǎo)致了桔小實(shí)蠅抗藥性的產(chǎn)生和發(fā)展。例如,對(duì)廣州郊區(qū)該蟲抗藥性監(jiān)測(cè)顯示,2003年-2007年該蟲對(duì)高效氯氰菊酯抗性從敏感水平上升到了中抗水平,且有繼續(xù)向上發(fā)展的趨勢(shì)(潘志萍等,2005;章玉蘋等,2007;章玉蘋,2008;Jinetal.,2011)。因此,如何應(yīng)對(duì)和解決桔小實(shí)蠅抗藥性產(chǎn)生和快速增長問題是該蟲治理中一項(xiàng)重要問題。
自2000年開始,國內(nèi)外已在桔小實(shí)蠅種群抗藥性監(jiān)測(cè)、抗藥性產(chǎn)生與發(fā)展規(guī)律、抗藥性生化與分子機(jī)制等方面開展了系列研究,并獲得了較為豐富的研究成果,已發(fā)表論文近40篇。臺(tái)灣大學(xué)許如君及其團(tuán)隊(duì)重點(diǎn)研究了桔小實(shí)蠅對(duì)多殺菌素、馬拉硫磷、殺螟松、安硫磷、二溴磷等農(nóng)藥抗性產(chǎn)生、生物學(xué)及其機(jī)制(許如君和馮海東,2000;許如君和馮海東,2002;Hsuetal.,2004;許如君等,2004;Hsu and Feng,2006;Hsuetal.,2006;Hsuetal.,2007;Fangetal.,2011;Hsuetal.,2011;Vontasetal.,2011;Hsuetal.,2012;Okuyama and Hsu,2013;Hsuetal.,2015;Kuoetal.,2015;Hsuetal.,2016)。筆者所在團(tuán)隊(duì)研究建立了殺蟲劑對(duì)桔小實(shí)蠅毒力監(jiān)測(cè)的標(biāo)準(zhǔn)化方法(Linetal.,2013)和多類型殺蟲劑對(duì)桔小實(shí)蠅成蟲觸殺作用的毒力敏感基線(林玉英等,2010),監(jiān)測(cè)明確了國大陸桔小實(shí)蠅抗藥性水平、發(fā)展動(dòng)態(tài)和實(shí)驗(yàn)種群對(duì)敵百蟲、高效氯氰菊酯、阿維菌素等的抗性增長規(guī)律(潘志萍等,2005;章玉蘋等,2007;潘志萍等,2008;章玉蘋等,2008a;章玉蘋等,2008b;Jinetal.,2011),比較分析了抗高效氯氰菊酯、敵百蟲、多殺霉素品系種群生物學(xué)和相對(duì)適合度(章玉蘋等,2009;Zhangetal.,2010;李培征等,2014;陳朗杰等,2015),評(píng)估了桔小實(shí)蠅對(duì)多殺霉素的抗藥性風(fēng)險(xiǎn)以及抗性個(gè)體流動(dòng)對(duì)群體中抗性個(gè)體頻率、抗性發(fā)展的影響(金濤等,2011;李培征等,2012)。在抗性產(chǎn)生的機(jī)制方面,應(yīng)用電子顯微技術(shù)研究發(fā)現(xiàn)桔小實(shí)蠅抗高效氯氰菊酯品系在表皮角質(zhì)層厚度、脂肪體、幾丁質(zhì)層片層結(jié)構(gòu)以及細(xì)胞空隙等均與敏感品系存在差異(Linetal.,2012),與敏感品系相比不同抗性品系微衛(wèi)星DNA多態(tài)性已產(chǎn)生了變異(潘志萍等,2006),比較了9個(gè)地理品系桔小實(shí)蠅幾種解毒酶活性和對(duì)不同殺蟲劑的抗性水平的關(guān)系(金濤等,2014),發(fā)現(xiàn)抗性品系表皮對(duì)高效氯氰菊酯具有抵抗穿透作用,并且代謝能力顯著增強(qiáng)(Linetal.,2012)。應(yīng)用雙向電泳技術(shù)分析藥劑響應(yīng)蛋白發(fā)現(xiàn)桔小實(shí)蠅對(duì)敵百蟲、高效氯氰菊酯、阿維菌素等響應(yīng)速度不同,體內(nèi)有多類蛋白質(zhì)參與這三種殺蟲劑的響應(yīng)代謝(Jinetal.,2010;Jinetal.,2012)。Wangetal.(2016)研究揭示桔小實(shí)蠅對(duì)馬拉硫磷抗性遺傳符合常染色體不完全顯性與多基因遺傳模式,其抗性產(chǎn)生與3個(gè)主要解毒酶活性顯著升高相關(guān)。但是,關(guān)于桔小實(shí)蠅抗藥性發(fā)展變化與化學(xué)殺蟲劑使用頻度等關(guān)系研究尚未見報(bào)道,這正是在抗藥性治理中避免產(chǎn)生抗藥性或者維持或者降低抗藥性程度時(shí)殺蟲劑使用間隔時(shí)間確定的理論依據(jù)。本研究選擇防治桔小實(shí)蠅常用殺蟲劑高效氯氰菊酯,研究了在該藥不同汰選頻度條件下該實(shí)蠅的高抗品系抗藥性發(fā)展動(dòng)態(tài)規(guī)律,從而確定避免抗藥性水平上升的高效氯氰菊酯使用間隔時(shí)間,為抗性治理工作中指導(dǎo)田間合理用藥提供指導(dǎo)。
1.1 供試?yán)ハx
桔小實(shí)蠅敏感品系:蟲源采自廣州市楊桃公園,在室內(nèi)進(jìn)行繼代飼養(yǎng),飼養(yǎng)環(huán)境:溫度25℃-28℃,相對(duì)濕度60%±10%,光周期16 L ∶8 D。
