花可可王道中?郭志彬李叢叢
(1 安徽省農(nóng)業(yè)科學(xué)院土壤肥料研究所,合肥 230031)
(2 安徽省農(nóng)業(yè)科學(xué)院機(jī)關(guān)黨委,合肥 230031)
施肥方式對(duì)砂姜黑土鉀素利用及盈虧的影響*
花可可1王道中1?郭志彬1李叢叢2
(1 安徽省農(nóng)業(yè)科學(xué)院土壤肥料研究所,合肥 230031)
(2 安徽省農(nóng)業(yè)科學(xué)院機(jī)關(guān)黨委,合肥 230031)
以砂姜黑土長(zhǎng)期施肥試驗(yàn)為平臺(tái),研究砂姜黑土冬小麥—夏大豆輪作系統(tǒng)下作物鉀素吸收量、鉀素回收率、土壤鉀素盈虧量和速效鉀含量的演變特征,探明土壤速效鉀與外源鉀投入、土壤累積鉀盈虧的響應(yīng)關(guān)系,分析不施肥(CK)、常規(guī)化肥(CF)、化肥+麥稈(SCF)、化肥+豬糞(PCF)、化肥+牛糞(CCF)等施肥方式對(duì)土壤鉀素利用及盈虧的影響,以期探尋砂姜黑土地區(qū)高產(chǎn)高效的施鉀方式。結(jié)果表明:29 a作物鉀素平均回收率在55.1%~66.1%,高低順序?yàn)镃CF > PCF> SCF > CF。土壤累積鉀盈虧與土壤速效鉀增量呈顯著線性關(guān)系(p<0.05),土壤中鉀素每盈余100 kg hm-2,CF、SCF、PCF和CCF處理土壤速效鉀含量分別增加1.4、1.8、2.3和15.8 mg kg-1;土壤鉀素投入量與速效鉀含量呈顯著線性關(guān)系(p<0.05),CF處理每投入鉀100 kg hm-2,土壤速效鉀含量增加0.4 mg kg-1,而SCF、PCF和CCF處理每投入鉀100 kg hm-2,土壤速效鉀含量分別增加0.5、0.6和4.3 mg kg-1,這說(shuō)明適當(dāng)增施有機(jī)肥可提升土壤鉀素的供應(yīng)能力。綜上所述,投入有機(jī)物料是影響土壤鉀素利用的重要調(diào)控措施,長(zhǎng)期增施有機(jī)肥可提高作物鉀素回收率以及土壤中盈余的鉀素向速效鉀的轉(zhuǎn)化能力,本試驗(yàn)條件下以增施牛糞效果最好,豬糞和秸稈次之。因此,砂姜黑土小麥—大豆輪作系統(tǒng)下秸稈養(yǎng)畜過(guò)腹還田是實(shí)現(xiàn)作物高產(chǎn)高效的一種推薦施鉀方式。
長(zhǎng)期施肥;有機(jī)物料;鉀素利用;鉀素盈虧;土壤速效鉀
鉀是土壤肥力的重要物質(zhì)基礎(chǔ),是作物生長(zhǎng)所必需的營(yíng)養(yǎng)元素之一,其對(duì)保障作物的高產(chǎn)穩(wěn)產(chǎn)有重要作用[1-4]。但是,耕地缺鉀依然是制約農(nóng)業(yè)可持續(xù)生產(chǎn)的重要因素[5-6]。近幾十年來(lái),由于作物產(chǎn)量的提高及土壤鉀素產(chǎn)出與投入不平衡的加劇,農(nóng)田土壤缺鉀面積有不斷擴(kuò)大的趨勢(shì)。因此,加強(qiáng)農(nóng)田土壤鉀素利用及其調(diào)控因素的研究對(duì)實(shí)現(xiàn)鉀肥的高效利用有重要的理論和現(xiàn)實(shí)意義。
影響農(nóng)田土壤鉀素利用的因素諸多,如氣候、土壤類型和管理措施等[7-9]。施肥作為重要的農(nóng)田管理措施之一,是影響土壤鉀素利用的重要因素。目前,國(guó)內(nèi)外學(xué)者對(duì)農(nóng)田土壤鉀素的研究較為全面,在不同施肥方式下作物鉀素利用率、土壤鉀形態(tài)和有效性等方面均開(kāi)展了系列研究,并取得了豐碩的學(xué)術(shù)成果[10-11]。相關(guān)研究認(rèn)為,土壤鉀素含量隨著外源鉀素投入量的增加而增加,外源鉀素的形態(tài)可直接影響土壤中不同形態(tài)鉀素含量的增幅,因此,有機(jī)肥可有效提升土壤鉀庫(kù)和速效鉀含量[12-13]。例如,張水清等[14]發(fā)現(xiàn)有機(jī)肥可顯著提高土壤速效鉀含量和鉀肥的有效性。當(dāng)前,針對(duì)施肥方式對(duì)作物鉀素利用及土壤鉀有效性的影響開(kāi)展了較為系統(tǒng)的研究,但不同施肥方式下土壤速效鉀與外源鉀投入、土壤累積鉀盈虧的定量關(guān)系及其差異尚不清楚。
砂姜黑土區(qū)是我國(guó)黃淮海平原主要的糧食產(chǎn)區(qū),全國(guó)面積約400萬(wàn)hm2,其中安徽省面積最大,約165萬(wàn)hm2,占安徽省旱地總面積的40%以上,也是本省主要的中低產(chǎn)田之一[15]。在該地區(qū),較多研究主要集中在施肥方式對(duì)土壤有機(jī)質(zhì)、磷素利用和微生物性狀的影響等[16-18],而關(guān)于長(zhǎng)期不同施肥方式下土壤鉀素利用與演變特征的研究極少,特別是對(duì)土壤鉀素累積與土壤速效鉀的定量關(guān)系并不清楚。
本文以砂姜黑土長(zhǎng)期施肥試驗(yàn)為平臺(tái),分析砂姜黑土冬小麥—夏大豆輪作系統(tǒng)下作物鉀素吸收量、鉀素回收率、土壤鉀盈虧量和速效鉀含量的年際變化特征,探究土壤速效鉀與外源鉀投入、土壤累積鉀盈虧的響應(yīng)關(guān)系,闡明施肥方式對(duì)土壤鉀素利用及盈虧的影響,為確定砂姜黑土區(qū)高產(chǎn)高效的施鉀方式奠定基礎(chǔ)。
1.1 試驗(yàn)區(qū)概況
試驗(yàn)點(diǎn)位于農(nóng)業(yè)部蒙城砂姜黑土生態(tài)環(huán)境重點(diǎn)野外觀測(cè)站內(nèi)(33°13′N,116°37′E),地處黃淮海平原南部的淮北平原,屬暖溫帶半濕潤(rùn)季風(fēng)氣候,多年平均氣溫16.5 ℃,年平均降水量872 mm。土壤類型為砂姜黑土(鈣積濕潤(rùn)變性土),成土母質(zhì)為河湖相沉積物,多呈堿性。
1.2 試驗(yàn)設(shè)計(jì)
試驗(yàn)始于1982年,試驗(yàn)區(qū)初始土壤的基本理化性質(zhì)為:有機(jī)質(zhì)10.1 g kg-1,全氮0.96 g kg-1,全磷0.28 g kg-1,全鉀17 g kg-1,pH 7.4。種植制度為冬小麥—夏大豆輪作,共設(shè)置5種施肥處理:不施肥(CK)、常規(guī)化肥(CF)、化肥+麥稈(SCF)、化肥+豬糞(PCF)和化肥+牛糞(CCF)。每個(gè)小區(qū)面積為70 m2,隨機(jī)分布,4次重復(fù)。全年施氮肥總量180 kg hm-2(以純氮計(jì))、磷肥39.3 kg hm-2(以純磷計(jì))、鉀肥112 kg hm-2(以純鉀計(jì))。氮磷鉀肥中氮肥為尿素,磷肥為過(guò)磷酸鈣,鉀肥為氯化鉀。施肥的方式采用基肥一次性于小麥播種前人工施入,大豆不施肥。耕作和施肥同步,耕作方式為人工鋤耕,深度為20 cm。冬小麥采取條播的方式,夏大豆為穴播。冬小麥播種時(shí)間為每年11月初,夏大豆播種時(shí)間為每年6月初。各處理施肥設(shè)計(jì)方案見(jiàn)表1。
