張肖靜, 周 月, 張 楠, 鄭凱偉, 傅浩強(qiáng), 陳 濤, 張宏忠
鄭州輕工業(yè)學(xué)院材料與化學(xué)工程學(xué)院, 環(huán)境污染治理與生態(tài)修復(fù)河南省協(xié)同創(chuàng)新中心, 河南 鄭州 450001
自養(yǎng)脫氮污泥的亞硝化活性恢復(fù)策略
張肖靜, 周 月, 張 楠, 鄭凱偉, 傅浩強(qiáng), 陳 濤, 張宏忠*
鄭州輕工業(yè)學(xué)院材料與化學(xué)工程學(xué)院, 環(huán)境污染治理與生態(tài)修復(fù)河南省協(xié)同創(chuàng)新中心, 河南 鄭州 450001
為考察自養(yǎng)脫氮污泥亞硝化活性快速恢復(fù)的策略,在3個(gè)反應(yīng)器內(nèi)分別采用不同的方法對(duì)經(jīng)過長(zhǎng)期冷凍保存后的污泥進(jìn)行了恢復(fù)活性的研究. 其中R1為MBR(膜生物反應(yīng)器),采用低ρ(DO)(0.30 mg/L)連續(xù)流恢復(fù)策略;R2為SBR(序批式反應(yīng)器),采用低ρ(DO)(0.30 mg/L)間歇流恢復(fù)策略;R3為SBR,采用低ρ(NH4+-N)預(yù)培養(yǎng)-高曝氣-低ρ(DO)運(yùn)行三階段的恢復(fù)策略. 結(jié)果表明,R1的恢復(fù)時(shí)間為46 d,NH4+-N氧化速率達(dá)到4.99 mg/(h·g)(以N計(jì)),最終ρ(MLSS)達(dá)到5.43 g/L;R2的恢復(fù)時(shí)間為39 d,NH4+-N氧化速率達(dá)到4.61 mg/(h·g),最終ρ(MLSS)達(dá)到4.47 g/L;R3的恢復(fù)時(shí)間為48 d,NH4+-N氧化速率達(dá)到5.64 mg/(h·g),最終ρ(MLSS)達(dá)到5.16 g/L. 3個(gè)反應(yīng)器均能長(zhǎng)期抑制亞硝酸鹽氧化細(xì)菌的活性,使亞硝化穩(wěn)定運(yùn)行. 3個(gè)反應(yīng)器中,R3恢復(fù)所需時(shí)間最長(zhǎng),但污泥活性最好;R1中的污泥活性較低,但是膜組件有效截留了污泥,達(dá)到了最高的ρ(MLSS). 研究顯示,通過厭氧預(yù)培養(yǎng)后轉(zhuǎn)為膜生物反應(yīng)器連續(xù)流運(yùn)行的策略,可有助于污泥的極大保留及污泥活性的最大恢復(fù).
脫氮; 亞硝化; 恢復(fù)策略; 序批式反應(yīng)器; 膜生物反應(yīng)器
自養(yǎng)脫氮工藝是近年來發(fā)展起來的新型脫氮工藝,相比傳統(tǒng)的硝化-反硝化脫氮工藝可以節(jié)省60%以上的曝氣量和100%的有機(jī)碳源,符合目前污水處理節(jié)能降耗及資源化利用的要求,被認(rèn)為是最經(jīng)濟(jì)高效的脫氮途徑[1- 2]. 自養(yǎng)脫氮包括亞硝化和厭氧氨氧化兩個(gè)過程. 在亞硝化過程中,NH4+-N被AOB(好氧氨氧化菌,ammonia-oxidizing bacteria)氧化為NO2--N,同時(shí)NOB(亞硝酸鹽氧化菌,nitrite-oxidizing bacteria)的活性需被有效抑制,進(jìn)而實(shí)現(xiàn)NO2--N積累[3- 4]. 之后,剩余的NH4+-N和NO2--N在厭氧氨氧化階段被AAOB(厭氧氨氧化菌,anaerobic ammonia-oxidizing bacteria)轉(zhuǎn)化為N2排放,完成脫氮. 因此,亞硝化是整個(gè)自養(yǎng)脫氮工藝的關(guān)鍵步驟,決定了工藝的整體脫氮效率及穩(wěn)定性[5- 6].