桔小實(shí)蠅高抗品系:將野外采回的成蟲進(jìn)行產(chǎn)卵并繼代培育,飼養(yǎng)環(huán)境同上,用高效氯氰菊酯進(jìn)行逐代汰選至48代,獲得桔小實(shí)蠅對(duì)高效氯氰菊酯高抗品系(Strain of High Level of Resistance to Beta-cypermethrin,BC-H)。
1.2 供試藥劑
96%高效氯氰菊酯原藥,天津市華宇農(nóng)藥有限公司生產(chǎn);丙酮,分析純A.R.,廣州化學(xué)試劑廠生產(chǎn)。
1.3 實(shí)驗(yàn)方法
1.3.1敏感品系和毒力基準(zhǔn)線
用與抗性品系相同的蟲源在不接觸任何殺蟲劑下飼養(yǎng)58代培育成敏感品系,建立高效氯氰菊酯對(duì)該敏感品系的毒力基準(zhǔn)線(F0),測(cè)定其致死中濃度為5.954(5.223~6.807)mg/L。
1.3.2汰選和毒力測(cè)定
汰選和毒力測(cè)定均采用藥膜法,并參照潘志萍等(2008)方法進(jìn)行。將高效氯氰菊酯汰選間隔時(shí)間分別設(shè)置為30 d、60 d、90 d、120 d4個(gè)處理。實(shí)驗(yàn)開始第1天測(cè)定高效氯氰菊酯對(duì)該高抗品系成蟲毒力,獲得各處理初始LC50和初始抗性倍數(shù)。其后,按照間隔時(shí)間采集成蟲、測(cè)定高效氯氰菊酯毒力,結(jié)束后即使用高效氯氰菊酯(600 mg/L)對(duì)相應(yīng)處理成蟲群體進(jìn)行汰選,以未接觸殺蟲劑的正常繼代繁育的高抗品系為對(duì)照。本實(shí)驗(yàn)中桔小實(shí)蠅每代飼養(yǎng)、取樣、測(cè)試周期為30 d,共進(jìn)行10代,最多汰選8次。
1.4 數(shù)據(jù)分析方法
采用SPSS統(tǒng)計(jì)軟件分析處理數(shù)據(jù),以汰選藥劑濃度對(duì)數(shù)值為自變量,以死亡率機(jī)率值為因變量,計(jì)算出各處理毒力回歸方程(Log concentration-probit line,LC-P line)、致死中濃度(Median lethal concentration,LC50)、95%置信區(qū)間(95% Confidence interval,95% CI)以及相關(guān)系數(shù)(Correlation coefficient,R)等參數(shù)。以汰選間隔時(shí)間為自變量,以最終抗性增長率為因變量,計(jì)算、建立桔小實(shí)蠅抗性增長率與汰選時(shí)間頻度間關(guān)系方程。以致死中濃度的95%置信限是否有重疊作為判斷不同處理種群間藥劑敏感度差異是否顯著的標(biāo)準(zhǔn),抗性水平劃分標(biāo)準(zhǔn)以抗性倍數(shù)(Resistance multiple,Rm)為根據(jù)(唐振華,1993)。
抗性倍數(shù)(Rm)=抗性品系LC50/敏感品系LC50
抗性增長率(Growth rate of resistance,GR)=最終抗性倍數(shù)/初始抗性倍數(shù)
2.1 不汰選情況下桔小實(shí)蠅高效氯氰菊酯高抗品系的抗性變化
保持桔小實(shí)蠅高效氯氰菊酯高抗品系成蟲不接觸殺蟲劑,按照每30 d 1代周期進(jìn)行正常繁育,在271 d測(cè)定高效氯氰菊酯毒力,建立毒力回歸方程為y=-5.456+2.126x(R=0.9963),其LC50從初始的582.738(450.886~754.091)mg/L下降到了368.095(258.822~488.949)mg/L,抗性從初始的98.022倍下降為61.917倍。說明經(jīng)過270 d不接觸任何殺蟲劑的飼養(yǎng),桔小實(shí)蠅對(duì)高效氯氰菊酯抗性已經(jīng)明顯衰退。
2.2 30 d汰選1次處理桔小實(shí)蠅對(duì)高效氯氰菊酯的抗性變化
從表1可看出,汰選前高效氯氰菊酯對(duì)桔小實(shí)蠅高抗品系成蟲LC50為582.738 mg/L,初始抗性是98.022倍。按照30天處理1次,第1次到到第9次處理后高效氯氰菊酯對(duì)桔小實(shí)蠅的LC50逐漸增大,從587.804 mg/L上升到1133.639 mg/L,桔小實(shí)蠅對(duì)高效氯氰菊酯抗性也從98.874倍上升到190.688倍。第9次、第10次汰選時(shí)高效氯氰菊酯致死中濃度95%置信區(qū)間顯著高于第1次、第2次,說明經(jīng)過每30 d 1次連續(xù)9次汰選,桔小實(shí)蠅高效氯氰菊酯高抗品系成蟲抗藥性已經(jīng)顯著增大。建立30 d汰選1次頻度下桔小實(shí)蠅對(duì)高效氯氰菊酯抗性倍數(shù)與汰選時(shí)間關(guān)系方程Rm=96.897e0.0025T(R2=0.9840),表明兩者關(guān)系符合指數(shù)模型。
表1 30 d汰選1次時(shí)桔小實(shí)蠅成蟲對(duì)高效氯氰菊酯的抗性動(dòng)態(tài)
2.3 60 d汰選1次處理桔小實(shí)蠅對(duì)高效氯氰菊酯的抗性變化
