劉楨 黃潔 王建濤 趙擁軍 陳世文
(信息工程大學(xué)導(dǎo)航與空天目標(biāo)工程學(xué)院,鄭州 450001)
基于偽相關(guān)函數(shù)的多級(jí)電平編碼符號(hào)信號(hào)通用無模糊跟蹤方法?
劉楨?黃潔 王建濤 趙擁軍 陳世文
(信息工程大學(xué)導(dǎo)航與空天目標(biāo)工程學(xué)院,鄭州 450001)
(2017年3月13日收到;2017年4月11日收到修改稿)
針對(duì)新一代全球?qū)Ш叫l(wèi)星系統(tǒng)(GNSS)中多級(jí)電平編碼符號(hào)(MCS)信號(hào)存在的跟蹤模糊問題,本文提出了一種通用的MCS信號(hào)無模糊跟蹤方法.首先推導(dǎo)了不同MCS信號(hào)互相關(guān)函數(shù)的統(tǒng)一表達(dá)式,并給出了偽相關(guān)函數(shù)的定義;然后深入分析了實(shí)現(xiàn)無模糊跟蹤需要滿足的約束條件,推導(dǎo)了兩路參考信號(hào)的通用構(gòu)造方法以及相互之間的關(guān)系,為具體MCS信號(hào)的求解提供了極大的便利;進(jìn)而給出了利用本文方法的GNSS接收機(jī)碼跟蹤環(huán)路模型.作為MCS信號(hào)的特例,分別討論了本文方法在四種二進(jìn)制偏移載波信號(hào)跟蹤中的應(yīng)用.仿真結(jié)果表明,本文方法能夠有效解決MCS信號(hào)的跟蹤模糊問題,具有良好的性能和廣闊的應(yīng)用前景.
全球?qū)Ш叫l(wèi)星系統(tǒng),多級(jí)電平編碼符號(hào),無模糊跟蹤,偽相關(guān)函數(shù)
全球?qū)Ш叫l(wèi)星系統(tǒng)(global navigation satellite system,GNSS)能夠?yàn)槿蚍秶鷥?nèi)的用戶提供全天候、全天時(shí)的定位、導(dǎo)航和授時(shí)(positioning,navigation and tim ing,PNT)服務(wù),在國(guó)防、航空、金融以及氣象等眾多領(lǐng)域獲得了非常廣泛的應(yīng)用,并展現(xiàn)出了巨大的軍事價(jià)值和經(jīng)濟(jì)價(jià)值[1,2].如何獲得更高精度的定位結(jié)果以及在十分有限的導(dǎo)航頻段內(nèi)實(shí)現(xiàn)資源共享已成為GNSS信號(hào)設(shè)計(jì)的核心問題,而解決這一問題的關(guān)鍵在于設(shè)計(jì)更優(yōu)的擴(kuò)頻碼片調(diào)制波形.目前,由于二進(jìn)制偏移載波(binary off set carrier,BOC)[3,4]類信號(hào)和二進(jìn)制編碼符號(hào)(binary coded symbol,BCS)[5]信號(hào)的波形取值均為+1或-1,因而極大地限制了GNSS信號(hào)性能提升的空間,因此,多級(jí)電平編碼符號(hào)(multilevel coded symbol,MCS)調(diào)制在GNSS信號(hào)設(shè)計(jì)領(lǐng)域得到了高度重視[6].由于MCS信號(hào)的波形符號(hào)可以任意取值,因而能夠設(shè)計(jì)出最優(yōu)的GNSS信號(hào),如Galileo系統(tǒng)L1頻點(diǎn)的復(fù)合BOC(composite BOC,CBOC)就屬于MCS調(diào)制信號(hào)[7,8].MCS調(diào)制是目前最廣泛的GNSS信號(hào)調(diào)制方式,BOC調(diào)制和BCS調(diào)制都屬于它的特例,研究MCS調(diào)制對(duì)于我國(guó)北斗全球系統(tǒng)的信號(hào)設(shè)計(jì)具有重要的意義.但是與其特例BOC調(diào)制信號(hào)一樣,MCS調(diào)制信號(hào)也存在碼跟蹤模糊的問題,引起模糊的根本原因在于自相關(guān)函數(shù)存在著多峰,造成主峰與邊峰在時(shí)間和幅度兩個(gè)維度上均難以區(qū)分,這就容易導(dǎo)致碼跟蹤環(huán)路錯(cuò)誤鎖定在邊峰而不是主峰上,進(jìn)而造成很大的偽距測(cè)量誤差,這對(duì)于高精度的新一代GNSS是無法接受的.因此,需要研究MCS調(diào)制信號(hào)的通用無模糊跟蹤方法.