目前,自養(yǎng)脫氮污泥還存在培養(yǎng)時(shí)間長(zhǎng)、來源少的缺陷,限制了自養(yǎng)脫氮工藝的發(fā)展[7- 8]. 培養(yǎng)好的自養(yǎng)脫氮污泥一般選擇冷凍保存,留作啟動(dòng)新反應(yīng)器時(shí)接種使用[9]. 經(jīng)冷凍保存的污泥中微生物活性下降,甚至大量死亡,因此,如何快速高效恢復(fù)冷凍污泥的活性,對(duì)于自養(yǎng)脫氮工藝的應(yīng)用發(fā)展至關(guān)重要. 有研究考察了自養(yǎng)脫氮污泥經(jīng)受多種毒性沖擊之后的恢復(fù)策略,包括金屬離子、pH、基質(zhì)濃度等[10- 12],然而關(guān)于冷凍保存后的污泥活性的恢復(fù)策略鮮見報(bào)道. 因此,該研究采用三種不同的策略對(duì)經(jīng)過長(zhǎng)期冷凍保存的自養(yǎng)脫氮污泥進(jìn)行亞硝化活性的恢復(fù),并比較了各種方法的優(yōu)劣,以期選擇出最適合的恢復(fù)策略.
采用3個(gè)反應(yīng)器,分別為1個(gè)連續(xù)流的MBR(膜生物反應(yīng)器,membrane bioreactor)及2個(gè)SBR(序批式反應(yīng)器,sequencing batch reactor),分別記為R1、R2和R3. MBR中的膜組件能夠?qū)⑺形⑸锝亓粼诜磻?yīng)器中,有利于自養(yǎng)脫氮微生物的生存及增殖[13- 14]. SBR反應(yīng)器能夠靈活控制曝氣時(shí)間,進(jìn)而在NH4+-N氧化完全時(shí)及時(shí)停止供氧,有利于自養(yǎng)脫氮亞硝化活性的恢復(fù)及穩(wěn)定[15- 16].
R1直徑14 cm,高40 cm,有效體積為5 L. 底部放置曝氣環(huán),內(nèi)置膜組件,孔徑為0.1 μm,膜有效面積為0.05 m2,動(dòng)力攪拌,如圖1所示. R2和R3設(shè)置完全相同,直徑10 cm,高15 cm,有效體積為1 L,底部放置曝氣環(huán)供氧,電動(dòng)攪拌使反應(yīng)器混合均勻,如圖2所示. R2和R3每天運(yùn)行兩個(gè)周期,換水比90%,各周期設(shè)置:進(jìn)水5 min、曝氣攪拌反應(yīng)480 min、沉淀30 min、排水5 min、靜置200 min. 每個(gè)周期開始前用配好的水充分洗泥,以保證各周期開始時(shí)三氮濃度一致.
R1采用低ρ(DO)連續(xù)流恢復(fù)策略,R2采用低ρ(DO) 間歇流恢復(fù)策略,R3則采用低ρ(NH4+-N)預(yù)培養(yǎng)-高曝氣-低ρ(DO)運(yùn)行三階段的恢復(fù)策略,具體運(yùn)行參數(shù)如表1所示. 3個(gè)反應(yīng)器的溫度均控制在25 ℃左右,以考察常溫條件下自養(yǎng)脫氮污泥亞硝化活性的恢復(fù)策略.
注:1—進(jìn)水桶;2—進(jìn)水泵;3—膜組件;4—出水泵;5—出水;6—空氣泵;7—?dú)怏w流量計(jì);8—攪拌器;9—水浴.圖1 MBR反應(yīng)器設(shè)置原理Fig.1 Schematic diagram of MBR
注:1—電動(dòng)攪拌器;2—DO/pH/T便攜式檢測(cè)儀;3—?dú)獗茫?—探頭;5—曝氣環(huán);6—進(jìn)水;7—取樣口;8—排水口.圖2 SBR反應(yīng)器設(shè)置原理Fig.2 Schematic diagram of SBR
反應(yīng)器運(yùn)行階段運(yùn)行時(shí)間∕d進(jìn)水ρ(NH4+-N)∕(mg∕L)ρ(DO)∕(mg∕L)pHHRT∕hR1Ⅰ392000.307.816Ⅱ72000.307.818R2392000.307.838Ⅰ361000.057.568R3Ⅱ52007.507.788Ⅲ72000.307.828
注:HRT為水力停留時(shí)間.