1.3 樣品采集與測(cè)定方法
每年土壤樣品的采集均在大豆收獲后,用土鉆進(jìn)行“S”形多點(diǎn)取樣,采集0~20 cm 耕層土壤。土樣自然風(fēng)干后,人工除去肉眼可見(jiàn)的根茬及秸稈碎屑,過(guò)2 mm篩,混勻后備用。原土磨細(xì)后分別過(guò)20目和100目篩,以供不同指標(biāo)分析。土壤樣品采集的年份為1983年、1991年、1999年、2001年、2003年、2005年、2007年、2009年和2011年,共9個(gè)年份。植株樣品的采集為小區(qū)內(nèi)“S”形隨機(jī)采樣。土壤及植株樣品分析均參照魯如坤[20]的方法,其中,土壤有機(jī)質(zhì)測(cè)定采用重鉻酸鉀外加熱法;土壤全氮采用凱氏定氮法;堿解氮采用堿解擴(kuò)散法;全磷采用酸溶鉬銻抗比色法;有效磷采用NaHCO3提取—鉬銻抗比色法;土壤全鉀采用氫氧化鈉熔融―火焰光度計(jì)法;緩效鉀采用硝酸溶液煮沸提取―火焰光度計(jì)法;速效鉀采用乙酸銨浸提―火焰光度計(jì)法測(cè)定;pH測(cè)定采用電位法;植株鉀采用H2SO4-H2O2氧化―火焰光度計(jì)法測(cè)定。
表1 不同施肥處理施肥量Table 1 Application rates of chemical fertilizers and organic manure relative to treatment
1.4 數(shù)據(jù)分析
作物產(chǎn)量采用小區(qū)實(shí)打?qū)嵤辗?,產(chǎn)量測(cè)定的年份與土壤采集的年份相同。小麥和大豆的草谷比分別按1.2和1.1[17]計(jì)算,風(fēng)干測(cè)產(chǎn)含水率,按0.14計(jì)算[17],作物地上部分鉀素吸收量Ku與作物鉀素回收率Re參照Qiu等[13]所提供方法。
土壤鉀素年盈虧和累積盈虧量:
式中,Ks為某一年份土壤鉀素年盈虧量,kg hm-2a-1;Kt為相應(yīng)年份鉀素投入量,kg hm-2a-1;Ku為相應(yīng)年份作物地上部分吸鉀量,kg hm-2a-1;Kb為某一年份土壤鉀素累積盈虧量,kg hm-2;i為施肥年數(shù)。
土壤速效鉀變化量ΔAK:
式中,Ka為某一年份土壤速效鉀含量,mg kg-1;Ki為1982年土壤速效鉀含量。
土壤鉀累積投入量Kc、累積鉀盈虧與土壤速效鉀的定量關(guān)系:
式中,x代表Kc或Kb,kg hm-2;y代表ΔAK或AK,mg kg-1。
所有的測(cè)定結(jié)果用Excel 2010進(jìn)行數(shù)據(jù)的初步整理和匯總,用SPSS 19.0進(jìn)行統(tǒng)計(jì)分析,多重比較采用最小顯著差異法(LSD)檢驗(yàn),顯著水平p<0.05;用SigmaPlot 10.0進(jìn)行繪圖。
2.1 施肥方式對(duì)土壤肥力的影響
長(zhǎng)期施肥可顯著影響土壤肥力狀況(表2),與CK處理相比,CF處理土壤有機(jī)質(zhì)、全氮、全磷、全鉀、堿解氮、有效磷和速效鉀含量分別增加44.1%、25%、31.3%、13.7%、29.5%、254.8%和13.9%,差異均達(dá)到顯著水平(p<0.05)。與CF處理相比,長(zhǎng)期增施有機(jī)肥(SCF、PCF和CCF處理)土壤全量養(yǎng)分(有機(jī)質(zhì)、全氮、全磷)及有效養(yǎng)分(土壤堿解氮、有效磷、速效鉀和緩效鉀)含量均有顯著提高,提升的幅度因有機(jī)物料類型的不同有所差別,而對(duì)土壤全鉀含量無(wú)顯著影響。SCF、PCF和CCF處理土壤有機(jī)質(zhì)提升的幅度分別為30.6%、44.2%和109.5%,CCF處理顯著高于SCF和PCF處理(p<0.05),SCF和PCF處理間無(wú)顯著差異(p>0.05)。與CK處理相比,長(zhǎng)期施用化肥(CF)和增施秸稈(SCF)處理土壤pH分別降低10.1%和14.5%,差異顯著(p<0.05),而增施豬糞和牛糞處理(PCF和CCF)對(duì)土壤pH無(wú)顯著影響。
2.2 施肥方式對(duì)植株鉀含量及鉀素動(dòng)態(tài)吸收的影響
各施肥處理小麥籽粒和秸稈鉀含量分別在3.2~4.4和5.5~14.4 g kg-1之間(表3)。與CK處理相比,CF處理可顯著(p<0.05)增加小麥秸稈中鉀含量,而對(duì)籽粒鉀含量無(wú)顯著影響(p>0.05);增施有機(jī)物料(SCF、PCF和CCF處理)可顯著增加小麥籽粒和秸稈中鉀素含量(p<0.05),其中CCF處理增幅最大。施肥方式對(duì)大豆籽粒和秸稈中鉀素含量的影響與小麥相似;小麥和大豆地上部分吸鉀量動(dòng)態(tài)變化如圖1所示。CK處理作物吸鉀量逐年下降,而各施肥處理作物吸鉀量均隨產(chǎn)量的增加呈穩(wěn)步上升的態(tài)勢(shì)。整個(gè)試驗(yàn)期,CK、CF、SCF、PCF和CCF處理小麥和大豆地上部分多年平均吸鉀量在8.3~104.4和13.8~59.6 kg-1hm-2a-1之間,作物吸鉀量(小麥與大豆之和)分別為22.0、83.7、117.6、121.7和164.0 kg-1hm-2a-1。與CK處理相比,CF處理作物年均吸鉀量增加了280.5%,SCF、PCF和CCF處理分別較CF處理提升40.5%、45.4%和95.9%,差異顯著(p<0.05),其中SCF與PCF處理間無(wú)顯著差異,CCF處理顯著高于SCF與PCF處理(p<0.05)。
表2 不同施肥處理表層土壤(0~20 cm)理化性質(zhì)Table 2 Physicochemical properties of the soil in the 0~20 cm soil layer relative to treatment
表3 不同施肥處理作物籽粒和秸稈鉀含量Table 3 Content of crop K in grain and straw relative to treatment(g kg-1)
圖1 不同施肥處理小麥和大豆吸鉀量動(dòng)態(tài)變化Fig. 1 Dynamics of crop K uptake for wheat and soybean relative to treatment
2.3 施肥方式對(duì)作物鉀素回收率的影響
圖2 不同施肥處理小麥和大豆鉀素回收率動(dòng)態(tài)變化Fig. 2 Dynamics of crop K recovery rate for wheat and soybean relative to treatment