近年來,對(duì)GNSS信號(hào)無模糊跟蹤的研究已成為國(guó)內(nèi)外導(dǎo)航信號(hào)處理領(lǐng)域的研究熱點(diǎn),提出了很多方法,但都是針對(duì)BOC信號(hào).這些方法可分為三類:BPSK-like方法[9-11]、峰跳法(bump jum p, BJ)法[12,13]和邊峰消除(side-peaks cancellation,SC)方法[14].BPSK-like方法最早由文獻(xiàn)[9]提出,將BOC信號(hào)的上下兩個(gè)邊帶信號(hào)視為與其具有相同碼速率但調(diào)制在不同載波頻率上的兩個(gè)BPSK信號(hào),并直接采用傳統(tǒng)BPSK處理算法處理其中任一邊帶信號(hào),成功消除了BOC信號(hào)自相關(guān)函數(shù)的多峰問題,且與傳統(tǒng)接收機(jī)架構(gòu)兼容.由于BPSK-like方法是一種頻域?yàn)V波方法,需要復(fù)帶通濾波器,文獻(xiàn)[10]又提出了一種簡(jiǎn)化方法,但存在著0-2.5 dB的性能損失.文獻(xiàn)[11]繼續(xù)做出改進(jìn),用簡(jiǎn)化的濾波器對(duì)相關(guān)結(jié)果進(jìn)行濾波,也可獲得邊峰消除能力,但是,該方法破壞了BOC信號(hào)自相關(guān)函數(shù)的窄主峰特性,損失了BOC信號(hào)的高精度定位優(yōu)勢(shì).BJ方法在傳統(tǒng)跟蹤環(huán)路的基礎(chǔ)上加入一組遠(yuǎn)超前(very early,VE)和遠(yuǎn)滯后(very late,VL)的相關(guān)器[12],輔助接收機(jī)檢測(cè)對(duì)準(zhǔn)支路是否鎖定在主峰上,該方法不改變自相關(guān)函數(shù)的形狀,只增加相關(guān)器的數(shù)量.文獻(xiàn)[13]中提出了擴(kuò)展的BJ算法,加入相關(guān)器的位置不再固定,而是與BOC信號(hào)的調(diào)制階數(shù)和前端濾波有關(guān).BJ方法非常適合處理如BOC(1,1)等低階BOC信號(hào),但是對(duì)于高階BOC信號(hào)和低載噪比條件則不適用.
SC方法是一類方法的統(tǒng)稱[14],該類方法的基本思想是:在接收機(jī)內(nèi)部引入多個(gè)與接收信號(hào)不同的參考信號(hào)并與接收信號(hào)做互相關(guān),然后通過這些互相關(guān)函數(shù)的線性或非線性組合合成一個(gè)無邊峰的相關(guān)函數(shù),理想的相關(guān)函數(shù)是實(shí)現(xiàn)穩(wěn)健跟蹤的關(guān)鍵[15].目前,邊峰消除方法包括三種類型:自相關(guān)函數(shù)邊峰消除方法(auto-correlation sidepeak cancellation technique,ASPeCT)[16],副載波相位消除(sub carrier phase cancellation,SCPC)方法[17,18]和偽相關(guān)函數(shù)(pseudo correlation function,PCF)方法[19-29].ASPeCT方法通過引入沒有副載波調(diào)制的偽碼信號(hào)與BOC(n,n)信號(hào)形成互相關(guān)函數(shù)[16],然后再將該互相關(guān)函數(shù)與BOC(n, n)的自相關(guān)函數(shù)進(jìn)行平方相減,從而消除邊峰的影響,但只適合于BOC(n,n)信號(hào).SCPC方法[17]利用兩路正交的參考信號(hào)分別與接收信號(hào)進(jìn)行相關(guān),然后通過平方相加消除多峰的影響,該方法適用于任意的BOC信號(hào),文獻(xiàn)[18]將其應(yīng)用于Galileo系統(tǒng)E5信號(hào)的處理,該方法與BPSK-like方法擁有相同的優(yōu)缺點(diǎn).