1.2接種污泥和配水
接種污泥取自經(jīng)長(zhǎng)期冷凍保存的自養(yǎng)脫氮污泥,接種前在-20 ℃ 條件下保存了約8個(gè)月. 接種的ρ(MLSS)(污泥濃度)為5.45 g/L,ρ(MLVSS)(揮發(fā)性污泥濃度)為4.25 g/L. R1、R2和R3的接種量分別為5、1和1 L.
試驗(yàn)用水為人工配水,主要包括(NH4)2SO4和NaHCO3,分別提供NH4+-N和堿度. 另外包括68 mg/L的KH2PO4、150 mg/L的MgSO4·7H2O、68 mg/L的CaCl2,以及1 mL/L的微量元素Ⅰ號(hào)和Ⅱ號(hào)溶液.
A組患者死亡1例(8.33%),B組患者死亡6例(26.09%),C組患者死亡5例(46.15%),三組患者的死亡率與急診門診留置時(shí)間呈正相關(guān);差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。
1.3分析方法
ρ(NH4+-N)采用納氏試劑分光光度法測(cè)定,ρ(NO2--N)測(cè)定采用N- 1-萘基乙二胺分光光度法測(cè)定,ρ(NO3--N)采用紫外分光光度法測(cè)定,pH、ρ(DO) 和水溫采用多參數(shù)測(cè)定儀(德國(guó),WTW)測(cè)定. NH4+-N去除率(η,%)、NO2--N積累率(NAR,%)、NH4+-N氧化速率〔AOT,mg/(h·g)〕計(jì)算:
η=([NH4+-N]in-[NH4+-N]eff)/
[NH4+-N]in×100%
NAR=[NO2--N]/([NO2--N]+
[NO3--N])×100%
AOT=([NH4+-N]sta-[NH4+-N]end)/
(t×MLVSS)
式中:[NH4+-N]in和[NH4+-N]eff分別為進(jìn)水和出水中的ρ(NH4+-N),mg/L;[NO2--N]和[NO3--N]分別為系統(tǒng)中的ρ(NO2--N)和ρ(NO3--N),mg/L;[NH4+-N]sta和[NH4+-N]end分別為初始和結(jié)束時(shí)的ρ(NH4+-N),mg/L;t為時(shí)間,h;MLVSS為系統(tǒng)中ρ(MLVSS),g/L.
2.1低ρ(DO)連續(xù)流恢復(fù)策略
對(duì)于亞硝化而言,在恢復(fù)AOB活性的同時(shí)需要有效抑制NOB的活性[17- 18],從而使NH4+-N的氧化停留在NO2--N階段,為后續(xù)厭氧氨氧化提供合適的進(jìn)水. 結(jié)合已有研究[19- 21],控制R1的ρ(DO)為0.3 mg/L左右,pH為7.8左右,利用低ρ(DO)和高pH聯(lián)合抑制NOB的活性. 由圖3可見,在R1中,接種之后開始運(yùn)行的前幾天,出水中ρ(NH4+-N)與進(jìn)水幾乎相等,并且出水中檢測(cè)不到NO2--N和NO3--N,這說明此時(shí)污泥中的AOB幾乎沒有活性. 此時(shí)反應(yīng)器內(nèi)的污泥發(fā)白,黏性較小,多以單獨(dú)顆粒狀懸浮于反應(yīng)器中. 之后隨著反應(yīng)器的進(jìn)行,污泥顏色逐漸變亮,從灰白色轉(zhuǎn)變?yōu)闇\黃色,這是典型的亞硝化污泥的顏色[22],顯示污泥中的微生物開始恢復(fù)活性,到運(yùn)行第9天時(shí),出水NH4+-N顯著降低,出水NO2--N逐漸升高,AOB開始將一部分NH4+-N氧化為NO2--N. NH4+-N去除率增至8%,之后,出水ρ(NH4+-N)進(jìn)一步降低,ρ(NO2--N)進(jìn)一步升高.
