王艷
(寶雞文理學(xué)院 化學(xué)與化工學(xué)院 鐵電功能材料工程(技術(shù))研究中心 陜西省植物化學(xué)重點(diǎn)實(shí)驗(yàn)室,陜西 寶雞 721013)
Yb摻雜對(duì)Ba(Zr0.1Ti0.9)O3陶瓷微觀形貌及介電性能的影響*
王艷
(寶雞文理學(xué)院 化學(xué)與化工學(xué)院 鐵電功能材料工程(技術(shù))研究中心 陜西省植物化學(xué)重點(diǎn)實(shí)驗(yàn)室,陜西 寶雞 721013)
采用溶膠-凝膠一步法制備了Yb摻雜鋯鈦酸鋇基陶瓷,陶瓷樣品的容溫變化率均符合Y5V標(biāo)準(zhǔn),通過(guò)XRD、SEM等分析檢測(cè)手段對(duì)陶瓷樣品進(jìn)行表征。探討了Yb摻雜量對(duì)鋯鈦酸鋇基陶瓷微觀形貌、介電常數(shù)、容溫變化率及介電損耗的影響。研究表明:隨著Yb摻雜量的增大,陶瓷的晶粒尺寸有增大趨勢(shì),室溫介電常數(shù)呈現(xiàn)出先增大后減小的變化趨勢(shì);當(dāng)Yb摻雜量為0.06mol%時(shí),陶瓷的晶粒尺寸較小,陶瓷較為致密,其室溫介電常數(shù)達(dá)到最大值18221,介電損耗較小為0.0061。
溶膠-凝膠法;Ba(Zr0.1Ti0.9)O3;Yb摻雜;介電性能
BaTiO3基陶瓷具有高的介電常數(shù),優(yōu)良的鐵電、壓電、絕緣性能及環(huán)境友好等特點(diǎn),因而被廣泛應(yīng)用于多層陶瓷電容器領(lǐng)域[1]。鈦酸鋇陶瓷的制備方法有固相法[2]、水熱法[3]、沉淀法[4]和溶膠-凝膠法[5]等方法,其中溶膠-凝膠法制備陶瓷粉體材料具有組成容易控制、燒結(jié)活性高、純度高等優(yōu)點(diǎn),而且陶瓷的燒結(jié)溫度較低。純BaTiO3隨著溫度不斷的變化,存在著很多種相變。尤其在居里溫度處,介電常數(shù)隨著溫度的改變,會(huì)發(fā)生很大的變化。在鈦酸鋇陶瓷中摻雜鋯,制備鋯鈦酸鋇陶瓷,可以降低居里溫度,產(chǎn)生彌散相變,從而獲得性能優(yōu)良的鐵電材料[6],因此被廣泛研究[7]。而通過(guò)摻雜鋯鈦酸鋇可進(jìn)一步提高鋯鈦酸鋇基陶瓷的介電性能。在本研究中,我們利用溶膠-凝膠法制備了鋯鈦酸鋇基陶瓷,研究了Yb摻雜量對(duì)鋯鈦酸鋇基陶瓷微觀結(jié)構(gòu)及介電特性的影響。
1.1 試劑及儀器
D8型XRD粉末衍射儀(德國(guó)布魯克公司);TM3000掃描電子顯微鏡(日本日立公司);HP4284A精密LCR測(cè)試儀(美國(guó)惠普公司)。
Ba(CH3COO)2(CP),Zr(NO3)4·5H2O(化學(xué)純),Yb2O3(化學(xué)純),Ti(C4H9O)4(分析純),CH3CH2OH(分析純),CH3CH2OOH(分析純)
1.2 實(shí)驗(yàn)方法
室溫下,利用磁力攪拌將化學(xué)計(jì)量比的Ti(C4H9O)4與無(wú)水乙醇(10mL)和醋酸(15mL)混合均勻。接著,將一定量的Ba(CH3COO)2,Yb(NO3)3及Zr(NO3)4·5H2O用50mL蒸餾水溶解制備成無(wú)機(jī)混合溶液,將其緩慢滴加入上述的Ti(C4H9O)4體系中,攪拌2h形成均勻的溶膠。將溶膠置于80℃水浴中經(jīng)40min后形成凝膠,空氣中陳化12h。將凝膠在80℃溫度下經(jīng)過(guò)12h烘干,得到干凝膠。干凝膠在馬弗爐中經(jīng)900℃預(yù)燒2h得到鋯鈦酸鋇基粉體。將所得粉體在水介質(zhì)中球磨12h,干燥后加入甘油和聚乙烯醇(PVA)造粒,6MPa壓力下壓片,500℃排膠,再經(jīng)過(guò)1300℃/2h燒成陶瓷圓片,制作銀電極后測(cè)試其介電性能。
2.1 Yb摻雜量對(duì)鋯鈦酸鋇粉體樣品相組成的影響
圖1 不同組分鋯鈦酸鋇基粉體的XRD圖譜Fig.1 The XRD patterns of Ba(Zr0.1Ti0.9)O3-based ceramics with different Yb contents