根據(jù)施肥處理每年作物地上部分的吸鉀量,并以CK處理為對(duì)照,計(jì)算出不同施肥方式下作物鉀肥回收率(圖2)??傮w而言,各施肥處理作物鉀回收率隨施肥年限的增加而逐漸升高,大豆回收率的增長(zhǎng)幅度高于小麥。CF、SCF、PCF和 CCF處理小麥和大豆鉀素回收率多年平均值分別在19.8%~23.0%和34.4%~44.8%,4種施肥處理鉀素總回收率(小麥與大豆回收率之和)分別為55.1%、58.2%、62.2%和66.1%,以CCF處理最高,CF處理最低,呈現(xiàn)突出的CCF > PCF > SCF~CF,說(shuō)明,長(zhǎng)期增施豬糞或牛糞等農(nóng)家?guī)士娠@著提升作物鉀素回收率。
2.4 土壤速效鉀演變及其對(duì)鉀素投入的響應(yīng)
除CK處理土壤速效鉀含量逐年下降外,其余各施肥處理均有增加的趨勢(shì)(圖3),土壤速效鉀含量變化范圍為70.1~397.3 mg kg-1,其中CCF處理土壤速效鉀含量增加速率最大,CF處理最小。CK、CF、SCF、PCF和CCF此5種施肥處理土壤速效鉀含量多年平均值分別為72.3、82.4、128.4、133.0和289.5 mg kg-1。與CK處理相比,CF處理土壤速效鉀含量顯著增加(p<0.05),增加比例為13.9%,SCF、PCF和CCF處理土壤速效鉀含量分別較CF處理增加55.8%、61.4%和251.3%,差異顯著(p<0.05),而SCF與PCF處理間無(wú)顯著差異(p>0.05)。土壤速效鉀與外源鉀累積投入之間的線性回歸分析表明,4種施肥處理(CF、SCF、PCF和CCF)土壤速效鉀含量均隨著外源鉀素投入量的增加而增大,但增長(zhǎng)幅度有一定差異(圖4)。即每投入外源鉀100 kg hm-2,CF、SCF、PCF和CCF處理土壤速效鉀含量分別增加0.37、0.54、0.62和4.27 mg kg-1,增加幅度的順序?yàn)镃CF> PCF > SCF > CF,其中,增施秸稈和豬糞處理(SCF和PCF)分別較CF處理增加45%和67%,而增施牛糞處理(CCF)增長(zhǎng)幅度約為CF處理的10倍。
圖3 不同施肥處理土壤速效鉀含量的動(dòng)態(tài)變化Fig. 3 Dynamics of content of soil readily available K relative to treatment
2.5 土壤鉀累積盈虧量與速效鉀增量的關(guān)系
土壤速效鉀的變化量與土壤鉀素累積盈虧量的響應(yīng)關(guān)系如圖5所示,各處理土壤速效鉀增量與土壤鉀素累積盈虧均呈極顯著的直線正相關(guān)性,這表明土壤速效鉀的消長(zhǎng)與鉀盈虧呈正相關(guān)。CK處理,土壤中鉀素每耗竭100 kg hm-2,土壤速效鉀含量減少0.64 mg kg-1;而其余4種施肥處理,土壤鉀素每盈余100 kg hm-2,CF、SCF、PCF和CCF處理土壤速效鉀含量分別增加1.4、1.8、2.3和15.8 mg kg-1,增加幅度為CCF>PCF>SCF>CF,其中,增施秸稈和豬糞處理(SCF和PCF)分別較常規(guī)CF處理增加31%和63.8%,而增施牛糞處理(CCF)增長(zhǎng)幅度約為CF處理的10倍,這與土壤速效鉀含量和外源鉀累積投入量的響應(yīng)關(guān)系相似。
圖4 土壤速效鉀含量與累積外源鉀投入量的響應(yīng)關(guān)系Fig. 4 Relationship between content of soil readily available K and cumulative K input
3.1 施肥方式影響作物鉀素回收率的機(jī)理
砂姜黑土29 a長(zhǎng)期定位試驗(yàn)研究表明,小麥—大豆輪作制度下長(zhǎng)期施肥處理作物鉀素回收率多年平均值為55%~66%,高于全國(guó)鉀肥平均利用率35%~50%[21],這主要與本試驗(yàn)點(diǎn)大豆生長(zhǎng)期不施用鉀肥有關(guān)。由于本試驗(yàn)?zāi)晗掭^長(zhǎng)和人員更替頻繁等因素,無(wú)法獲取每一年度植株鉀及有機(jī)物料(麥稈、豬糞和牛糞)鉀的含量。為估算不同施肥方式下作物鉀素吸收量和外源鉀素投入量,本文用某一年所測(cè)定的植株鉀或有機(jī)肥養(yǎng)分提供的有機(jī)物料鉀含量進(jìn)行計(jì)算,會(huì)對(duì)年度土壤鉀素收支平衡及作物鉀素回收率的計(jì)算產(chǎn)生一定誤差;肥料的施用對(duì)作物鉀素利用率的影響會(huì)因肥料的總類、施肥量的不同而差異顯著,因施肥方式會(huì)直接影響?zhàn)B分的輸入量,從而影響作物產(chǎn)量和養(yǎng)分吸收量。本研究中,長(zhǎng)期增施有機(jī)肥(秸稈、豬糞和牛糞)對(duì)作物鉀素回收率有顯著的提升作用,這與前人的研究結(jié)果基本一致[22],主要因長(zhǎng)期增施秸稈、豬糞和牛糞等物料增加了土壤外源氮磷鉀養(yǎng)分的投入,尤其是氮素投入量的增加顯著提高了作物產(chǎn)量和土壤肥力,因而,長(zhǎng)期增施有機(jī)肥處理作物鉀素吸收量和鉀素回收率高于常規(guī)化肥處理。此外,增施牛糞、豬糞和麥稈處理間作物鉀素回收率也有一定差異,且牛糞的效果優(yōu)于豬糞和麥稈,這主要與牛糞處理外源鉀素投入量及作物產(chǎn)量較高有關(guān)。施肥方式還可通過(guò)影響土壤有機(jī)質(zhì)含量,影響肥料利用效率[23-24],魯艷紅等[25]研究表明,土壤有機(jī)質(zhì)利于作物產(chǎn)量和養(yǎng)分吸收量的提升,降低作物對(duì)肥料的依賴,提高肥料利用效率,主要因有機(jī)質(zhì)可加強(qiáng)土壤對(duì)養(yǎng)分的固持固定能力,提高其緩沖性能和持久性[26-27]。有機(jī)質(zhì)可通過(guò)酸化、配位交換及還原作用溶解和轉(zhuǎn)化一些難溶性礦物,促進(jìn)水溶性鉀和交換性鉀的形成,促進(jìn)土壤鉀素活化和增強(qiáng)鉀素的有效性[28-29]。因此,長(zhǎng)期增施有機(jī)肥提高土壤有機(jī)質(zhì)含量,進(jìn)而增加作物對(duì)鉀素的吸收,可能是本研究作物鉀素回收率顯著高于常規(guī)化肥處理的另一重要原因。本研究?jī)H從有機(jī)質(zhì)對(duì)土壤鉀素活化和增強(qiáng)鉀素保持能力的角度闡釋增施有機(jī)肥對(duì)作物鉀肥回收率的影響,具有一定的局限性,今后應(yīng)加強(qiáng)不同施肥方式下土壤供鉀特性(如容量、強(qiáng)度、形態(tài))與作物鉀素回收率的定量耦合關(guān)系研究,進(jìn)而明確外源有機(jī)物料對(duì)作物鉀肥利用率的作用機(jī)制。