在階段Ⅰ后期(30~39 d),NH4+-N去除率穩(wěn)定在40%左右,不再升高,說明污泥中的AOB活性達(dá)到穩(wěn)定的狀態(tài). 考慮到在自養(yǎng)脫氮工藝中,亞硝化反應(yīng)器需要為后續(xù)厭氧氨氧化反應(yīng)器提供進(jìn)水,因此出水ρ(NO2--N)/ρ(NH4+-N)需要為1.32左右,NH4+-N氧化率需要達(dá)到50%以上[23- 24]. 在階段Ⅰ后期,R1的NH4+-N去除負(fù)荷為0.312 kg/(m3·d)(以N計(jì)). 在穩(wěn)定的微生物活性下NH4+-N去除負(fù)荷是相等的,若想降低出水中的ρ(NH4+-N),增大NH4+-N去除率,需要延長(zhǎng)HRT. 因此,通過計(jì)算,在階段Ⅱ(40~46 d)將HRT延長(zhǎng)為8 h,以提高NH4+-N去除率. 從圖3可見,NH4+-N去除率增加為55%左右,出水ρ(NH4+-N)穩(wěn)定在93 mg/L左右,出水ρ(NO2--N)穩(wěn)定在105 mg/L左右,ρ(NO2--N)/ρ(NH4+-N)符合厭氧氨氧化的進(jìn)水要求. 該反應(yīng)器在ρ(DO)為0.3 mg/L、pH為7.8、HRT為6~8 h的條件下,成功恢復(fù)自養(yǎng)脫氮污泥的亞硝化活性,并穩(wěn)定7 d以上,共歷時(shí)46 d,最終的ρ(MLSS)達(dá)到5.31 g/L,ρ(MLVSS)達(dá)到3.67 g/L,NH4+-N氧化速率為4.99 mg/(h·g). NO2--N積累率保持在99%左右,整個(gè)恢復(fù)過程幾乎沒有NO3--N生成,說明NOB得到了持續(xù)抑制,這對(duì)亞硝化的長(zhǎng)期穩(wěn)定運(yùn)行是有利的. 這一方面是由于接種污泥中NOB含量較少,另一方面是MBR的低ρ(DO)、高pH以及高負(fù)荷成功抑制了NOB活性[19,25]. 此外,經(jīng)計(jì)算,R1反應(yīng)器內(nèi)ρ(FA)(FA為游離氨)為3.4~41.4 mg/L,能夠有效抑制NOB活性[26- 27],這也保證了恢復(fù)活性后的亞硝化能夠長(zhǎng)期穩(wěn)定.
圖3 R1反應(yīng)器的運(yùn)行效果Fig.3 Reactor performance of R1
圖4 R2反應(yīng)器的運(yùn)行效果Fig.4 Reactor performance of R2
2.2低ρ(DO)間歇流恢復(fù)策略
由圖4可見,與R1相似,R2反應(yīng)器中污泥在剛接種運(yùn)行的前幾天沒有活性,出水ρ(NH4+-N)與進(jìn)水幾乎相等,出水中ρ(NO2--N)與ρ(NO3--N)均為0,說明AOB及NOB均沒有活性. 同時(shí)污泥松散,沉淀后的上清液中出水渾濁,可見有解體的污泥排出. 這說明在經(jīng)過冷凍之后,污泥的絮凝性能變差,重新接入反應(yīng)器后,有一些微生物死亡,導(dǎo)致污泥菌膠團(tuán)解體. 同時(shí)R2內(nèi)的曝氣加劇了老化污泥的解體,從而導(dǎo)致污泥流失;而R1則由于內(nèi)置膜組件截留了所有微生物在反應(yīng)器內(nèi),因此沒有污泥流失[19,21].
在運(yùn)行到第8天時(shí),R2的出水ρ(NH4+-N)略低于進(jìn)水,說明AOB開始恢復(fù)活性,之后出水ρ(NH4+-N)進(jìn)一步降低,NH4+-N去除率逐漸升高,出水ρ(NO2--N)逐漸增加,AOB的活性不斷得到增強(qiáng)[28]. 到第31天時(shí),NH4+-N去除率增加到50%以上,說明污泥的亞硝化活性恢復(fù)成功. 在整個(gè)過程中,NO3--N生成量一直很低,說明NOB的活性沒有得到誘導(dǎo),這與R2內(nèi)的低ρ(DO)、高pH以及間歇運(yùn)行的條件有關(guān)[29]. 研究[27]表明,在SBR亞硝化反應(yīng)器間歇運(yùn)行的每一個(gè)周期中,隨著周期反應(yīng)的進(jìn)行,ρ(NH4+-N)逐漸降低,ρ(NO2--N)逐漸上升,從而導(dǎo)致ρ(FA)逐漸下降的同時(shí)ρ(FNA)(FNA為游離亞硝酸)逐漸上升,F(xiàn)A和FNA交替抑制了NOB的活性. 因此,多種因素保證了NOB受到持續(xù)的抑制. 最終,R2的NH4+-N去除率在50%以上,穩(wěn)定7 d,共歷時(shí)39 d,NO2--N積累率穩(wěn)定在99%以上,亞硝化得到成功高效的恢復(fù). 最終的ρ(MLSS)為4.47 g/L,ρ(MLVSS)為2.98 g/L, NH4+-N氧化速率為4.61 mg/(h·g).