表2顯示,在使用高效氯氰菊酯60 d處理1次情況下桔小實(shí)蠅抗藥性呈持續(xù)上升趨勢(shì),61 d、121 d、181 d、240 d、271 d的毒力測(cè)定結(jié)果顯示LC50分別為677.627 mg/L、699.711 mg/L、733.848 mg/L、807.607 mg/L、827.957 mg/L,抗性倍數(shù)分別為113.983倍、117.697倍、123.440倍、135.846倍、139.270倍。相對(duì)于30 d汰選1次處理,該蟲抗藥性上升速度降低了約50%。建立該汰選頻度下桔小實(shí)蠅對(duì)高效氯氰菊酯抗性倍數(shù)與汰選時(shí)間間隔關(guān)系方程為Rm=101.22e0.0012T(R2=0.9558)。
表2 60 d汰選1次時(shí)桔小實(shí)蠅成蟲對(duì)高效氯氰菊酯的抗性動(dòng)態(tài)
2.4 90 d汰選1次處理桔小實(shí)蠅對(duì)高效氯氰菊酯的抗性變化
每90 d使用處理一次時(shí)桔小實(shí)蠅成蟲對(duì)高效氯氰菊酯抗藥性呈緩慢下降趨勢(shì),但下降程度并不明顯。91 d、181 d、271 d、301 d時(shí)高效氯氰菊酯對(duì)桔小實(shí)蠅成蟲LC50分別為575.076 mg/L、566.249 mg/L、529.207 mg/L、536.684 mg/L,桔小實(shí)蠅對(duì)高效氯氰菊酯抗性則分別為96.733倍、95.248倍、89.017倍、90.275倍(表3)。
表3 90 d汰選1次時(shí)桔小實(shí)蠅成蟲對(duì)高效氯氰菊酯的抗性動(dòng)態(tài)
2.5 120 d汰選1次處理桔小實(shí)蠅對(duì)高效氯氰菊酯的抗性變化
120 d汰選1次情況下桔小實(shí)蠅對(duì)高效氯氰菊酯的抗性呈下降趨勢(shì),120 d、240 d、270 d毒力測(cè)定結(jié)果表明高效氯氰菊酯LC50分別為571.119 mg/L、448.647 mg/L、511.302 mg/L,桔小實(shí)蠅抗性倍數(shù)分別為96.067倍、75.466倍、86.005倍(表4)。
表4 120 d汰選1次時(shí)桔小實(shí)蠅成蟲對(duì)高效氯氰菊酯的抗性動(dòng)態(tài)
2.6 桔小實(shí)蠅對(duì)高效氯氰菊酯的抗性發(fā)展與汰選時(shí)間頻度間關(guān)系
由上述2.1-2.5研究結(jié)果可知,各汰選時(shí)間間隔處理?xiàng)l件下桔小實(shí)蠅高抗品系成蟲對(duì)高效氯氰菊酯抗性發(fā)展趨勢(shì)是不同的。汰選間隔時(shí)間為30 d、60 d、90 d、120 d、270 d時(shí),在初始抗性為98.022倍條件下桔小實(shí)蠅對(duì)高效氯氰菊酯抗性增長分別為92.666倍、41.248倍、-9.005倍、-12.017倍、-36.105倍,抗性增長率分別1.945倍、1.421倍、0.908倍、0.877倍、0.632倍(表5)。汰選間隔時(shí)間與抗性增長率之間關(guān)系符合冪函數(shù)模型GR=11.427T-0.529(R2=0.9537)。由該方程可知,如要求GR≤1時(shí),則T≥99 d,表明當(dāng)連續(xù)兩次使用高效氯氰菊酯的間隔時(shí)間超過99 d時(shí)桔小實(shí)蠅高抗品系對(duì)高效氯氰菊酯的抗性水平不會(huì)升高(圖1)。
表5 不同汰選間隔時(shí)間處理后桔小實(shí)蠅成蟲對(duì)高效氯氰菊酯的抗性增長率
圖1 不同間隔時(shí)間汰選后桔小實(shí)蠅成蟲對(duì)高效氯氰菊酯的抗性增長率變化動(dòng)態(tài)Fig.1 Dynamic for growth rate of resistance of B.dorsalis adults to beta-cypermethrin after selection with different time interval
自從有機(jī)合成廣譜性化學(xué)殺蟲劑產(chǎn)生并大范圍應(yīng)用以來,害蟲抗藥性不斷產(chǎn)生,抗藥性治理逐漸上升并成為了害蟲防治實(shí)踐中的一個(gè)重要問題。作為水果、蔬菜等重要害蟲,多種實(shí)蠅在許多國家尤其是熱帶、亞熱帶地區(qū)發(fā)生較為普遍,且不斷擴(kuò)散蔓延,危害較為嚴(yán)重。在較高的殺蟲劑選擇壓力下,自1990年代以來該類害蟲對(duì)多種藥劑的抗性逐漸顯現(xiàn),使得其抗藥性發(fā)生發(fā)展、機(jī)制和治理等研究成為了近年來實(shí)蠅研究重點(diǎn)之一(Jinetal.,2011;Vontasetal.,2011;Hsuetal.,2016)。目前,關(guān)于實(shí)蠅抗藥性的研究主要集中于一些重大實(shí)蠅害蟲包括地中海實(shí)蠅Ceratitiscapitata、桔小實(shí)蠅B.dorsalis、瓜實(shí)蠅B.cucurbitae、橄欖實(shí)蠅B.oleae等,尤其以桔小實(shí)蠅抗藥性研究最多,其內(nèi)容主要涵蓋了抗藥性監(jiān)測(cè)、增長規(guī)律、交互抗性、分子機(jī)制等幾個(gè)方面(Kakani and Mathiopoulos,2008;Vontasetal.,2011)。但是關(guān)于實(shí)蠅類害蟲抗藥性治理研究還是較少涉及。
