郝文剛,陸一鋒,賴艷華,※,張宗敏,呂明新
開放式太陽能物料干燥熱濕遷移模型的構(gòu)建及驗證
郝文剛1,陸一鋒1,賴艷華1,2※,張宗敏1,呂明新2
(1. 山東大學(xué)能源與動力工程學(xué)院,濟南 250061;2. 山東大學(xué)蘇州研究院,蘇州 215021)
基于開放式太陽能物料干燥過程中存在干燥品質(zhì)不可控、隨機性較大的問題。根據(jù)傳熱傳質(zhì)理論知識,建立開放式太陽能物料干燥熱濕遷移預(yù)測模型,在綜合考慮太陽能輻射、室外空氣溫濕度、室外風(fēng)速等影響因素的基礎(chǔ)上,對模型中的參數(shù)進(jìn)行選擇,并利用MATLAB軟件編制求解程序,該模型能夠預(yù)測出干燥過程中物料表面的溫度及水分遷移速率變化。為驗證模型的準(zhǔn)確性,以紅薯為干燥物料對其開放式太陽能干燥過程進(jìn)行試驗測試。結(jié)果表明:物料表面溫度、水分遷移速率的模擬值與試驗值之間的決定系數(shù)分別為0.96、0.89,均方根誤差分別為0.97 ℃、28.35 g,其相關(guān)性程度較高,說明該模型能夠較準(zhǔn)確預(yù)測開放式太陽能物料干燥過程中物料表面溫度及水分遷移速率,可以用于開放式太陽能干燥的工藝控制。
熱傳遞;模型;干燥;開放式太陽能,非穩(wěn)態(tài);干燥特性
郝文剛,陸一鋒,賴艷華,張宗敏,呂明新. 開放式太陽能物料干燥熱濕遷移模型的構(gòu)建及驗證[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(15):301-307. doi:10.11975/j.issn.1002-6819.2017.15.038 http://www.tcsae.org
Hao Wengang, Lu Yifeng, Lai Yanhua, Zhang Zongmin, Lü Mingxin. Modeling of materials heat and moisture transfer in open sun drying and experimental validation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 301-307. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.038 http://www.tcsae.org
開放式太陽能干燥是一種在室外空曠的地面上不采取任何措施直接利用室外太陽能進(jìn)行物料干燥的方式。它是目前發(fā)展中國家應(yīng)用最廣泛的一種太陽能干燥形式,具有方便、運行費用低等優(yōu)點,但其存在干燥物料品質(zhì)受室外環(huán)境影響較大、占地面積較大的缺點[1],而且無法預(yù)測物料干燥過程中其表面溫度及水分遷移速率變化。而預(yù)測物料干燥過程中其表面溫度及水分遷移速率能夠有效防止物料過干燥或未達(dá)到儲藏期間其內(nèi)部含水率的要求等現(xiàn)象的發(fā)生,從而提高物料干燥品質(zhì)和延長儲藏時間。目前開放式太陽能物料干燥的工藝控制仍然以人工經(jīng)驗為主,缺少實用的理論模型指導(dǎo)[2-3]。
物料干燥過程是一個極其復(fù)雜的傳熱傳質(zhì)問題,國外學(xué)者已針對開放式太陽能物料干燥的熱性能進(jìn)行分析研究,但僅是針對物料干燥過程中的穩(wěn)態(tài)傳熱傳質(zhì)模型進(jìn)行分析,同時缺少為實際開放式太陽能干燥過程提供有效的工藝控制策略。Jain等[4]學(xué)者指出開放式太陽能干燥中重點監(jiān)測的參數(shù)包括谷物溫度、水分蒸發(fā)率及谷物周圍空氣溫度等,并建立穩(wěn)態(tài)條件下的不同谷物干燥熱性能模型,同時利用前人的試驗數(shù)據(jù)對模型進(jìn)行驗證,其研究采用的穩(wěn)態(tài)條件與實際干燥過程中的動態(tài)變化不符合。文獻(xiàn)[5-12]報道不同太陽能干燥形式下干燥物料與干燥室之間的熱交換問題,同時分析物料傳熱傳質(zhì)過程對干燥器熱性能的影響,并利用其對干燥器的結(jié)構(gòu)進(jìn)行優(yōu)化,對提高干燥器的干燥能力及速率具有重要意義,同時為開放式太陽能物料干燥的熱濕遷移過程研究提供借鑒。