2.3低ρ(NH4+-N)預(yù)培養(yǎng)-高曝氣-低ρ(DO)運(yùn)行三階段的恢復(fù)策略
考慮到經(jīng)過長(zhǎng)時(shí)間冷凍的污泥在曝氣條件下容易解體,在R3中采用了缺氧低ρ(NH4+-N)預(yù)培養(yǎng)的策略,恢復(fù)過程中氮素變化如圖5所示. 第一階段不進(jìn)行曝氣,進(jìn)水ρ(NH4+-N)為100 mg/L,機(jī)械攪拌導(dǎo)致一些空氣進(jìn)入反應(yīng)器,反應(yīng)過程中ρ(DO)約為0.05 mg/L. 由圖5可見,在階段Ⅰ的前20 d,污泥中的微生物幾乎完全沒有活性,雖然污泥的顏色已經(jīng)從灰白色變?yōu)榱藴\黃色,但出水ρ(NH4+-N)很高,幾乎沒有NO2--N生成. 20 d之后,NH4+-N去除率有所增高,增加到15%左右之后進(jìn)入平臺(tái)區(qū),NH4+-N去除達(dá)到穩(wěn)定,一直到第36天均沒有進(jìn)一步增高的趨勢(shì).
圖5 R3反應(yīng)器的運(yùn)行效果Fig.5 Reactor performance of R3
由于從污泥的外觀觀察其已經(jīng)恢復(fù)活性,推測(cè)出水ρ(NH4+-N)較高是因?yàn)棣?DO)不足,因此在階段Ⅱ采用高強(qiáng)度的曝氣,各周期初始ρ(DO)調(diào)整為7.5 mg/L. 同時(shí)考慮到高ρ(DO)可能會(huì)誘導(dǎo)NOB的活性,因此將進(jìn)水ρ(NH4+-N)增至200 mg/L,結(jié)合高pH,以抑制NOB活性. 從圖5可見,在高ρ(DO)下,AOB活性得到快速恢復(fù),出水ρ(NH4+-N)迅速降至109 mg/L,第1天的NH4+-N去除率即升至45.7%. 之后在高曝氣的5 d內(nèi),NH4+-N去除率持續(xù)升至80%以上. 由于ρ(DO)過高,存在誘導(dǎo)NOB活性,從而破壞亞硝化穩(wěn)定性的風(fēng)險(xiǎn),因此,在階段Ⅲ將ρ(DO) 降低為0.3 mg/L. 可以看到反應(yīng)器內(nèi)出水ρ(NH4+-N)仍然較低,與高曝氣時(shí)接近,說明AOB活性經(jīng)過高曝氣階段已經(jīng)完全恢復(fù). 降低的ρ(DO)并沒有限制AOB的活性,NH4+-N去除率維持在75%以上,沒有NO3--N生成,說明采用該方法的恢復(fù)之后的亞硝化較為穩(wěn)定[30]. 最終結(jié)果表明,采用低ρ(NH4+-N)預(yù)培養(yǎng)-高曝氣-低ρ(DO)結(jié)合的方式,恢復(fù)時(shí)間需要48 d,最終ρ(MLSS)為5.16 g/L,ρ(MLVSS)為3.61 g/L,NH4+-N氧化速率達(dá)到5.64 mg/(h·g).