停用、輪用或者混用農(nóng)藥是害蟲抗藥性治理中常用的措施。為了明確避免抗藥性上升的藥劑使用間隔時(shí)間長短,應(yīng)對(duì)和解決桔小實(shí)蠅抗藥性問題,本文以實(shí)驗(yàn)室選育獲得的桔小實(shí)蠅對(duì)高效氯氰菊酯的高抗品系為對(duì)象,研究了藥劑不同處理頻度下該實(shí)蠅抗藥性的發(fā)展動(dòng)態(tài)。結(jié)果顯示在每30 d或60 d汰選一次的情況下桔小實(shí)蠅對(duì)高效氯氰菊酯抗性呈持續(xù)上升趨勢(shì),隨著藥劑汰選次數(shù)增加其抗藥性增強(qiáng)的趨勢(shì)也更加明顯。在每90 d或更長周期汰選一次情況下桔小實(shí)蠅抗藥性水平未呈上升態(tài)勢(shì),而且隨著汰選間隔時(shí)間增大,抗藥性水平有進(jìn)一步降低趨勢(shì)。依據(jù)成蟲抗藥性增長率與高效氯氰菊酯汰選時(shí)間間隔關(guān)系模型估算出當(dāng)連續(xù)使用高效氯氰菊酯的間隔時(shí)間不少于99 d時(shí)可避免桔小實(shí)蠅抗藥性水平不升高。但是,值得注意的是間隔60 d、90 d、120 d汰選1次后如短時(shí)間內(nèi)(如30 d內(nèi))使用高效氯氰菊酯再汰選時(shí)桔小實(shí)蠅下一代抗藥性往往還會(huì)回升,因此建議使用高效氯氰菊酯防治桔小實(shí)蠅時(shí)前后兩次施藥間隔時(shí)間必須保證足夠長,宜長不宜短,一般應(yīng)在90-100 d以上,間隔時(shí)間越長桔小實(shí)蠅抗藥性降低越明顯,抗性治理效果就越好。
本研究還存在一些不足之處。首先,開展實(shí)驗(yàn)的時(shí)間不夠長,無法準(zhǔn)確掌握不同汰選頻度下桔小實(shí)蠅對(duì)高效氯氰菊酯的抗性在更長時(shí)間范圍內(nèi)發(fā)展規(guī)律。其次,不同類型殺蟲劑不同汰選頻度下桔小實(shí)蠅抗藥性應(yīng)表現(xiàn)出不同的發(fā)展規(guī)律,需要深入探討。第三,試蟲為實(shí)驗(yàn)室培育的抗藥性品系,汰選也在實(shí)驗(yàn)室進(jìn)行,這與田間施藥條件差異較大,因此本文所得結(jié)果是否與田間施藥作用的實(shí)際情況相一致還有待于在生產(chǎn)實(shí)踐中進(jìn)一步試驗(yàn)、驗(yàn)證。
References)
Armstrong JW, Follett PA. Hot-water immersion quarantine treatment against mediterranean fruit fly and oriental fruit fly (Diptera: Tephritidae) eggs and larvae in litchi and longan fruit exported from Hawaii [J].JournalofEconomicEntomology, 2007, 100 (4): 1091-1097.
Chen LJ, Liu X, Wu SJ,etal. A comparative study of the population biology of trichlorfon-resistant strains of the oriental fruit fly,Bactroceradorsalis(Diptera: Tephritdae) [J].ActaEntomologicaSinica, 2015, 58 (8): 864-871. [陳朗杰, 劉昕, 吳善俊, 等. 桔小實(shí)蠅抗敵百蟲品系的實(shí)驗(yàn)種群生物學(xué)比較研究[J]. 昆蟲學(xué)報(bào), 2015, 58 (8): 864-871]
Clarke AR, Armstrong KF, Carmichael AE,etal. Invasive phytophagous pests arising through a recent tropical evolutionary raditation: TheBactroceradorsaliscomplex of fruit flies [J].AnnualReviewofEntomology, 2005, 50 (1): 293-319.
Fang CC, Okuyama T, Wu WJ,etal. Fitness costs of an insecticide resistance and their population dynamical consequences in the oriental fruit fly [J].JournalofEconomicEntomology, 2011, 104 (6): 2039-2045.