國內(nèi)學(xué)者主要是針對太陽能干燥器中物料的干燥模型進(jìn)行研究,尹麗潔等[13]對冬季太陽能污泥干燥過程進(jìn)行試驗和模擬預(yù)測研究,利用熱平衡原理,采用VOF模型追蹤污泥中水和氣體的相界面,建立污泥太陽能干燥能力的預(yù)測模型。王云峰等[14]對三七物料的干燥性能及其干燥裝置性能進(jìn)行研究,研究結(jié)果僅是對太陽能干燥裝置的熱性能進(jìn)行分析,缺少物料在干燥裝置中的動態(tài)熱性能詮釋。相關(guān)文獻(xiàn)[15-18]對不同物料的干燥特性數(shù)學(xué)模型進(jìn)行研究,為物料干燥過程特性提供理論依據(jù)。經(jīng)大量文獻(xiàn)檢索,未發(fā)現(xiàn)國內(nèi)關(guān)于開放式太陽能物料干燥的研究成果,說明中國在開放式太陽能物料干燥研究領(lǐng)域存在缺失,因此需要加強對開放式太陽能物料干燥的非穩(wěn)態(tài)熱濕遷移過程的研究,同時相關(guān)學(xué)者指出可以考慮加入物料微觀尺度的傳熱傳質(zhì)模型[19-21],以便更好地指導(dǎo)中國開放式太陽能干燥的實踐。
在國內(nèi)外前人研究的基礎(chǔ)上,本研究構(gòu)建開放式太陽能物料干燥的非穩(wěn)態(tài)熱濕遷移模型,在綜合考慮太陽能輻射、室外風(fēng)速、室外空氣溫濕度等因素的作用下,
預(yù)測開放式太陽能物料干燥過程的動態(tài)表面溫度、動態(tài)水分遷移速率及干燥時間。同時以紅薯為物料設(shè)計開放式太陽能干燥試驗,建立紅薯干燥特性數(shù)學(xué)模型,并驗證建立的非穩(wěn)態(tài)熱濕遷移預(yù)測模型的準(zhǔn)確性,以期為預(yù)測開放式太陽能干燥過程中物料表面溫度提供參考。
開放式太陽能物料干燥過程同時涉及傳熱和傳質(zhì)現(xiàn)象,物料吸收的太陽能輻射熱量和熱空氣的顯熱量隨著物料水分蒸發(fā)而不斷減少,減少的熱量等于物料水分蒸發(fā)的汽化潛熱,總的熱量保持不變[11,22-23]。開放式太陽能物料干燥的熱濕遷移機理如圖1所示。即物料從太陽能中吸收輻射能轉(zhuǎn)變?yōu)閮?nèi)能,物料表面與周圍空氣進(jìn)行對流和輻射換熱過程;物料水分由物料內(nèi)部遷移到物料表面,在物料周圍環(huán)境的作用下,物料表面的水分散失到周圍環(huán)境中,以此熱濕遷移路徑完成物料的干燥。
圖1 開放式太陽能物料干燥熱濕遷移機理Fig.1 Heat and moisture transfer mechanism of opening solar materials drying
為方便計算,對建立的干燥過程中物料能量平衡方程作如下假設(shè)說明[21]: 1)忽略干燥物料內(nèi)部水分的不均勻性; 2)假設(shè)干燥物料均勻一致的覆蓋在地面上; 3)忽略物料干燥過程中其表面收縮的變化; 4)由于開放式干燥物料周圍空氣流動性比較大,因此忽略干燥物料周圍空氣的水蒸氣梯度。
干燥物料在開放式太陽能干燥過程中發(fā)生的熱交換過程主要包括:吸收太陽能輻射熱量、與周圍空氣的對流換熱和長波輻射換熱、水分蒸發(fā)潛熱。物料干燥的熱網(wǎng)絡(luò)如圖2所示,基于能量平衡原理建立的物料熱平衡方程如公式(1)。
式中I(t)為太陽能逐時輻射強度,W/m2;hrc為物料與周圍空氣之間的對流和輻射綜合換熱系數(shù),W/(m2·K);α為物料表面對太陽能的吸收率;Am為物料的面積,m2;Tm為物料表面溫度,K;Ta為物料周圍空氣溫度,K;Qe為物料水分蒸發(fā)所需的熱量,J/(m2·s);M0為物料初始質(zhì)量,kg;Cm為物料比熱容,J/(kg·K);t為干燥時間,s;mev為物料水分蒸發(fā)質(zhì)量,kg;
其中,物料與周圍空氣之間的對流和輻射綜合換熱系數(shù)可以由公式(2)計算所得
式中hr為物料與周圍環(huán)境之間輻射換熱系數(shù),W/(m2·K);hc為物料與周圍環(huán)境之間對流換熱系數(shù),W/(m2·K)。
圖2 干燥物料的熱阻和能量流動圖Fig.2 Thermal resistance and thermal energy circuit diagram of drying materials