2.4三種恢復(fù)策略的比較
比較三種恢復(fù)策略,R1的恢復(fù)時(shí)間(46 d)較短,同時(shí)達(dá)到了最高的污泥濃度,這說明膜組件很好地截留了微生物,避免了污泥流失;NH4+-N氧化速率較高,說明MBR中連續(xù)流低ρ(DO)的方式能夠恢復(fù)較高的亞硝化活性. R2的恢復(fù)時(shí)間(37 d)最短,但是最終的污泥濃度最低,這是因?yàn)榍捌诘钠貧庠斐闪宋勰嗔魇?,同時(shí)其NH4+-N氧化速率最低,說明R2內(nèi)的AOB活性最差. R3恢復(fù)時(shí)間(48 d)最長(zhǎng),但是達(dá)到了較高的污泥濃度,雖然污泥濃度比R1低,但是高于一直曝氣的R2,這說明厭氧預(yù)培養(yǎng)極大限度的保留了污泥,避免了污泥流失. 同時(shí),R3的NH4+-N氧化速率最高,說明該反應(yīng)器內(nèi)的AOB活性最好,這說明低ρ(NH4+-N)預(yù)培養(yǎng)-高曝氣-低ρ(DO)運(yùn)行的方式能夠最大限度地恢復(fù)污泥的亞硝化活性. 結(jié)合3個(gè) 反應(yīng)器的恢復(fù)效果,為了同時(shí)達(dá)到較高的污泥濃度及較高的污泥活性,可首先在SBR內(nèi)經(jīng)厭氧預(yù)培養(yǎng)+高曝氣徹底恢復(fù)污泥活性后,再轉(zhuǎn)入MBR連續(xù)流運(yùn)行,增大污泥濃度,從而進(jìn)一步提高反應(yīng)器的NH4+-N去除負(fù)荷.
a) 在MBR內(nèi)連續(xù)流低ρ(DO)下恢復(fù)亞硝化污泥活性需46 d,ρ(MLSS)達(dá)到5.31 gL,ρ(MLVSS)達(dá)到3.67 gL,NH4+-N氧化速率達(dá)到4.99 mg(h·g).
b) 在SBR內(nèi)間歇流低ρ(DO)條件下恢復(fù)亞硝化污泥活性需37 d,ρ(MLSS)達(dá)到4.47 gL,ρ(MLVSS)達(dá)到2.98 gL,NH4+-N氧化速率達(dá)到4.61 mg(h·g).
c) 在SBR內(nèi)經(jīng)厭氧預(yù)培養(yǎng),加高曝氣之后轉(zhuǎn)低曝氣,恢復(fù)亞硝化污泥活性需48 d,最終ρ(MLSS)為5.16 gL,ρ(MLVSS)為3.61 gL ,NH4+-N氧化速率達(dá)到5.64 mg(h·g).
d) 厭氧預(yù)培養(yǎng)+高曝氣+低曝氣運(yùn)行的方式能夠最大限度的恢復(fù)污泥的亞硝化活性,而MBR能夠達(dá)到較高的污泥濃度. 在實(shí)際運(yùn)行中,可采用SBR厭氧預(yù)培養(yǎng)+高曝氣+MBR連續(xù)流運(yùn)行的方式,在快速恢復(fù)亞硝化活性的同時(shí),增大反應(yīng)器的污泥濃度.
[1] KARTAL B,KUENEN J G,VAN LOOSDRECHT M C M.Sewage treatment with anammox[J].Science,2010,328:702- 703.
[2] SLIEHERS A O,DERWORT N,CAMPOS-GOMEZ J L,etal.Completely autotrophic nitrogen removal over nitrite in one single reactor[J].Water Research,2002,36(10):2475- 2482.
[3] PARK S,CHING J,RITTMANN B E,etal.Nitrite accumulation from simultaneous free-ammonia and free-nitrous-acid inhibition and oxygen limitation in a continuous-flow biofilm reactor[J].Biotechnology and Bioengineering,2015,112(1):43- 52.
[4] SUI Qianwen,LIU Chong,ZHANG Junya,etal.Response of nitrite accumulation and microbial community to free ammonia and dissolved oxygen treatment of high ammonium wastewater[J].Applied Microbiology and Biotechnology,2016,100(9):4177- 4187.
[5] 朱亮,李祥,黃勇.基于ANAMMOX 處理低C/N廢水高效脫氮聯(lián)合工藝研究進(jìn)展[J].水處理技術(shù),2015,41(8):11- 15.
[6] SOLIMAN M,ELDYASTI A.Development of partial nitrification as a first step of nitrite shunt process in a sequential batch reactor (SBR) using ammonium oxidizing bacteria (AOB) controlled by mixing regime[J].Bioresource Technology,2016,221:85- 95.
[7] TOMAR S,GUPTA S K,KUMAR B.Performance evaluation of the anammox hybrid reactor seeded with mixed inoculum sludge[J].Environmental Technology,2016,37(9):1065- 1076.