圖5 土壤速效鉀含量與土壤鉀累積盈虧量的響應(yīng)關(guān)系Fig. 5 Relationship between content of soil readily available K and soil K budgeting
3.2 施肥方式影響鉀素盈虧及速效鉀變化的機(jī)理
施肥方式通過(guò)影響外源鉀的輸入狀況(數(shù)量和質(zhì)量)和土壤—作物系統(tǒng)鉀素的收支平衡,進(jìn)而影響土壤鉀素的盈虧狀況與有效性[30-31],本研究各施肥處理外源鉀累積投入量、鉀素累積盈虧量與土壤速效鉀含量的線性關(guān)系進(jìn)一步例證了這一現(xiàn)象。常規(guī)化肥處理每投入外源鉀100 kg hm-2,土壤速效鉀含量增加0.4 mg kg-1(圖4);土壤累積鉀素每盈余100 kg hm-2,土壤速效鉀增量為1.4 mg kg-1,而增施麥稈、豬糞和牛糞處理土壤速效鉀含量的變化幅度均顯著高于常規(guī)化肥處理(圖5),這說(shuō)明增施有機(jī)肥(麥稈、豬糞和牛糞)在提升土壤速效鉀的供應(yīng)能力方面較常規(guī)化肥更有優(yōu)勢(shì),其原因可能是長(zhǎng)期增施有機(jī)物料增加了外源鉀素的投入量,同時(shí)增強(qiáng)了土壤中鉀素的有效性,使得土壤中其他形態(tài)的鉀更易向土壤速效鉀轉(zhuǎn)化[32]。相關(guān)研究表明,長(zhǎng)期施用有機(jī)肥可提高土壤礦物各吸附點(diǎn)位鉀的含量與有效性,增加土壤中有機(jī)復(fù)合體中的交換性鉀、非交換性鉀含量及非交換性鉀的釋放能力,促進(jìn)鉀素的釋放和其他形態(tài)的鉀素向土壤速效鉀的轉(zhuǎn)化[33-34]。長(zhǎng)期施用有機(jī)肥還可通過(guò)提高作物吸鉀量促進(jìn)土壤非交換性鉀向速效鉀的釋放[35]。進(jìn)一步分析表明,長(zhǎng)期增施牛糞、豬糞和麥稈處理土壤盈余的鉀素向速效鉀的轉(zhuǎn)化能力有顯著差異,且增施牛糞的效果顯著優(yōu)于豬糞和麥稈,這與投入有機(jī)物料中鉀素含量和作物吸鉀量有關(guān),還與投入外源有機(jī)物料的數(shù)量和有機(jī)物料本身的特性有關(guān)。本試驗(yàn)點(diǎn)前期研究表明,增施牛糞處理外源有機(jī)物料養(yǎng)分投入量較高,使其土壤肥力水平相對(duì)較高(表2),同時(shí)微生物性狀(酶活性、微生物群落結(jié)構(gòu)多樣性)均得以大幅提升[18],從而促進(jìn)土壤鉀等營(yíng)養(yǎng)物質(zhì)的循環(huán)過(guò)程。
總之,施肥方式能顯著改變土壤中盈余的鉀素向速效鉀轉(zhuǎn)化,長(zhǎng)期增施有機(jī)肥可提高這種轉(zhuǎn)化能力,利于土壤鉀素養(yǎng)分的保持和利用。在本試驗(yàn)條件下,增施牛糞效果最好,豬糞和秸稈次之,說(shuō)明投入有機(jī)物料是影響砂姜黑土農(nóng)田土壤鉀素高效利用的重要措施,在外源鉀素投入量和土壤鉀累積盈虧量相同的情況下,適量增施牛糞、豬糞和秸稈等有機(jī)物料可提高土壤速效鉀含量并實(shí)現(xiàn)鉀肥的高效利用,其中以秸稈過(guò)腹還田的牛糞效果最好,是砂姜黑土區(qū)小麥—大豆輪作體系下實(shí)現(xiàn)土壤鉀素高效利用的一種優(yōu)化施鉀方式。
投入有機(jī)物料是影響土壤鉀素利用及盈虧的重要調(diào)控措施,在外源鉀素投入量和土壤鉀累積盈虧量相同的情況下,長(zhǎng)期增施有機(jī)物料可提高土壤速效鉀含量的增幅,促進(jìn)土壤鉀素向速效鉀的轉(zhuǎn)化。本試驗(yàn)條件下,增施牛糞效果最好,豬糞和秸稈次之。因此,砂姜黑土冬小麥—夏大豆輪作系統(tǒng)下秸稈養(yǎng)畜過(guò)腹還田是實(shí)現(xiàn)作物高產(chǎn)高效的一種推薦施鉀方式。
[1] Pettigrew W T. Potassium influences on yield and quality production for maize,wheat,soybean and cotton. Physiologia Plantarum,2008,133( 4 ):670—681
[2] Cong R H,Li H,Zhang Z,et al. Evaluate regional potassium fertilization strategy of winter oilseed rape under intensive cropping systems:Large-scale field experiment analysis. Field Crops Research,2016,193:34—42
[3] Dong H Z,Kong X Q,Li W J,et al. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Research,2010,119(1):106—113
[4] Moterle D F,Kaminski J,dos Santos Rheinheimer D,et al. Impact of potassium fertilization and potassium uptake by plants on soil clay mineral assemblage in South Brazil. Plant and Soil,2016,406(1/2):157—172
[5] 范欽楨,謝建昌. 長(zhǎng)期肥料定位試驗(yàn)中土壤鉀素肥力的演變. 土壤學(xué)報(bào),2005,42(4):591—599
Fan Q Z,Xie J C. Variation of potassium fertility in soil in the long-term fertilizer experiment(In Chinese). Acta Pedologica Sinica,2005,42(4):591—599
[6] 葛瑋健,常艷麗,劉俊梅. 塿土區(qū)長(zhǎng)期施肥對(duì)小麥–玉米輪作體系鉀素平衡與鉀庫(kù)容量的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2012,18(3):629—636
Ge W J,Chang Y L,Liu J M. Potassium balance and pool as influenced by long-term fertilization under continuous winter wheat summer maize cropping system in a manual loess soil(In Chinese). Plant Nutrition and Fertilizer Science,2012,18(3):629—636