物料水分遷移質(zhì)量的動態(tài)變化是物料干燥過程中重要的監(jiān)測參數(shù),其可以根據(jù)物料的不同用途及儲藏時間確定干燥結(jié)束的時間。單位時間內(nèi)物料水分遷移質(zhì)量計算公式如(3)所示。
式中γ為單位質(zhì)量水分蒸發(fā)潛熱量,J/kg。
1.3.1 對流換熱系數(shù)的計算
開放式太陽能干燥的實際過程屬于大空間自然對流,工程計算中廣泛采用的大空間自然對流試驗關(guān)聯(lián)式如公式(4)所示[24]
式中Nu為努謝爾數(shù);Gr為格拉曉夫數(shù);Pr為普朗特數(shù);C、n均為常數(shù),一般由試驗測試所得。
其中,物料與周圍空氣的對流換熱系數(shù)可以根據(jù)努謝爾數(shù)準(zhǔn)則計算所得,如公式(5)所示
式中l(wèi)為物料的特征尺寸,m;aλ為空氣的導(dǎo)熱系數(shù),W/(m2·K)。
由公式(4)、(5)求得對流換熱系數(shù)hc如公式(6)所示。
1.3.2 輻射換熱系數(shù)的計算
在物料與周圍環(huán)境之間的輻射換熱過程中僅考慮物料與周圍環(huán)境之間的輻射換熱,其輻射換熱系數(shù)可以由公式(7)計算所得
式中ε為物料表面發(fā)射率;σ為玻爾茲曼常數(shù),取5.6696×10?8W/(m2·K4)。
1.3.3 水分蒸發(fā)潛熱量的計算
物料水分蒸發(fā)所需的潛熱量可以由公式(8)計算所得[4]
式中P(T)為溫度T時水蒸氣分壓力,N/m2;φ為空氣相對濕度,%。
其中,不同溫度的水蒸氣分壓力計算如公式(9)所示。
物料干燥過程中的水分比MR被定義如公式(10)所示
式中Mt為干燥過程中物料的質(zhì)量,kg;Me為干燥結(jié)束時物料的質(zhì)量,kg;
由于Me遠(yuǎn)遠(yuǎn)小于M0、Mt,因此可以忽略Me,公式(10)可以被簡化為公式(11)[25]。
目前國內(nèi)外對物料的干燥特性數(shù)學(xué)模型進(jìn)行大量的研究,已經(jīng)有多達(dá)14種數(shù)學(xué)模型[26]。每種干燥物料都有其在特定干燥環(huán)境下適應(yīng)的干燥特性數(shù)學(xué)模型,因此可以根據(jù)物料干燥的特性數(shù)學(xué)模型判斷物料的干燥程度及干燥時間。
本模型數(shù)值求解的結(jié)果主要是干燥物料的動態(tài)表面溫度、物料的動態(tài)水分遷移質(zhì)量。由公式(1)~(11)組成常微分方程組,采用向前差分迭代的方法,利用MATLAB編制相應(yīng)的求解程序,程序求解流程如圖3所示,差分的時間步長可以隨意設(shè)置,本研究以30 s為例,模型求解所需要的初始值及室外逐時氣象參數(shù)均采用試驗的測試數(shù)據(jù)。判斷物料的干燥程度采用模擬計算的水分比MRst與物料干燥特性數(shù)學(xué)模型計算的水分比MR進(jìn)行對比,兩者之差≤0.01時,物料停止干燥。
圖3 程序求解流程Fig.3 Program solving process
為驗證預(yù)測模型的準(zhǔn)確性,本研究以紅薯為干燥物料,將紅薯切片進(jìn)行篩選,取大小、厚度均勻一致的樣品進(jìn)行試驗測試,干燥紅薯的初始質(zhì)量為240 g,在山東大學(xué)千佛山校區(qū)熱力樓樓頂進(jìn)行紅薯開放式太陽能干燥試驗測試,干燥紅薯及預(yù)測模型中的各種參數(shù)值如表1所示。
試驗測試時間為2017年5月7日8:30—17:00,試驗測試參數(shù)包括太陽能輻射強度、室外空氣溫濕度、紅薯表面溫度、紅薯干燥過程中質(zhì)量的變化。太陽能輻射強度采用TBQ-2太陽能總輻射表(錦州陽光氣象科技有限公司,量程:0~2 000 W/m2;精度:2%)進(jìn)行測試。室外空氣溫濕度由溫濕度自計議174H(德圖儀器國際貿(mào)易(上海)有限公司,量程:溫度(–20~70 ℃)、相對濕度(0~100%);精度:相對濕度(±3%)、溫度(±0.5 ℃))進(jìn)行測試。紅薯表面溫度采用T型熱電偶(美國Omega公司,量程:–200~350 ℃;精度:±0.5 ℃)進(jìn)行測試。溫度傳感器采集的數(shù)據(jù)通過數(shù)據(jù)采集器ADAM4117(研華科技(中國)有限公司)進(jìn)行記錄,記錄時間步長為10 min。紅薯質(zhì)量測試儀器為電子天平(上?;ǔ彪娖饔邢薰?,量程:0~10 kg;精度:±0.1 g)。