Hou BH, Zhang RJ. Potential distributions of the fruit flyBactroceradorsalis(Diptera: Tephritidae) in China as predicted by CLIMEX [J].ActaEcologicaSinica, 2005, 25 (7): 1570-1574. [侯柏華, 張潤杰. 基于CLIMEX的桔小實(shí)蠅在中國適生區(qū)的預(yù)測(cè)[J]. 生態(tài)學(xué)報(bào), 2005, 25 (7): 1570-1574]
Hsu JC, Chien TY, Hu CC,etal. Discovery of genes related to insecticide resistance inBactroceradorsalisby functional genomic analysis of a de novo assembled transcriptome [J].PLoSONE, 2012, 7 (8): e40950.
Hsu JC, Feng HT. Insecticide susceptibility of the oriental fruit fly (Bactroceradorsalis(Hendel)) (Diptera: Tephritidae) in Taiwan [J].ChineseJournalofEntomology, 2000, 20: 109-118. [許如君, 馮海東. 臺(tái)灣東方果實(shí)蠅(Bactroceradorsalis(Hendel)) (雙翅目: 果實(shí)蠅科)對(duì)殺蟲劑的感受性[J]. 中華昆蟲, 2000, 20: 109-118]
Hsu JC, Feng HT. Susceptibility of melon fly (Bactroceracucurbitae) and oriental fruit fly (B.dorsalis) to insecticides in Taiwan [J].PlantProtectionBulletin, 2002, 44 (4): 303-314. [許如君, 馮海東. 瓜實(shí)蠅及東方果實(shí)蠅對(duì)殺蟲劑感受性現(xiàn)況[J]. 植物保護(hù)學(xué)會(huì)會(huì)刊, 2002, 44 (4): 303-315]
Hsu JC, Feng HT. Development of resistance to spinosad in oriental fruit fly (Diptera: Tephritidae) in laboratory selection and cross-resistance [J].JournalofEconomicEntomology, 2006, 99 (3): 931-936.
Hsu JC, Feng HT, Haymer DS,etal. Molecular and biochemical mechanisms of organophosphate resistance in laboratory-selected lines of the oriental fruit fly (Bactroceradorsalis) [J].PesticideBiochemistryandPhysiology, 2011, 100 (1): 57-63.
Hsu JC, Feng HT, Wu WJ. Resistance and synergistic effects of insecticides inBactroceradorsalis(Diptera: Tephritidae) in Taiwan [J].JournalofEconomicEntomology, 2004, 97 (5): 1682-1688.
Hsu JC, Feng HT, Wu WJ,etal. Truncated transcripts of nicotinic acetylcholine subunit gene Bdα6 are associated with spinosad resistance inBactroceradorsalis[J].InsectBiochemistryandMolecularBiology, 2012, 42 (10): 806-815.
Hsu JC, Haymer DS, Wu WJ,etal. Mutations in the acetylcholinesterase gene ofBactroceradorsalisassociated with resistance to organophosphorus insecticides [J].InsectBiochemistryandMolecularBiology, 2006, 36 (5): 396-402.
Hsu JC, Huang LH, Feng HT,etal. Do organophosphate-based traps reduce control efficiency of resistant tephritid flies? [J].JournalofPestScience, 2015, 88 (1): 181-190.
Hsu JC, Wu WJ, Feng HT. Biochemical mechanisms of malathion resistance in oriental fruit fly (Bactroceradorsalis) [J].PlantProtectionBulletin, 2004, 46 (3): 255-266. [許如君, 吳文哲, 馮海東. 東方果實(shí)蠅對(duì)馬拉松的生化抗性機(jī)制探討[J]. 植物保護(hù)學(xué)會(huì)會(huì)刊, 2004, 46 (3): 255-266]
Hsu JC, Wu WJ, Haymer DS,etal. Alterations of the acetylcholinesterase enzyme in the oriental fruit flyBactroceradorsalisare correlated with resistance to the organophosphate insecticide fenitrothion [J].InsectBiochemistryandMolecularBiology, 2007, 38 (2): 146-154.
Hsu PK, Huang LH, Geib SM,etal. Identification of a carboxylesterase associated with resistance to naled inBactroceradorsalis(Hendel) [J].PesticideBiochemistryandPhysiology, 2016, 131: 24-31.
Huang SQ, Han RC. Advance in the research on the quarantine pestBactroceradorsalis[J].EntomologicalKnowledge, 2005, 42 (5): 479-484. [黃素青, 韓日疇. 桔小實(shí)蠅的研究進(jìn)展[J]. 昆蟲知識(shí), 2005, 42 (5): 479-484]
Huang YY, Chen J. The propagation characteristic of oriental fruit fly,Bactroceradorsalisand control technique [J].EntomologicalJournalofEastChina, 2006, 15 (1): 63-66. [黃月英, 陳軍. 橘小實(shí)蠅發(fā)生特點(diǎn)與綜合防治技術(shù)[J]. 華東昆蟲學(xué)報(bào), 2006, 15 (1): 63-66]
Jin T, Liang GW, Zeng L,etal. Detoxification enzymes activities in differentBactroceradorsalis(Hendel) populations and their relationship with the resistant levels [J].JournalofEnvironmentalEntomology, 2014, 36 (1): 58-67. [金濤, 梁廣文, 曾玲, 等. 不同地理區(qū)域桔小實(shí)蠅解毒酶系活性及其與抗藥性水平關(guān)系[J]. 環(huán)境昆蟲學(xué)報(bào), 2014, 36 (1): 58-67]
Jin T, Zeng L, Lin YY,etal. Characteristics of protein variants in trichlorphon-resistantBactroceradorsalis(Diptera: Tephritidae) larvae [J].GeneticsandMolecularResearch, 2012, 11 (3): 2608-2619.