[7] 徐曉燕,馬毅杰,張瑞平. 土壤中鉀的轉(zhuǎn)化及其與外源鉀的相互關(guān)系的研究進(jìn)展. 土壤通報(bào),2003,34(5):489—492
Xu X Y,Ma Y J,Zhang R P. Research progress in transformation of soil potassium in relation to potash application(In Chinese). Chinese Journal of Soil Science,2003,34(5):489—492
[8] Cox A E,Joern B C,Brouder S M,et al. Plantavailable potassium assessment with a modified sodium tetraphenylboron method. Soil Science Society of America Journal,1999,63(4):902—911
[9] Bhattacharyya R,Prakash V,Kundu S,et al. Potassium balance as influenced by farmyard manure application under continuous soybean–wheat cropping system in a typic Haplaquept. Geoderma,2006,137(1/2):155—160
[10] He C,Ouyang Z,Tian Z,et al. Yield and potassium balance in a wheat-maize cropping system of the North China Plain. Agronomy Journal,2012,104(4):1016—1022
[11] Mallarino A P,Higashi S L. Assessment of potassium supply for corn by analysis of plant parts. Soil Science Society of America Journal,2009,73(6):2177—2183
[12] Simonsson M,Hillier S,?born I. Changes in clay minerals and potassium fixation capacity as a result of release and fixation of potassium in long-term field experiments. Geoderma,2009,151(3):109—120
[13] Qiu S J,Xie J G,Zhao S C,et al. Long–term effects of potassium fertilization on yield,efficiency,and soil fertility status in a rain-fed maize system in northeast China. Field Crops Research,2014,163:1—9
[14] 張水清,楊莉,黃紹敏,等. 長(zhǎng)期施肥下潮土速效鉀含量與鉀素投入水平關(guān)系. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014,20(3):773—777
Zhang S Q,Yang L,Huang S M,et al. Relationship between available K content and K input levels in fluvoaquic soil under long term fertilization(In Chinese). Journal of Plant Nutrition and Fertilizer,2014,20(3):773—777
[15] 王道中,花可可,郭志彬,等. 長(zhǎng)期施肥對(duì)砂姜黑土作物產(chǎn)量及土壤物理性質(zhì)的影響. 中國(guó)農(nóng)業(yè)科學(xué),2015,48(23):4781—4789
Wang D Z,Hua K K,Guo Z B,et al. Effects of long-term fertilization on crop yield and soil physical properties in lime concretion black soil(In Chinese). Scientia Agricultura Sinica,2015,48(23):4781—4789
[16] Hua K K,Wang D Z,Guo X S,et al. Carbon sequestration efficiency of organic amendments in a long-term experiment on a Vertisol in Huang-Huai-Hai Plain,China. PLoS One,2014,9(9):e108594
[17] Hua K K,Zhang W J,Guo Z B,et al. Evaluating crop response and environmental impact of the accumulation of phosphorus due to long-term manuring of vertisol soil in northern China.Agriculture,Ecosystems and Environment,2016,109:101—110
[18] Sun R B,Zhang X X,Guo X S,et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology & Biochemistry,2015,88:9—18
[19] 全國(guó)農(nóng)業(yè)技術(shù)推廣服務(wù)中心. 中國(guó)有機(jī)肥料養(yǎng)分志. 北京:中國(guó)農(nóng)業(yè)科技出版社,1994
National Center for Agricultural Technology Service. Chinese organic fertilizer handbook(In Chinese). Beijing:China Agricultural Science and Technology Press,1994