表1 干燥紅薯及預(yù)測模型中的各種參數(shù)值Table 1 Various parameters of drying sweet potatoes and predictive model
試驗測試過程中總會存在誤差,一般誤差通常由隨機誤差、系統(tǒng)誤差和過失誤差組成,因此必須對試驗測試參數(shù)進(jìn)行不確定分析,其可以由公式(12)計算[27],
式中R為測試參數(shù);WR為測試參數(shù)R的不確定度,%;x1,x2,…xn分別為影響測試參數(shù)R準(zhǔn)確性的因素;Wx為
n測試參數(shù)xn的不確定度,%。
經(jīng)過計算,干燥試驗測試各參數(shù)的不確定度值如表2所示。
表2 干燥試驗測試參數(shù)的不確定度值Table 2 Parameters uncertainly value in drying experiment
由公式(12)計算試驗測試過程中總的不確定度值為5.2%,符合試驗測試精度要求。
對試驗測試數(shù)據(jù)與數(shù)值模擬結(jié)果進(jìn)行對比采用決定系數(shù)R2和均方根誤差RMSE進(jìn)行評價,具體的計算公式如(13)、(14)所示,其中R2越高,RMSE越低,說明模擬值與試驗值吻合程度越好,進(jìn)而表明模型預(yù)測的準(zhǔn)
確度越高。
式中,Xi為試驗測試值;Yi為模擬值;X為試驗測試的平均值;Y為模擬的平均值。
試驗測試期間的太陽能輻射強度、物料干燥質(zhì)量及空氣溫濕度變化如圖4所示,從圖中可以看出,測試期間太陽能輻射強度變化范圍為398.91~979.9 W/m2,干燥過程中紅薯的質(zhì)量從240 g減少到57 g,其干燥速率為21.53 g/h。室外空氣溫度與相對濕度變化趨勢相反,空氣溫度的變化范圍為27.2~41.2 ℃,相對濕度的變化范圍為12.1%~23.4%,溫度與相對濕度變化趨勢相反的原因是空氣溫度升高,由焓濕圖知,在空氣含濕量一定時,空氣相對濕度會相應(yīng)的降低。測試期間的室外氣象數(shù)據(jù)作為已知數(shù)據(jù)輸入到程序中進(jìn)行方程求解,試驗測試的紅薯質(zhì)量及表面溫度變化用來驗證模擬結(jié)果的準(zhǔn)確性。
圖4 太陽能輻射強度、物料干燥過程中質(zhì)量及室外空氣溫濕度逐時變化曲線Fig.4 Hourly variation curves of solar radiation intensity, drying materials mass and ambient air temperature and relative humidity
根據(jù)相關(guān)文獻(xiàn)研究,結(jié)合試驗測試相關(guān)數(shù)據(jù),選用表3中3個常用的干燥模型對紅薯試驗干燥特性曲線進(jìn)行分析,表3中k、n值與溫度和厚度有關(guān);t為干燥時間,min;a、c為回歸系數(shù)[28]。同時根據(jù)公式(13)、(14)選擇最佳的干燥曲線模型。所示。
表3 干燥曲線模型Table 3 Models of drying curve
經(jīng)過數(shù)據(jù)擬合所得參數(shù)如表4,由表4可知,比較決定系數(shù)R2和均方根誤差RMSE的大小,發(fā)現(xiàn)Page模型的決定系數(shù)最大,均方根誤差最小,因此Page模型能夠較準(zhǔn)確反映紅薯干燥特性曲線的規(guī)律。
圖5 物料干燥過程中其表面溫度和質(zhì)量模擬值與試驗值對比曲線Fig.5 Comparison curves of simulation and experimental value of drying materials surface temperature and mass
表4 擬合系數(shù)值Table 4 Fitting constant value
根據(jù)上述模型參數(shù)及氣象參數(shù),所建立的預(yù)測模型模擬計算的物料表面溫度和干燥質(zhì)量變化分別與試驗值對比如圖5所示。由公式(13)、(14)計算試驗值與模擬值之間的決定系數(shù)與均方根誤差,干燥物料表面溫度模擬值與試驗值之間的決定系數(shù)為0.96,均方根誤差為0.97 ℃。干燥物料質(zhì)量模擬值與試驗值之間的決定系數(shù)為0.89,均方根誤差為28.35 g。從而說明所建立的預(yù)測模型的準(zhǔn)確性較高。