Jin T, Zeng L, Lin YY,etal. Insecticide resistance of the oriental fruit fly (Bactroceradorsalis(Hendel)) (Diptera: Tephritidae) in mainland China [J].PestManagementScience, 2011, 67 (3): 370-376.
Jin T, Zeng L, Lu YY,etal. Identification of resistance-responsive proteins in larvae ofBactroceradorsalis(Hendel), for pyrethroid toxicity by a proteomic approach [J].PesticideBiochemistryandPhysiology, 2010, 96 (1): 1-7.
Jin T, Zeng L, Lu YY,etal. Changes of the frequency of resistant individuals in populations of the oriental fruit fly,Bactroceradorsalis(Diptera: Tephritidae), with resistant individual flow [J].ActaEntomologicaSinica, 2011, 54 (3): 306-311. [金濤, 曾玲, 陸永躍, 等. 桔小實(shí)蠅抗性個(gè)體流動(dòng)對(duì)抗性個(gè)體頻率的影響[J]. 昆蟲學(xué)報(bào), 2011, 54 (3): 306-311]
Kakani EG, Mathiopoulos KD. Organophosphosphate resistance-related mutations in the acetylcholinesterase gene of Tephritidae [J].JournalofAppliedEntomology, 2008, 132 (9-10): 762-771.
Kuo TY, Hu CC, Chien TY,etal. Discovery of genes related to formothion resistance in oriental fruit fly (Bactroceradorsalis) by a constrained functional genomics analysis [J].InsectMolecularBiology, 2015, 24 (3): 338-347.
Li PZ, Lu YY, Liang GW,etal. Resistance risk assessment of oriental fruit fly to Spinosad [J].JournalofEnvironmentalEntomology, 2012, 34 (4): 447-451. [李培征, 陸永躍, 梁廣文, 等. 桔小實(shí)蠅對(duì)多殺霉素的抗藥性風(fēng)險(xiǎn)評(píng)估[J]. 環(huán)境昆蟲學(xué)報(bào), 2012, 34 (4): 447-451]
Li PZ, Lu YY, Liang GW,etal. Fitness cost ofBactroceradorsalis(Hendel) strain resisitant to Spinosad [J].JournalofEnvironmentalEntomology, 2014, 36 (1): 68-71. [李培征, 陸永躍, 梁廣文, 等. 桔小實(shí)蠅抗多殺霉素的生物適合度代價(jià)[J]. 環(huán)境昆蟲學(xué)報(bào), 2014, 36 (1): 68-71]
Li WR. The control ofBactroceradorsalis(Hendel) [J].ChineseJournalofEntomology(SpecialPubl.), 1988, 2: 51-60. [李文蓉. 東方果實(shí)蠅之防治[J]. 中華昆蟲(特刊), 1988, 2: 51-60]
Liang Fan, Liang GQ, Zhao JP,etal. Key methods of occur and comprehensive control to oriental fruit fly in Guangzhou area [J].GuangdongAgriculturalSciences, 2008, 26 (3): 58-61. [梁帆, 梁廣勤, 趙菊鵬, 等. 廣州地區(qū)桔小實(shí)蠅的發(fā)生與綜合防治關(guān)鍵措施[J]. 廣東農(nóng)業(yè)科學(xué), 2008, 26 (3): 58-61]
Liang GQ. Features of theoriental fruit fly and its habits [J].ActaAgriculturaeUniversitatisJiangxiensis, 1985, 1: 7-15. [梁廣勤. 桔小實(shí)蠅形態(tài)特征及其生活習(xí)性[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào), 1985, 1: 7-15]
Lin JT, Zeng L, Lu YY,etal. Research advances in biology and control ofBactrocera(Bactrocera)dorsalis(Hendel) [J].JournalofZhongkaiAgrotechnicalCollege, 2004, 17 (1): 60-67. [林進(jìn)添, 曾玲, 陸永躍, 等. 桔小實(shí)蠅的生物學(xué)特性及防治進(jìn)展[J]. 仲愷農(nóng)業(yè)技術(shù)學(xué)院學(xué)報(bào), 2004, 17 (1): 60-67]
Lin YY, Jin T, Zeng L,etal. Cuticular penetration of β-cypermethrin in insecticide-susceptible and resistant strains ofBactroceradorsalis[J].PesticideBiochemistryandPhysiology, 2012, 103 (3): 189-193.
Lin YY, Jin T, Zeng L,etal. Insecticide toxicity to oriental fruit flyBactroceradorsalis(Diptera: Tephritidae) is influenced by environmental factors [J].JournalofEconomicEntomology, 2013, 106 (1): 353-359.