[20] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法. 北京:中國(guó)農(nóng)業(yè)科技出版社,2000
Lu R K. Analytical methods for soil and agro-chemistry(In Chinese). Beijing:China Agricultural Science and Technology Press,2000
[21] 張福鎖,王激清,張衛(wèi)峰,等. 中國(guó)主要糧食作物肥料利用率現(xiàn)狀與提高途徑. 土壤學(xué)報(bào),2008,45(5):915—924
Zhang F S,Wang J Q,Zhang W F,et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement(In Chinese). Acta Pedologica Sinica,2008,45(5):915—924
[22] Zhang H M,Yang X Y,He X H,et al. Effect of long-term potassium fertilization on crop yield and K efficiency and balance under wheat-maize rotation in China. Pedosphere,2011,21(2):154—163
[23] Niu J F,Zhang W F,Ru S H,et al. Effects of potassium fertilization on winter wheat under different production practices in the North China Plain. Field Crops Research,2013,140:69—76
[24] Scanlan C A,Bell R W,Brennan R F. Simulating wheat growth response to potassium availability under field conditions in sandy soils. II. Effect of subsurface potassium on grain yield response to potassium fertilizer. Field Crops Research,2015,178:125—134
[25] 魯艷紅,廖育林,周興,等. 長(zhǎng)期不同施肥對(duì)紅壤性水稻土產(chǎn)量及基礎(chǔ)地力的影響. 土壤學(xué)報(bào),2015,52(3):597—606
Lu Y H,Liao Y L,Zhou X,et al. Effect of long-term fertilization on rice yield and basic soil productivity in red paddy soil under double-rice system(In Chinese). Acta Pedologica Sinica,2015,52(3):597—606
[26] Garcia R A,Crusciol C A,Calonego J C,et al. Potassium cycling in a corn-brachiaria cropping system. European Journal of Agronomy,2008,28(4):579—585
[27] Heckman J R,Kamprath E J. Potassium accumulation and corn yield related to potassium fertilizer rate and placement. Soil Science Society of America Journal,1992,56(1):141—148
[28] Guo T R,Zhang G P,Zhou M X,et al. Influence of aluminum and cadmium stresses on mineral nutrition and root exudates in two barley cultivars. Pedosphere,2007,17(4):505—512
[29] Tan K H. The release of silicon,aluminum,and potassium during decomposition of soil minerals by humic acid. Soil Science,1980,129(1):5—10
[30] 王西和,呂金嶺,劉 驊. 灰漠土小麥-玉米-棉花輪作體系鉀平衡與鉀肥利用率. 土壤學(xué)報(bào),2016,53(1):214—223
Wang X H,Lü J L,Liu H. Potassium balance and use efficiency in grey desert soil under continuous wheatmaize-cotton crop rotation system(In Chinese). Acta Pedologica Sinica,2016,53(1):214—223
[31] 胡敏,任濤,廖世鵬,等. 不同含鉀物料對(duì)土壤鉀素含量動(dòng)態(tài)變化影響. 土壤,2016,48(1):48—52
Hu M,Ren T,Liao S P,et al. Effects of K-bearing materials on dynamic changes of soil K contents(In Chinese). Soils,2016,48(1):48—52
[32] 何冰,薛剛,張小全,等. 有機(jī)酸對(duì)土壤鉀素活化過(guò)程的化學(xué)分析. 土壤,2015,47(1):74—79
He B,Xue G,Zhang X Q,et al. Analysis on chemical mechanism of potassium release process from soil as influenced by organic acid(In Chinese). Soils,2015,47(1):74—79
[33] 李娜,韓曉日,楊勁峰,等. 長(zhǎng)期施肥對(duì)棕壤礦物吸附點(diǎn)位鉀有效性及其剖面分布的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2012,18(6):1412—1417