從圖5中可以看出,模擬值與試驗值之間的變化趨勢是一致的,但是數(shù)值之間存在一定差異性,尤其是干燥物料質(zhì)量預(yù)測的結(jié)果與實際試驗結(jié)果存在的差值較大,造成這種現(xiàn)象的主要原因是模型計算中參數(shù)的選擇、試驗測試數(shù)據(jù)等可能都存在一定的誤差。
比較圖5a中物料表面溫度與圖4b中空氣溫度發(fā)現(xiàn)物料表面溫度達(dá)到峰值時間滯后空氣溫度峰值1 h左右,主要是因為物料的比熱容比空氣的大,溫度升高比較緩慢。
在模型求解過程中,室外氣象參數(shù)采用試驗逐時測試值,該模型在實際干燥工程應(yīng)用時可以通過實時監(jiān)測所在地的氣象參數(shù)作為該模型的輸入值進(jìn)行求解,模型求解過程中僅需要改變的是不同干燥物料的特征結(jié)構(gòu)及物性參數(shù),表明該模型具有一定普遍適用性。
本研究通過對開放式太陽能物料干燥熱濕遷移進(jìn)行建模,并利用紅薯干燥試驗對其進(jìn)行驗證,得出以下結(jié)論:
1)在傳熱傳質(zhì)的理論基礎(chǔ)上,本文建立開放式太陽能物料干燥熱濕遷移非穩(wěn)態(tài)模型,對干燥物料在開放式的干燥空間進(jìn)行傳熱傳質(zhì)機理分析,將物料的干燥特性曲線應(yīng)用在開放式物料干燥的工藝控制中,綜合考慮室外氣象參數(shù)及物料的物性,利用MATLAB軟件編制模型求解程序,以便于及時監(jiān)測物料干燥過程的表面溫度和含水率,從而提高物料的干燥品質(zhì)。
2)通過對紅薯的干燥特性曲線進(jìn)行擬合,發(fā)現(xiàn)page模型能夠較準(zhǔn)確的反映紅薯開放式太陽能干燥特性;在試驗測試期間,太陽能輻射強度變化范圍為398.91~979.9 W/m2,干燥過程中紅薯的質(zhì)量從240 g減少到57 g,其干燥速率為21.53 g/h。
3)以紅薯為干燥物料,利用試驗測試數(shù)據(jù)對構(gòu)建的預(yù)測模型進(jìn)行驗證,物料表面溫度、干燥過程中物料質(zhì)量的試驗值與模擬值之間的決定系數(shù)分別為0.96、0.89,均方根誤差分別為0.97 ℃、28.35 g,該結(jié)果表明預(yù)測模型能夠較準(zhǔn)確反映出物料開放式干燥過程中的物料表面溫度及其質(zhì)量變化。但受干燥實際過程中環(huán)境因素及物料物性的影響,構(gòu)建的預(yù)測模型需要進(jìn)一步完善優(yōu)化,未來研究可以將物料的微觀模型納入到該預(yù)測模型中,以提高模型的預(yù)測準(zhǔn)確性。
[1] Belessiotis V, Delyannis E. Solar drying[J]. Solar Energy, 2011, 85(8): 1665-1691.
[2] Prasad J, Vijay V K. Open sun drying of Tinospora cordifolia. Curcuma longa L. and Zingiber officinale. Thermal analysis[J]. Food Science and Technology International, 2005, 11(6): 409-416.
[3] Mehta R R, Jain S, Garg M K. Mathematical modelling of thin layer open sun drying of liquor ice (Glycyrrhizins glabra)[J]. Annals of Biology, 2005, 21(2): 249-252.
[4] Jain D, Tiwari G N. Thermal aspects of open sun drying of various crops[J]. Energy, 2003, 28(1): 37-54.