Lin YY, Zeng L, Jin T,etal. Susceptible toxicity baseline data of the different types of insecticides for susceptible strains of oriental fruit fly [J].JournalofEnvironmentalEntomology, 2010, 32 (2): 215-219. [林玉英, 曾玲, 金濤, 等. 不同類型殺蟲劑對(duì)桔小實(shí)蠅成蟲觸殺作用的毒力敏感基線[J]. 環(huán)境昆蟲學(xué)報(bào), 2010, 32 (2): 215-219]
Liu YZ. A review on studies of the oriental fruit fly,Dacusdorsalis(Hendel) in Taiwan [J].EntomologicalBulletinofChungHsingUniversity, 1981, 16 (1): 9-26. [劉玉章. 臺(tái)灣東方果實(shí)蠅之研究[J]. 興大昆蟲學(xué)會(huì)報(bào), 1981, 16 (1): 9-26]
Meng QQ, Lu YY, Zheng MJ,etal. Sterile effects of hexamethyl phosphoryl triamide mixed with protein hydrolysate onBactroceradorsalis[J].JournalofSouthChinaAgriculturalUniversity, 2012, 33 (4): 470-474. [孟倩倩, 陸永躍, 鄭熳筠, 等. 六磷胺與水解蛋白結(jié)合使用對(duì)橘小實(shí)蠅的不育效果研究[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2012, 33 (4): 470-474]
Okuyama T, Hsu JC. Larval competition within and between insecticide resistant and susceptible individuals in the oriental fruit fly,Bactroceradorsalis[J].JournalofAppliedEntomology, 2013, 137 (4): 289-295.
Pan ZP, Lu YY, Zeng L,etal. Development of resistance to trichlorophon, alphamethrin and abamectin in laboratory populations of the oriental fruit fly,Bactroceradorsalis(Hendel) (Diptera: Tephritidae) [J].ActaEntomologicaSinica, 2008, 51 (6): 609-617. [潘志萍, 陸永躍, 曾玲, 等. 桔小實(shí)蠅實(shí)驗(yàn)種群對(duì)敵百蟲、高效氯氰菊酯和阿維菌素的抗性增長規(guī)律[J]. 昆蟲學(xué)報(bào), 2008, 51 (6): 609-617]
Pan ZP, Zeng L, Lu YY. Monitoring of resistance of oriental fruit fly adults to insecticides in south China [J].JournalofSouthChinaAgriculturalUniversity, 2005, 26 (4): 23-26. [潘志萍, 曾玲, 陸永躍. 華南地區(qū)桔小實(shí)蠅對(duì)幾種農(nóng)藥的抗藥性研究[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2005, 26 (4): 23-26]
Pan ZP, Zeng L, Wen SY. Microsatellite DNA polymorphism in different pesticide-resistant strains of the oriental fruit flyBactroceradorsalis(Hendel) (Diptera: Tephritidae) [J].ActaEntomologicaSinica, 2006, 49 (5): 874-877. [潘志萍, 曾玲, 溫碩洋. 桔小實(shí)蠅抗性品系的微衛(wèi)星DNA分析[J]. 昆蟲學(xué)報(bào), 2006, 49 (5): 874-877]
Pan ZP, Zhai X. Effects ofBeauveriabassianaon experimental populations ofBactroceradorsalis[J].PlantProtection, 2015, 41 (3): 60-63. [潘志萍, 翟欣. 球孢白僵菌對(duì)橘小實(shí)蠅實(shí)驗(yàn)種群的影響[J]. 植物保護(hù), 2015, 41 (3): 60-63]
Purcell MF, Jackson CG, Long JP,etal. Influence of guava ripening on parasitism of the oriental fruit fly,Bactroceradorsalis(Hendel) (Diptera: Tephritidae), byDiachasmimorphalongicaudata(Ashmead) (Hymenoptera: Braconidae) and other parasitoids [J].BiologicalControl, 1994, 4 (4): 396-403.
Seewooruthun SI, Sookar P, Permalloo S,etal. An Attempt at the Eradication of the Oriental Fruit Fly,Bactroceradorsalis(Hendel) from Mauritius [C]. Reduit, Mauritius: Proceedings of the Second Annual Meeting of Agricultural Scientists, 1997: 181-187.
Stephens AEA, Kriticos DJ, Leriche A. The current and future potential geographical distribution of the oriental fruit fly,Bactroceradorsalis(Diptera: Tephritidae) [J].BulletinofEntomologicalResearch, 2007, 97 (4): 369-378.
Sukhirun N, Pluempanupat W, Bullangpoti V,etal. Bioefficacy of Alpinia galanga (Zingiberaceae) rhizome extracts, (E)-p-Acetoxycinnamyl alcohol, and (E)-p-Coumaryl alcohol ethyl ether againstBactroceradorsalis(Diptera: Tephritidae) and the impact on detoxification enzyme activities [J].JournalofEconomicEntomology, 2011, 104 (5): 1534-1540.
Tang ZH. Insect Resistance to Pesticide and Its Management [M]. Beijing: China Agricultural Press, 1993: 11-18. [唐振華. 昆蟲抗藥性及其治理[M]. 北京: 農(nóng)業(yè)出版社, 1993: 11-18]
Vontas J, Hernández-Crespo P, Margaritopoulos JT,etal. Insecticide resistance in Tephritid flies [J].PesticideBiochemistryandPhysiology, 2011, 100 (3): 199-205.
Wan XW, Liu YH, Zhang B. Invasionhistory of the oriental fruit fly,Bactroceradorsalis, in the Pacific-Asia Region: Two main invasion routes [J].PLoSONE, 2012, 7 (5): e36176.
Wan XW, Nardi F, Zhang B,etal. The oriental fruit fly,Bactroceradorsalis, in China: Origin and gradual inland range expansion associated with population growth [J].PLoSONE, 2011, 6 (10): e25238.
Wang LL, Feng ZJ, Li T,etal. Inheritance, realized heritability, and biochemical mechanisms of malathion resistance inBactroceradorsalis(Diptera: Tephritidae) [J].JournalofEconomicEntomology, 2016, 109 (1): 299-306.