Li N,Han X R,Yang J F,et al. Effects of longterm fertilization on the availability of K adsorbed by clay minerals and profile distribution in brown soil(In Chinese).Plant Nutrition and Fertilizer Science,2012,18(6):1412—1417
[34] 岳龍凱,蔡澤江,徐明崗,等. 長(zhǎng)期施肥紅壤鉀有效性研究. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(6):1543—1550
Yue L K,Cai Z J,Xu M G,et al. Potassium availability in red soil under long-term fertilization(In Chinese). Plant Nutrition and Fertilizer Science,2015,21(6):1543—1550
[35] Benbi D K,Biswas C R. Nutrient budgeting for phosphorus and potassium in a long-term fertilizer trial. Nutrient Cycling in Agroecosystems,1999,54(2):125—132
Effects of Long-term Fertilization on Soil Potassium Utilization and Budgeting in Vertisol Relative to Application Method
HUA Keke1WANG Daozhong1?GUO Zhibin1LI Congcong2
(1 Soil and Fertilizer Research Institute,Anhui Academy of Agricultural Sciences,Hefei 230031,China)
(2 Party Committee for the Organs,Anhui Academy of Agricultural Sciences,Hefei 230031,China)
【Objective】 Soil potassium is an essential macronutrient for crop growth and plays a key role in maintaining high crop yield. However,so far it is still unclear as to dynamics of soil potassium utilization,especially quantitative relationships of content of soil readily available K with input of extraneous and budgeting of cumulative soil potassium relative to fertilization method. Therefore,this study was oriented to analyze dynamics of crop K uptake,crop K recovery rate,soil K budgeting and content of soil readily available K and to explore quantitatively relationships of soil readily available K with input of extraneous K and budgeting of cumulative soil K relative to fertilization practice based on a long-term fertilization field experiment in a field of vertisol in North China.【Method】The long-term experiment,located at the Mengchen Agro-Ecological-Station in the Huang-Huai-Hai Plain,North China,was initiated in 1982 and designed to have five treatments,i.e.,CK(no fertilizer),CF(mineral fertilizers),SCF(mineral fertilizers plus wheat straw),PCF(mineral fertilizers plus pig manure),and CCF(mineral fertilizers plus cattle manure),and four replicates for each. Plots,70 m2each in area,of the treatments and replicates were laid out in a randomized block design and separated from each other with cement boards embedded 50 cm deep. Soil samples were collected randomly from the top 20 cm soil layer of each plot along a S-shaped line,after the crop of soybean was harvested in October each year,with a soil core sampler(inner diameter 7 cm). Chemical N,P and K fertilizer was applied in the form of urea,calcium superphosphate and potassium chloride,respectively,at a rate the same as the local farmers did,i.e.,180 kg N,39.3 kg P,and 112 kg K hm-2yr-1. Soil total K was measured with the sodium hydroxide melting-flame photometry,soil slowly available K with the nitric acid boiling-flame photometry,soil readily available K with the ammonium acetate extraction-flame photometry and crop K with the vitriol peroxide/hydroxidation-flame photometry. 