[5] Kumar Mahesh, Sansaniwal Sunil Kumar, Khatak Pankaj. Progress in solar dryers for drying various commodities[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 346-360.
[6] Jakkamputi Lakshmi Pathi, Mandapati Mohan Jagadeesh Kumar. Improving the performance of jaggery making unit using solar energy[J]. Perspectives in Science, 2016, 8: 146-150.
[7] Kouchakzadeh Ahmad. The effect of acoustic and solar energy on drying process of pistachios[J]. Energy Conversion and Management, 2013, 67: 351-356.
[8] Singh Shobhana, Kumar Subodh. Testing method for thermal performance based rating of various solar dryer designs[J]. Solar Energy, 2012, 86(1): 87-98.
[9] Akpinar E Kavak. Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses[J]. Energy Conversion and Management, 2010, 51(12): 2407-2418.
[10] Can Ahmet. Drying kinetics of pump kinseeds[J]. International Journal of Energy Research, 2000, 24(11): 965-975.
[11] Vijayan S, Arjunan T V, Kumar Anil. Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer[J]. Innovative Food Science & Emerging Technologies, 2016, 36: 59-67.
[12] Prasad J A. Convective heat transfer in herb and spices during open sun drying[J]. International Journal of Food Science and Technology, 2009, 44(4): 657-665.
[13] 尹麗潔,王中慧,陳德珍. 污泥冬季太陽能干燥實驗和過程預(yù)測[J]. 太陽能學(xué)報,2013,34(12):2088-2094.
Yin Lijie, Wang Zhonghui, Chen Dezhen. Experiment and prediction of solar drying process of sewage sludge in winter[J]. Journal of Solar Energy, 2013, 34(12): 2088-2094. (in Chinese with English abstract)
[14] 王云峰,李明,王六玲,等. 太陽能干燥裝置性能及三七干燥效果[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(10):377-383.
Wang Yunfeng, Li Ming, Wang Liuling, et al. Performance of solar dryer and drying effect for panax notoginseng[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(10): 377-383. (in Chinese with English abstract)
[15] 王偉華,王海,何思魯,等. 南美白對蝦太陽能干燥能耗參數(shù)優(yōu)化及中試[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(18):271-278.