PCF方法通過引入特別設(shè)計(jì)的本地碼來生成一個(gè)主峰寬度與BOC信號(hào)自相關(guān)函數(shù)主峰相當(dāng)?shù)膯畏逑嚓P(guān)函數(shù),因此能夠保留BOC信號(hào)的優(yōu)點(diǎn).文獻(xiàn)[19]提出了適用于偶數(shù)階SineBOC信號(hào)的方法,文獻(xiàn)[20]對(duì)其做了改進(jìn),適用于奇數(shù)和偶數(shù)階的SineBOC信號(hào).文獻(xiàn)[21]提出了適用于CosineBOC信號(hào)的PCF方法.文獻(xiàn)[22]提出了一種適用于高價(jià)SineBOC信號(hào)的邊峰消除方法.文獻(xiàn)[23,24]對(duì)通用的BOC信號(hào)模型進(jìn)行了研究,并基于該模型擴(kuò)展了PCF方法的適用范圍.但是,這些文獻(xiàn)中提出的BOC信號(hào)通用模型形式上并不完全統(tǒng)一,不便于統(tǒng)一分析.文獻(xiàn)[25]分析了BOC信號(hào)通用模型,提出了通用的邊峰消除方法.文獻(xiàn)[26]提出了非相干雙鑒別函數(shù)方法,其中一路鑒別函數(shù)易于實(shí)現(xiàn)且抗多徑性能好,但是碼跟蹤性能較弱,另一路鑒別函數(shù)的碼跟蹤性能好但是復(fù)雜度高,兩路鑒別函數(shù)聯(lián)合可以發(fā)揮各自的優(yōu)勢(shì),該方法只適用于SineBOC信號(hào)的無模糊跟蹤.文獻(xiàn)[27]提出了BOC信號(hào)無模糊的捕獲方法.文獻(xiàn)[28]從信號(hào)分解的角度將接收BOC信號(hào)分解為若干個(gè)周期矩形脈沖信號(hào)后,分別與本地BOC信號(hào)和相應(yīng)擴(kuò)頻碼進(jìn)行相關(guān)運(yùn)算,最后通過組合處理去除邊峰,但是接收信號(hào)的擴(kuò)頻碼相位及碼多普勒信息都未知,不可能對(duì)接收BOC信號(hào)進(jìn)行分解,只有當(dāng)碼多普勒較小、每個(gè)矩形脈沖只進(jìn)行單點(diǎn)采樣時(shí),才能夠?qū)崿F(xiàn),所以這種方法的實(shí)現(xiàn)難度較大.文獻(xiàn)[29]對(duì)其做了改進(jìn),通過分解參考信號(hào)實(shí)現(xiàn).對(duì)于高階調(diào)制BOC信號(hào),需要分解的信號(hào)個(gè)數(shù)是調(diào)制階數(shù)的2倍,復(fù)雜度很高.
上述研究結(jié)果是BOC信號(hào)無模糊處理領(lǐng)域的重要成果,但是由于BOC信號(hào)是特殊的MCS信號(hào),不僅是雙極性調(diào)制,波形取值矢量也對(duì)稱,因而針對(duì)BOC信號(hào)的無模糊跟蹤方法不適合于MCS信號(hào).因此,本文研究基于偽相關(guān)函數(shù)的MCS信號(hào)通用無模糊跟蹤方法,該方法在同一個(gè)接收機(jī)環(huán)路框架下,能夠接收不同的MCS信號(hào),因而可以簡(jiǎn)化接收機(jī)的設(shè)計(jì).本文首先給出MCS信號(hào)的數(shù)學(xué)模型,然后分析邊峰消除方法的設(shè)計(jì)思想,進(jìn)而提出參考信號(hào)的通用構(gòu)造方法,作為特例,該方法也適用于BOC信號(hào),然后給出了該方法的碼跟蹤環(huán)路模型,最后進(jìn)行了仿真實(shí)驗(yàn).
目前的BPSK信號(hào)、BOC信號(hào)以及BCS信號(hào)中,BPSK和BOC屬于BCS的特例,均要求波形取值矢量d的取值為{+1,-1},因而統(tǒng)稱為雙極性信號(hào).對(duì)于GNSS接收機(jī)而言,采用雙極性信號(hào)的一個(gè)明顯優(yōu)勢(shì)是可以大大降低復(fù)雜度,但是對(duì)碼片取值必須為{+1,-1}的約束極大地限制了GNSS信號(hào)性能提升的空間.如果進(jìn)一步放開這一約束條件,允許波形取值矢量d任意取值,則可以設(shè)計(jì)出任意梯狀波形的信號(hào),這種信號(hào)就稱之為MCS信號(hào)[6].一個(gè)擴(kuò)頻碼周期T內(nèi),基帶MCS調(diào)制信號(hào)的數(shù)學(xué)表達(dá)式為
其中,N=T/Tc為擴(kuò)頻碼長(zhǎng);Tc為單個(gè)擴(kuò)頻碼碼片時(shí)長(zhǎng);K為一個(gè)擴(kuò)頻碼片包含的子碼片個(gè)數(shù);Ts=Tc/K為子碼片時(shí)長(zhǎng);cn為二進(jìn)制擴(kuò)頻碼序列;d=[d0,d1,···,dK-1]為滿足能量歸一化條件
的波形取值矢量;p(t)為時(shí)長(zhǎng)Ts的子碼片矩形波形.擴(kuò)頻碼速率為fc=1/Tc的MCS信號(hào)記為M CS([d0,d1,...,dK-1],fc)或M CS([d0,d1,···, dK-1],ρ),其中ρ=fc/f0,f0=1.023 MHz為基準(zhǔn)頻率.