圖1為Yb摻雜量不同時(shí)鋯鈦酸鋇粉體樣品的XRD圖譜,從圖中可以看出,樣品均呈現(xiàn)出鈣鈦礦相結(jié)構(gòu),同時(shí)有雜質(zhì)相存在。說(shuō)明Yb沒(méi)有完全擴(kuò)散進(jìn)入鈣鈦礦結(jié)構(gòu)的晶格而形成了固溶體。從2θ=45°附近的衍射峰可以觀察到,隨著Yb摻雜量增加,對(duì)應(yīng)的衍射峰向高角度方向移動(dòng),根據(jù)布朗格公式(2dsin=n)可知鋯鈦酸鋇陶瓷的晶格常數(shù)隨著Yb摻雜量增加而減小。這是因?yàn)閅b3+(0.99?)的離子半徑小于Ba2+(1.35?)的離子半徑,而大于Ti4+(0.605?)的離子半徑。當(dāng)Yb摻雜量增加時(shí),會(huì)有更多的Yb3+擴(kuò)散進(jìn)入鈣鈦礦結(jié)構(gòu)晶格取代A位的Ba2+,導(dǎo)致晶格常數(shù)的減小[8]。
2.2 Yb摻雜量對(duì)鋯鈦酸鋇陶瓷樣品表面形貌的影響
圖2所示為Yb的摻雜量對(duì)Ba(Zr0.1Ti0.9)O3基陶瓷樣品微觀形貌的影響情況。從圖可以看出,當(dāng)Yb3+摻雜量在0.03mol%~0.06mol%范圍內(nèi)變化時(shí),Yb3+的加入可以有效地抑制晶粒的長(zhǎng)大,且當(dāng)Sm3+摻雜量為0.06mol%時(shí),陶瓷晶粒尺寸最小。這可能是當(dāng)稀土離子Yb3+對(duì)BaTiO3中的Ba2+進(jìn)行取代時(shí),由于Yb3+的半徑和電價(jià)與Ba2+的均有不同,為了保持電價(jià)平衡,會(huì)產(chǎn)生一定的陽(yáng)離子空位(V''Ba),Ba2+空位會(huì)導(dǎo)致晶格缺陷和晶格畸變,這就阻礙了晶界的移動(dòng),抑制了晶粒的生長(zhǎng)[9]。當(dāng)Yb3+摻雜量進(jìn)一步增大(0.075mol%)時(shí),在陶瓷樣品的表面出現(xiàn)一些異常長(zhǎng)大的晶粒。
圖2 Yb摻雜量對(duì)Ba(Zr0.1Ti0.9)O3基陶瓷表面形貌的影響Fig.2 The SEM images of Ba(Zr0.1Ti0.9)O3-based ceramics with different Yb contents
2.3 Yb摻雜量對(duì)鋯鈦酸鋇基陶瓷樣品介電性能的
圖3 Yb摻雜量對(duì)Ba(Zr0.1Ti0.9)O3基陶瓷介電特性的影響(a)介電常數(shù);(b)溫度穩(wěn)定性Fig.3 The effect of Yb content on the dielectric properties of Ba(Zr0.1Ti0.9)O3-based ceramics(a)dielectric constant;(b)TCC
圖3所示為Yb摻雜量的不同對(duì)Ba(Zr0.1Ti0.9)O3基陶瓷樣品的介電常數(shù)和容溫變化率的影響情況。表1所列為該陶瓷體系的主要性能參數(shù)。從圖3(a)中可以看出,當(dāng)Yb3+摻雜量為0.03mol%、0.045mol%、0.06mol%與0.075mol%時(shí),對(duì)應(yīng)的室溫介電常數(shù)分別為17352、18158、18221與16402,呈現(xiàn)出先增大后減小的變化趨勢(shì)。圖3(b)中可知,Ba(Zr0.1Ti0.9)O3基陶瓷的容溫變化率均符合Y5V標(biāo)準(zhǔn)。
圖4為不同Yb摻雜量下Ba(Zr0.1Ti0.9)O3基陶瓷的介電損耗圖。由圖4和表1可知,隨著Yb摻雜量的增加,樣品的介電損耗先減小后增加。當(dāng)Yb摻雜量為0.06mol%時(shí),介電損耗達(dá)到最小值為0.0061。
圖4 Yb摻雜量對(duì)Ba(Zr0.1Ti0.9)O3基陶瓷介電損耗的影響Fig.4 The effect of Yb content on the dielectric loss of Ba(Zr0.1Ti0.9)O3-based ceramics
表1 Ba(Zr0.1Ti0.9)O3基陶瓷的主要性能參數(shù)Table 1 The main properties of the Ba(Zr0.1Ti0.9)O3-based ceramics.