Wang Weihua, Wang Hai, He Silu, et al. Parameter optimization for energy consumption of solar drying of Penaeus vannamei and pilot scale test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 271-278. (in Chinese with English abstract)
[16] 凌德力,李明,羅熙,等. 基于槽式聚光太陽能供熱的煙絲干燥特性研究[J]. 太陽能學(xué)報,2015,36(2):460-466.
Ling Deli, Li Ming, Luo Xi, et al. Study on drying characteristics of cut tobacco based on trough concentrating solar heating[J]. Journal of Solar Energy, 2015, 36(2): 460-466. (in Chinese with English abstract)
[17] 馬煜,李明,魏生賢,等. 三七薄層干燥特性研究[J]. 太陽能學(xué)報,2012,33(6):937-943.
Ma Yu, Li Ming, Wei Shengxian, et al. lamina drying investigation of notoginseng[J]. Journal of Solar Energy, 2012, 33(6): 937-943. (in Chinese with English abstract)
[18] 孟岳成,王君,房升,等. 熟化紅薯熱風(fēng)干燥特性及數(shù)學(xué)模型適用性[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(7):387-392.
Meng Yuecheng, Wang Jun, Fang Sheng, et al. Drying characteristics and mathematical modeling of hot air drying of cooked sweet potatoes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 387-392. (in Chinese with English abstract)
[19] Rathnayaka Mudiyanselage C M, Karunasena H C P, Gu Y T, et al. Novel trends in numerical modelling of plant food tissues and their morphological changes during drying – A review[J]. Journal of Food Engineering, 2017, 194: 24-39.
[20] Ali Idlimam, Abdelkader Lamharrar, El Houssayne Bougayr, et al. Solar convective drying in thin layers and modeling of municipal waste at three temperatures[J]. Applied Thermal Engineering, 2016, 108: 41-47.
[21] De Lima A G B, Queiroz M R, Nebra S A. Simultaneous moisture transport and shrinkage during drying of solids with ellipsoidal configuration[J]. Chemical Engineering Journal, 2002, 86(1/2): 85-93.
[22] Misha S, Mat S, Ruslan M H, et al. Performance of a solar-assisted solid desiccant dryer for oil palm fronds drying[J]. Solar Energy, 2016, 132: 415-429.
[23] Tripathy P P, Kumar Subodh. Determination of temperature dependent drying parameters for potato cylinders and slices during solar drying[J]. Energy Conversion and Management, 2008, 49(11): 2941-2948.
[24] Goldstein R J, Ibele W E, Patankar S V, et al. Heat transfer-A review of 2003 literature[J]. International Journal of Heat and Mass Transfer, 2006, 49(3/4): 451-534.
[25] Sekyere C K K, Forson F K, Adam F W. Experimental investigation of the drying characteristics of a mixed modenatural convection solar crop dryer with back up heater[J]. Renewable Energy, 2016, 92: 532-542.
[26] Prakash Om, Laguri Vinod, Pandey Anukul, et al. Review on various modelling techniques for the solar dryers[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 396-417.
[27] Sonthikun Sonthawi, Chairat Phaochinnawat, Fardsin Kitti, et al. Computational fluid dynamic analysis of innovative design of solar-biomass hybrid dryer: An experimental validation[J]. Renewable Energy, 2016, 92: 185-191.
[28] 李菁,蕭夏,蒲曉璐,等. 紫薯熱風(fēng)干燥特性及數(shù)學(xué)模型[J].食品科學(xué),2012,33(15):90-94.
Li Jing, Xiao Xia, Pu Xiaolu, et al. Characteristics and mathematical model of hot-air drying for purple sweet potato[J]. Food Science, 2012, 33(15): 90-94. (in Chinese with English abstract)
[29] Lewis W K. The rate of drying of solid materials[J]. J Ind Eng Chem, 1921, 13(5): 427-432.
[30] Page G E. Factors influencing the Maximum Rates of Air Drying Shelled Corn In Thin Layers[D]. West Lafayette: Purdue University, 1949.