【Result】 It was found that the mean crop K recovery rate varied in the range of 55.1%~66.1%,relative to treatment and displaying an order of CCF > PCF > SCF > CF. The content of soil readily available K increased somewhat in all the treatments except in CK,where the content declined steadily over time. The over-year mean content of soil readily available K exhibited an order of CCF(289.5 mg kg-1)> PCF(133.0 mg kg-1)> SCF(128.4 mg kg-1)> CF(82.4 mg kg-1)> CK(72.3 mg kg-1). On the whole,a significant(p<0.05)positive linear relationship was observed between soil K budgeting and content of soil readily available K. Thegain of each 100 kg hm-2in soil K budgeting raised the content of soil readily available K in Treatment CF,SCF,PCF,and CCF by 1.4 mg kg-1,1.8 mg kg-1,2.3 mg kg-1and 15.8 mg kg-1,respectively. Besides,a significant(p<0.05)positive linear relationships between input of soil K and content of soil readily available K was also observed in all the fertilization treatments. The input of each 100 kg hm-2increased the content of soil readily available K by 0.4 mg kg-1,0.5 mg kg-1,0.6 mg kg-1and 4.3 mg kg-1in Treatment CF,SCF,PCF,and CCF,respectively. Compared to the increase in Treatment CF,that in the treatment amended with organic material(wheat straw,pig manure or cattle manure),that is,Treatment SCF,PCF and CCF was 25%,50% and 975% higher,respectively,which indicates that application of a proper rate of organic material may improve soil K supply capacity in soils the same in input of extraneous K and soil K budgeting.【Conclusion】To sum up,application of organic material is an important practice regulating soil potassium utilization. Long term application of organic manure,especially cattle manure in the study,may increase crop potassium recovery rate and transformation rate of surplus soil K into readily available K. Therefore,the application of animal-digested crop straw is a recommended practice to achieve stable and high crop yields in fields of vertical under wheat-soybean cropping system in North China.
Long-term fertilization;Organic amendments;Potassium recovery rate;Soil potassium budget;Soil available potassium
S153
A
(責(zé)任編輯:陳榮府)
10.11766/trxb201610240426
* 國(guó)家自然科學(xué)基金項(xiàng)目(41401331)、安徽省農(nóng)業(yè)科學(xué)院學(xué)科建設(shè)項(xiàng)目(15A1013)和安徽省養(yǎng)分循環(huán)重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(1606c08231)資助 Supported by the National Natural Science Foundation of China(No. 41401331),Programs of the Anhui Academy of Agricultural Science(No. 15A1013),and Project of the Key Laboratory of Nutrient Recycling,Resources and Environment Performance Evaluation of Anhui Province(No. 1606c08231)
? 通訊作者 Corresponding author,E-mail:wdzhong-3@163.com
花可可(1983—),男,博士,助理研究員,主要從事長(zhǎng)期施肥下土壤肥力與養(yǎng)分循環(huán)研究。E-mail:huakeke1220@126.com
2016-10-24;
2017-02-15;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-03-24