Zhang YP, Lu YY, Zeng L,etal. Population life parameters and relative fitness of alpharmethrin-resistantBactroceradorsalisstrain [J].ChineseJournalofAppliedEcology, 2009, 20 (2): 381-386. [章玉蘋, 曾玲, 陸永躍, 等. 桔小實(shí)蠅抗高效氯氰菊酯品系種群生命參數(shù)與相對(duì)適合度研究[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2009, 20 (2): 381-386]
Zhang YP, Lu YY, Zeng L,etal. Life-history traits and population relative fitness of trichlorphon-resistant and susceptibleBactroceradorsalis(Diptera: Tephritidae) [J].Psyche, 2010, 2010 (2010): 895935.
Zhang YP, Zeng L, Lu YY,etal. Monitoring of insecticide resistance ofBactroceradorsalisadults in South China [J].JournalofSouthChinaAgriculturalUniversity, 2007, 28 (3): 20-23. [章玉蘋, 曾玲, 陸永躍, 等. 華南地區(qū)桔小實(shí)蠅抗藥性動(dòng)態(tài)監(jiān)測(cè)[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2007, 28 (3): 20-23]
Zhang YP, Zeng L, Lu YY,etal. Monitoring of insecticides resistance of oriental fruit fly field populations in South China [J].JournalofHuazhongAgricultureUniversity(NaturalScienceEdition), 2008, 27 (4): 456-459. [章玉蘋, 曾玲, 陸永躍, 等. 華南地區(qū)桔小實(shí)蠅田間種群抗藥性的監(jiān)測(cè)[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2008, 27 (4): 456-459]
Zhang YP, Zeng L, Lu YY,etal. Resistance stability and re-growth in adults of the oriental fruit fly,Bactroceradorsalis(Diptera: Tephritidae) to trichlorphon [J].ActaEntomologicaSinica, 2008, 51 (10): 1044-1049. [章玉蘋, 曾玲, 陸永躍, 等. 桔小實(shí)蠅對(duì)敵百蟲抗性穩(wěn)定性及再增長趨勢(shì)[J]. 昆蟲學(xué)報(bào), 2008, 51 (10): 1044-1049]
DynamicofresistanceofBactroceradorsalis(Hendel)high-resistantstrainunderselectionbybeta-cypermethrinwithdifferentfrequency
YAO Qi, ZENG Ling, LIANG Guang-Wen*, LU Yong-Yue*
(Department of Entomology, South China Agricultural University, Guangzhou 510642, China)
To study on the resistance dynamic ofBactroceradorsalis(Hendel) high-resistant strain under using beta-cypermethrin with different frequency, for purpose of providing the basis for scientific and rational usage of beta-cypermethrin to control this pest in the fields,B.dorsalisadults with high resistance to beta-cypermethrin selected under the laboratory conditions were tested, and the toxicity of beta-cypermethrin to the susceptible strain was toxicity baseline. Depending on the time interval length of selection with beta-cypermethrin, four treatments including 30 d, 60 d, 90 d and 120 d were set. The high resistance strain without contacting pesticides kept continuously under normal conditions was as control. The resistance-selection and toxicity assay both with the pesticide film method were determined once every 30 days, and these tests reached ten times totally. The analysis of the relationship between the resistance dynamics and the selection time intervals was based on the median lethal concentration (LC50) and resistant multiple (Rm). The results showed that, 270 days after treatment, there were obvious differences among the resistance development forB.dorsalisstrains to beta-cypermethrin at different time interval selections, and as the selected time interval was shorter, the resistance increased faster. At the treatment of once selection every 30 days,LC50ofB.dorsalisadults to beta-cypermethrin rose to 1133.6 mg/L from the first time 582.7 mg/L, andRmalso rose to 190.7 folds from 98.0 folds. When the selection was taken once every 60 days,LC50andRmwere 828.0 mg/L and 139.3 folds, respectively.LC50was 529.2 mg/L andRmwas 89.0 folds at the treatment of once every 90 days.LC50andRmwere 511.3 mg/L and 86.0 folds, respectively, at the treatment of once every 120 days.LC50of the resistant strain without resistance-selection decreased to 368.1 mg/L from the first time 582.7 mg/L, andRmalso decreased to 61.9 folds from 98.0 folds. The equationY=11.427X-0.529can well describe the relationship between the selection time interval of beta-cypermethrin and the growth rate ofB.dorsalisadult resistance in 270 days. According to those results, it was predicted that the resistance ofB.dorsalisto beta-cypermethrin would not rise in 270 days, when the time interval between the two successive usages for that insecticide in the orchards was over 99 days.
Bactroceradorsalis(Hendel); beta-cypermethrin; high-resistant strain; selection time interval; resistance development
國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFC1201200);廣州市科技計(jì)劃項(xiàng)目(201601010179)
姚其,男,1986年生,廣西靈山人,碩士研究生,研究方向?yàn)楹οx控制,E-mail:269yao103@163.com
*通訊作者Author for correspondence, E-mail: luyongyue@scau.edu.cn; gwliang@scau.edu.cn
Received: 2017-04-06; 接受日期Accepted: 2017-05-23
Q965.9;S481+.4
:A
1674-0858(2017)04-0791-09
姚其,曾玲,梁廣文,等.高效氯氰菊酯不同汰選頻度條件下桔小實(shí)蠅高抗品系抗藥性發(fā)展動(dòng)態(tài)[J].環(huán)境昆蟲學(xué)報(bào),2017,39(4):791-799.