采用溶膠-凝膠法制備了Yb摻雜鋯鈦酸鋇基陶瓷,陶瓷的容溫變化率均符合Y5V標(biāo)準(zhǔn)。研究了Yb摻雜量對(duì)鋯鈦酸鋇基陶瓷微觀形貌及介電性能的影響。結(jié)果表明:隨著Yb摻雜量的增大,陶瓷的晶粒尺寸有增大趨勢(shì),介電常數(shù)呈現(xiàn)出先增大后減小的變化趨勢(shì);而室溫介電損耗先減小后增加。當(dāng)Yb摻雜量為0.06 mol%時(shí),陶瓷的晶粒尺寸較小,其室溫介電常數(shù)達(dá)到最大值18221,介電損耗達(dá)到最小值為0.0061。參考文獻(xiàn):
[1] Q HGUO,X P ZHOU,X Y LI,et al.Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes[J]. Journal of Materials Chemistry,2009,19(1):2810~2816.
[2] LU D Y,ZHANG L,SUN X Y.Defect Chemistry of a High-k‘Y5V’(Ba0.95Eu0.05)TiO3Ceramic[J].Ceramics International,2013, 39:6369~6377.
[3] BOULOS M,GUILLEMET-FRITSCHS,MATHIEU F,et al.Hydrothermal Synthesis of Nanosized BaTiO3Powders and Dielectric Properties of Corresponding Ceramics[J].Solid State Ionics,2005, 176:1301~1309.
[4] LU W,QUILITZ M,SCHMIDT H.Nanoscaled BaTiO3Powders with a Large Surface Area Synthesized by Precipitation from Aqueous Solutions:Preparation,Characterization and Sintering[J].Journal of the European Ceramic Society,2007,27:3149~3159.
[5] ZHANG Q L,F WU,H YANG,et al.Sol-gel Synthesis of A-siteorderedandHomogeneous(Nd0.55Li0.35)TiO3CeramicandItsDielectric Properties[J].Scripta Materialia,2011,65:842~845.
[6] CHOURASIA R,SHRIVASTAVA O P.Crystal Structure Modeling, Electrical and Micro-structural Characterization of Manganese doped Barium Zirconium Titanate Ceramics[J].Polyhedron,2011, 30:738-745.
[7] CHOU X J,ZHAI J W,JIANG H T,et al.Dielectric Properties and Relaxor Behavior of Rare-Earth La,Sm,Eu,Dy,Y Substituted Barium Zirconium Ttanate Ceramics[J].Journal of Applied Physiology,2007,102:084106~084106-6.
[8] HONG J F,JUN G H,YUAN F Q,et al.Structure,Dielectric and Electrical Properties of Cerium doped Barium Zirconium Titanate Ceramics[J].Journal of Alloysand Compounds,2012,512:12~16.
[9] MIHA D.Oxygen Partial Pressure and Grain Growth in Donor-Doped BaTiO3[J].Journal of the American Ceramic Society, 1987,70:311~314.
Effect of Yb-doping on Microstructure and Dielectric Properties of Ba(Zr0.1Ti0.9)O3Ceramics
WANG Yan
(Key Laboratory of Phytochemistry of Shaanxi Province,Engineering Research Center of Advanced Ferroelectric Functional Materials,College of Chemistry and Chemical Engineering,Baoji University of Arts and Sciences,Baoji 721013,China)
The Yb-doped Ba(Zr0.1Ti0.9)O3ceramics were prepared by sol-gel method,which met the Electronic Industries Alliance Y5V specifications. The samples were analyzed by XRD and SEM,etc.The effect of Yb-doping concentration on the microstructure,temperature coefficient of capacitance,dielectric constant and dielectric loss of Yb-dope Ba(Zr0.1Ti0.9)O3ceramics were investigated.As the Yb-doped concentration increased,the grain sizes increased;the maximum dielectric constant first increased and then decreased at room temperature.As the Yb-doping concentration was 0.06 mol%,the grain size of ceramic was small and it was compact with a dielectric constant of 18221 and a lower dielectric loss below 0.61%at room temperature.
Sol-gel method;Ba(Zr0.1Ti0.9)O3;Yb-doping;dielectric property
TQ028.8;TB34
A
1001-0017(2017)03-0173-03
2017-02-22 *基金項(xiàng)目:陜西省教育廳項(xiàng)目(編號(hào):16JK1040);寶雞市科技局(編號(hào):16RKX1-4);寶雞文理學(xué)院校級(jí)重點(diǎn)項(xiàng)目
(編號(hào):ZK16054)。
王艷(1983-),女,陜西蒲城人,博士,研究方向?yàn)楣δ芴沾刹牧系闹苽渑c性能研究。