[31] Yagcioglu A, Degirmencioglu A, Cagatay F. Drying characteristic of laurel leaves under different conditions[C]// Proceedings of the 7th International Congress on Agricultural Mechanization and Energy, 1999: 565-569.
Modeling of materials heat and moisture transfer in open sun drying and experimental validation
Hao Wengang1, Lu Yifeng1, Lai Yanhua1,2※, Zhang Zongmin1, Lü Mingxin2
(1. School of Energy and Power Engineering, Shandong University, Jinan 250061, China; 2. Suzhou Institute of Shandong University, Suzhou 215021, China)
Open sun drying has been widely applied in the developing country. It is a popular, effective and economic method for drying and preservation of agricultural products and food, but it has some drawbacks such as degradation of materials quality and larger drying period in ambient environment. In order to solve the problem of uncontrollability and randomness in the process of open sun drying, heat and moisture transfer model of open sun drying materials was studied with theoretical knowledge of heat and mass transfer in this study, and heat and moisture transfer mechanisms of open sun drying materials were analyzed. The heat exchange process of dry materials in the open sun drying process mainly included the absorption of solar radiation heat, the convective heat exchange with the surrounding environment, the heat transfer of long wave radiation and latent heat by water evaporation. Thermal resistance and thermal energy diagram of drying materials was built. Heat balance equation of materials was also built based on energy balance principle, and model parameters were determined by comprehensively considering solar radiation intensity, ambient air temperature and humidity, and ambient wind velocity; the dynamic temperature change of material surface and the water transfer rate of material were predicted, the program was solved by using MATLAB software, and the initial values required for the solution of the model were derived from the experiment data. To verify the accuracy of prediction model, sweet potato was selected as drying material in the open sun drying test. The tested samples of sweet potato were sliced uniformly in terms of size and thickness, the initial mass of sweet potato was 240 g, and the thermal performances and drying characteristics of sweet potato in the open sun drying were investigated in the Qianfo mountain campus of Shandong University. The test period was from 8:30 to 17:00 on May 7, 2017. The test parameters included solar radiation intensity, outdoor air temperature and humidity, surface temperature and mass change of sweet potato during the drying process. Fourteen mathematical models were tested to specify the suitable model for describing the drying behavior of the tested samples, and it was found that the Page model was convenient to describe the drying characteristics of sweet potato in open sun drying. During the test period, the solar radiation intensity ranged from 398.91 to 979.9 W/m2, the air temperature ranged from 27.2 to 41.2 ℃, and the sweet potato mass decreased from 240 to 57 g. The determination coefficient were respectively 0.96, 0.89 between the simulated and experimental values in terms of drying materials temperature and mass, and root mean square error were respectively 0.97 ℃, 28.35 g, and the change trend of simulated and experimental value was consistent, but there were certain differences between them, and especially the difference of dry material mass was large. The main reason for this phenomenon was the model calculation parameters and experimental data had some irrationality. It is concluded that the model can predict accurately the material dynamic change of surface temperature and drying mass rate in the process of open sun drying of materials, and this model can be used in the process control of open sun drying.
heat transfer; models; drying; open sun; unsteady state; drying characteristics
10.11975/j.issn.1002-6819.2017.15.038
S625.1; TU111.3
A
1002-6819(2017)-15-0301-07
2017-05-21
2017-07-03
國家自然科學(xué)基金(51476093);山東省科技發(fā)展計劃項目(2013GGX10403);蘇州市科技發(fā)展計劃(ZXG201443);山東大學(xué)基本科研業(yè)務(wù)費資助(2014YQ007)
郝文剛,男,山東煙臺人,博士生,研究方向為太陽能干燥的傳熱傳質(zhì)強化問題。濟南 山東大學(xué)能源與動力工程學(xué)院,250061。
Email:haowengangDL@163.com
※通信作者:賴艷華,女,山東濟南人,教授,博士生導(dǎo)師,主要從事能源高效利用及制冷技術(shù)研究。濟南 山東大學(xué)能源與動力工程學(xué)院,250061。Email:laiyh@sdu.edu.cn