[8] KIM B,CUI F,KIM M.Partial nitrification process by seeding aerobic and anaerobic granular sludge[J].Desalination and Water Treatment,2015,57(17):1- 11.
[9] ENGLBRECHT S,FONDENGCAP M T,RATHSACK K,etal.Highly efficient long-term storage of carrier-bound anammox biomass[J].Water Science & Technology,2016,74:1911- 1918.
[10] ZHANG Zhengzhe,CHENG Yafei,ZHOU Yuhuang,etal.A novel strategy for accelerating the recovery of an anammox reactor inhibited by copper(II):EDTA washing combined with biostimulation via low-intensity ultrasound[J].Chemical Engineering Journal,2015,279:912- 920.
[11] HE Shilong,ZHANG Yanlong,NIU Qigui,etal.Operation stability and recovery performance in an anammox EGSB reactor after pH shock[J].Ecological Engineering,2016,90:50- 56.
[12] ZHANG Yanlong,HE Shilong,NIU Qigui,etal.Characterization of three types of inhibition and their recovery processes in an anammox UASB reactor[J].Biochemical Engineering Journal,2016,109:212- 221.
[13] HUANG X,URATA K,WEI Q,etal.Fast start-up of partial nitritation as pre-treatment for anammox in membrane bioreactor[J].Biochemical Engineering Journal,2016,105:371- 378.
[14] DAI W,XU X,LIU B,etal.Toward energy-neutral wastewater treatment:a membrane combined process of anaerobic digestion and nitritation:anammox for biogas recovery and nitrogen removal[J].Chemical Engineering Journal,2015,279:725- 734.
[15] SUN Hongwei,PENG Yongzhen,WANG Shuying,etal.Achieving nitritation at low temperatures using free ammonia inhibition on Nitrobacter and real-time control in an SBR treating landfill leachate[J].Journal of Environmental Sciences,2015,30:157- 163.
[16] MAURICIO L M,VANGSGAARD A,GERNAEY K V.A novel control strategy for single-stage autotrophic nitrogen removal in SBR[J].Chemical Engineering Journal,2015,260:64- 73.
[17] LIANG Yuhai,LI Dong,ZHANG Xiaojing,etal.Stability and nitrite-oxidizing bacteria community structure in different high-rate CANON reactors[J].Bioresource Technology,2015,175:189- 194.
[18] POOT V,HOEKSTRA M,GELEIJNSE M A A,etal.Effects of the residual ammonium concentration on NOB repression during partial nitritation with granular sludge[J].Water Research,2016,106:518- 530.
[19] 陳宗姮,黃勇,李祥.pH對(duì)亞硝化、厭氧氨氧化反應(yīng)及聯(lián)合工藝氮素轉(zhuǎn)化的影響[J].環(huán)境工程,2016,34(1):55- 60. CHEN Zongheng,HUANG Yong,LI Xiang.Effect of pH on nitrogen conversion performance in the nitrification,anammox and combined process[J].Environmental Engineering,2016,34(1):55- 60.
[20] ZHANG Xiaojing,LI Dong,LIANG Yuhai,etal.Start-up,influence factors,and the microbial characteristics of partial nitrification in membrane bioreactor[J].Desalination and Water Treatment,2014,54:581- 589.
[21] LV Yongtao,JU Kai,WANG Lei,etal.Effect of pH on nitrous oxide production and emissions from a partial nitritation reactor under oxygen-limited conditions[J].Process Biochemistry,2016,51:765- 771.
[22] ZHANG X,LI D,LIANG Y,etal.Application of membrane bioreactor for completely autotrophic nitrogen removal over nitrite (CANON) process[J].Chemosphere,2013,93:2832- 2838.
[23] STROUS M,HEIJNEN J J,KUENEN J G,etal.The sequencing batchreactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J].Applied Environmental Microbiology,1998,50:589- 596.
[24] HUANG X,URATA K,WEI Q,etal.Fast start-up of partial nitritation as pre-treatment for anammox in membrane bioreactor[J].Biochemical Engineering Journal,2016,105:371- 378.
[25] WANG Lan,ZHENG Ping,ABBAS G,etal.A start-up strategy for high-rate partial nitritation based on DO-HRT control[J].Process Biochemistry,2016,51:95- 104.
