楊廣學+胡嘉維+康守強+梁亞琦+王磊
摘 要:提出了一種基于多項式展開幀間估計和Harris角點檢測的運動軌跡跟蹤系統(tǒng)。系統(tǒng)先將視頻監(jiān)控圖像輸入系統(tǒng),轉化為灰度圖,以便進行特征提??;接下來確定興趣區(qū)域抓取目標點,提取ROI內(nèi)角點坐標;最后確定角點的新坐標,定位目標在下一幀的位置,從而實現(xiàn)對目標的跟蹤。通過對常用的光流檢測算法和角點判斷方式進行分析比較,最終選擇多項式展開幀間估計和Harris角點檢測算法作為圖像配準和角點跟蹤的方案,并進行參數(shù)優(yōu)化,使系統(tǒng)的魯棒性和得到了提升,并更能夠適應復雜的環(huán)境條件。
關鍵詞:多項式展開;角點;運動軌跡跟蹤
DOI:10.15938/j.jhust.2017.03.009
中圖分類號: TP391.4
文獻標志碼: A
文章編號: 1007-2683(2017)03-0048-06
Abstract:A motion tracking system based on polynomial expansion inter-frame estimation and Harris corner detection is proposed. The system transforms the video monitoring image into grayscale in order to feature extract, then determines the interested area to grab the target and analyses the corner point and extract the ROI interior point coordinates, and finally confirms the new corner points by polynomial expansion to locate the position of the target in next frame. By means of analyzing and comparing common methods of light flow and corner point judgment, we select polynomial expansion frame and Harris corner detection as the image registration and the corner point tracking scheme, and conduct the parameter optimization. Through the new algorithm the system robustness and adaptability are promoted, and more able to adapt to complex environmental conditions.
Keywords:polynomial expansion; Harris corner; motion tracking
5 結 論
本文通過多項式展開的幀間估計算法和Harris角點算法,實現(xiàn)了運動軌跡實時跟蹤系統(tǒng),并使精度和適應性得到了提高。同時結合Python和OpenCV,使較為復雜的工程項目的實現(xiàn)難度降低。實驗結果表明,該軌跡跟蹤系統(tǒng)能夠?qū)\動物體進行有效跟蹤。在后面的研究中,系統(tǒng)還可以加入多物體識別模塊,使得該系統(tǒng)有更普遍的適用性。
參 考 文 獻:
[1] 周志艷, 閆夢璐, 陳盛德, 等. Harris 角點自適應檢測的水稻低空遙感圖像配準與拼接算法[J]. 農(nóng)業(yè)工程學報, 2015, 31(14): 186-193.
[2] 池利陽, 李民政, 吳新強. 一種運動目標檢測實時性和魯棒性的方法[J]. 計算機應用與軟件, 2015, 32(2): 132-134.
[3] BERTHOLD K P. Horn, BRIAN G. Schunck. Determining Optical Flow. Artifical Intelligence, 1981(17):185-203.
[4] SHI J, TOMASI C. Good Features to Track, in: Computer Vision and Pattern Recognition, Seattle,1994:593-600.
[5] YILMAZ A, JAVED O, SHAH M. Object Tracking: A Survey [J]. Acm Computing Surveys, 2006, 38(4): 1-45 .
[6] SCHMID C, MOHR R, BACUHKHAGE C. Evaluation of Interest Point Detectors [J]. Iternational Journal of Computer Vision, 2000, 37(2): 151-172.
[7] 趙文哲, 秦世引. 視頻運動目標檢測方法的對比分析[J]. 科技導報, 2009 (10): 64-70.
[8] SUN D, ROTH S, BLACK M J. A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind them[J]. International Journal of Computer Vision, 2014, 106(2): 115-137.
[9] 諸亮, 周林強, 李一嘯, 等. 一種基于低秩矩陣逼近的圖像去噪算法[J]. 杭州電子科技大學學報, 2015, 35(4): 36-40.
[10]FARNEBACK G. Twoframe Motion Estimation Based on Polynomial Expansion[C]// In Scandinavian Conference on Image Analysis, 2003:363-370.
[11]王遠軍. 基于多項式展開的彌散張量圖像配準 [D]. 上海:復旦大學, 2010:35-36.
[12]密聰杰, 劉洋, 薛向陽. 基于多幀圖像的視頻文字跟蹤和分割算法[J]. 計算機研究與發(fā)展, 2006,43(9):1523-1529.
[13]謝勤嵐, 曹匯敏. 結合兩步估算和運動補償?shù)淖酉袼剡\動估計[J]. 計算機工程與應用, 2009, 45(7): 190-191.
[14]FARNEBACK G: Polynomial Expansion for Orientation and Motion Estimation[D].Linoping: Linopings University,2002:41-56.
[15]BARRON J L, FLEET D J, BEAUCHEMIN S S. Performance of Optical Flow Techniques[C]// IEEE Computer Society Conference on Computer Vision & Pattern Recognition, Cvpr. 1994:236-242.
[16]MORAVEC H P. Towards Automatic Visual Obstacle Avoidance [C]// Cambridge: Proceedings of International Joint Conference on Artificial Intelligence,1977: 584-590.
[17]田原,梁德群,吳更石.直接基于灰度圖像的多尺度角點檢測方法[J].信號處理,2006,14(12):6-10.
[18]JOHN S N, MATHEW A A. Rooftop Extraction in Aerial Imagery Using Corners by Harris Corner Detector and SUSAN Corner Detector[J]. 2014,22(2):4395-4401.
[19]陳凱歌, 韓曉軍, 張宇, 等. 基于 OpenCV 的 Harris 角點檢測[J]. 河南工程學院學報: 自然科學版, 2011, 23(4): 53-56.
(編輯:溫澤宇)