[26] 吳莉娜,徐瑩瑩,史梟,等.短程硝化-厭氧氨氧化組合工藝深度處理垃圾滲濾液[J].環(huán)境科學(xué)研究,2016,29(4):587- 593. WU Lina,XU Yingying,SHI Xiao,etal.Advanced treatment of landfill leachate by combined process of partial nitrification and anaerobic ammonium oxidation[J].Research of Environmental Sciences,2016,29(4):587- 593.
[27] MENG F,CHAE S,DREWS A,etal.Recent advances in membrane bioreactors (MBRs):membrane fouling and membrane material[J].Water Research,2009,43:1489- 1512.
[28] ZHOU J,WANG H,YANG K,etal.Optimization of operation conditions for preventing sludge bulking and enhancing the stability of aerobic granular sludge in sequencing batch reactors[J].Water Science & Technology,2014,70(9):1519- 1525.
[29] 張肖靜,李冬,周利軍,等.堿度對(duì)常低溫處理生活污水亞硝化的影響[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2013,45(4):682- 687. ZHANG Xiaojing,LI Dong,ZHOU Lijun,etal.Effect of alkalinity on partial nitrification of domestic sewage at ordinary and low temperature[J].Journal of Harbin Institute of Technology,2013,45(4):682- 687.
[30] 李蕓,李軍,陳剛,等.晚期垃圾滲濾液厭氧氨氧化脫氮性能及其污泥特性[J].環(huán)境科學(xué)研究,2016,29 (3):411- 418. LI Yun,LI Jun,CHEN Gang,etal.Nitrogen removal performance and characteristics of granular sludge in ANAMMOX reactor fed with mature landfill leachate[J].Research of Environmental Sciences,2016,29 (3):411- 418.
Strategy for Recovering the Partial Nitrification Activity of Autotrophic Nitrogen Removal Sludge
ZHANG Xiaojing, ZHOU Yue, ZHANG Nan, ZHENG Kaiwei, FU Haoqiang, CHEN Tao, ZHANG Hongzhong*
Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
In order to investigate a recovery strategy for the partial nitrification (PN) activity in autotrophic nitrogen removal sludge, three reactors were adopted in this study. R1 was operated under low DO (0.30 mg/L) and high pH (7.8) conditions in a continuous membrane bioreactor; R2 was operated under low DO (0.30 mg/L) condition in a sequencing batch rector; and R3 was operated under the conditions of anoxic-high DO-low DO (0.30 mg/L) in a sequencing batch reactor. The results showed that the recovery periods for R1, R2 and R3 were 46 d, 39 d and 48 d, respectively. The ammonia oxidation rates for the three reactors were 4.99, 4.61 and 5.64 mg/(h·g), and the final concentrations of mixed liquid suspended solids were 5.43, 4.47 and 5.16 g/L, respectively. The nitrite-oxidizing bacteria were completely suppressed in all the three reactors, which was profitable for the stability of the PN reactor. The recovery in R3 took the longest time but got a best microbial activity, while R2 enabled the highest sludge concentration. Therefore, the strategy of combining pre-cultivation under anaerobic condition with membrane bioreactor under low DO condition was favorable for recovering the PN bioactivity of autotrophic nitrogen removal sludge.
nitrogen removal; partial nitrification; recovery strategy; sequencing batch reactor; membrane bioreactor
2016-10-28
:2017-06-09
河南省重點(diǎn)科技攻關(guān)項(xiàng)目(152102310376);河南省教育廳重點(diǎn)科研項(xiàng)目(16A610013);國(guó)家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(201610462068)
張肖靜(1986-),女,河南開封人,講師,博士,主要從事污水處理新技術(shù)研究,zhangxiaojing@zzuli.edu.cn.
*責(zé)任作者,張宏忠(1968-),男,河南新鄉(xiāng)人,教授,博士,主要從事膜分離在污水處理中的應(yīng)用研究,zhz@zzuli.edu.cn
X703.1
:1001- 6929(2017)09- 1464- 07
ADOI:10.13198/j.issn.1001- 6929.2017.02.80
張肖靜,周月,張楠,等.自養(yǎng)脫氮污泥的亞硝化活性恢復(fù)策略[J].環(huán)境科學(xué)研究,2017,30(9):1464- 1470.
ZHANG Xiaojing,ZHOU Yue,ZHANG Nan,etal.Strategy for recovering the partial nitrification activity of autotrophic nitrogen removal sludge[J].Research of Environmental Sciences,2017,30(9):1464- 1470.