現(xiàn)階段GNSS信號(hào)均可以視為MCS信號(hào),可以看出MCS信號(hào)是BCS信號(hào)的進(jìn)一步擴(kuò)展,與BCS信號(hào)的不同在于碼片取值dk.通過放寬波形取值矢量d的取值,MCS信號(hào)的設(shè)計(jì)自由度大大增加,可以設(shè)計(jì)出滿足不同需求的GNSS信號(hào).近年來,越來越多的研究表明,在相同的擴(kuò)頻碼速率下,通過對(duì)MCS信號(hào)的取值進(jìn)行設(shè)計(jì),可以獲得更高的定位精度和抗多徑性能[6].良好的性能和高的設(shè)計(jì)自由度使得MCS信號(hào)在新一代GNSS信號(hào)設(shè)計(jì)中受到廣泛關(guān)注,并應(yīng)用于新體制信號(hào)的設(shè)計(jì),例如,Galileo E1 OS信號(hào)[7]所采用的CBOC信號(hào)就是一種典型的MCS信號(hào)[8].
3.1 通用的偽相關(guān)函數(shù)推導(dǎo)
假設(shè)接收信號(hào)s(t)和參考信號(hào)s′(t)為兩個(gè)擴(kuò)頻碼速率都為fc的MCS調(diào)制信號(hào),波形取值矢量分別為d= [d0,d1,···,dK-1]和d′=,則其互相關(guān)函數(shù)Rss′(τ)定義為
將(1)式代入(2)式可得
擴(kuò)頻碼cn和可認(rèn)為是理想的偽隨機(jī)序列,即滿足以下形式的δ函數(shù)
如果cn和為兩個(gè)不同的擴(kuò)頻碼序列,則顯然有
如果cn和為兩個(gè)相同的擴(kuò)頻碼序列,并且當(dāng)pTs(t-kTs-nTc)和pTs(t-τ-k′Ts-n′Tc)存在重疊時(shí),(3)式中的積分值不為零,經(jīng)過化簡(jiǎn)后可得
定義中間變量rk為
從(6)式可以看出,Rss′(τ)為分段線性函數(shù),所有的分段點(diǎn)均位于kTs處,此時(shí)的互相關(guān)函數(shù)值為
在相鄰的兩個(gè)分段點(diǎn)之間,Rss′(τ)為線性函數(shù),由此可以得出,互相關(guān)函數(shù)Rss′(τ)的形狀由分段點(diǎn)處的值rk決定,因而也被稱為互相關(guān)形狀點(diǎn).對(duì)于GNSS接收機(jī)而言,接收信號(hào)s(t)的形式是確定的,因而可以通過改變本地參考信號(hào)s′(t)來改變互相關(guān)函數(shù)Rss′(τ)的形狀.
為了獲取無邊峰的互相關(guān)函數(shù),文獻(xiàn)[19]中提出了一種基于偽相關(guān)函數(shù)的方法,雖然該方法只針對(duì)偶數(shù)階SinBOC信號(hào),但提供了一種很好的設(shè)計(jì)思想.該方法的原理是預(yù)先設(shè)計(jì)兩路特殊的本地參考信號(hào),將接收信號(hào)與這兩路參考信號(hào)分別進(jìn)行相關(guān),然后對(duì)兩路互相關(guān)函數(shù)進(jìn)行非線性組合,就可得到一個(gè)無邊峰的窄三角形狀的函數(shù),該函數(shù)被稱為偽相關(guān)函數(shù).設(shè)兩路參考信號(hào)s′(t)和s′′(t)的波形取值矢量分別為d′和d′′,與接收信號(hào)的互相關(guān)函數(shù)分別為Rss′(τ)和Rss′′(τ),定義偽相關(guān)函數(shù)如下:
對(duì)于GNSS接收機(jī)而言,為了徹底消除捕獲和跟蹤階段的模糊性,要求相關(guān)函數(shù)(τ)的形狀必須是對(duì)稱的三角形狀,同時(shí)保留自相關(guān)函數(shù)的窄主峰優(yōu)勢(shì),這些要求可描述為以下三個(gè)約束條件
對(duì)于(10)式中的條件1,雖然當(dāng)Rss′(τ)和Rss′′(τ)都為偶函數(shù)或都為奇函數(shù)時(shí)即可滿足,但是卻無法獲得波形取值矢量d′和d′′之間需要滿足的關(guān)系.容易證明,當(dāng)兩個(gè)互相關(guān)函數(shù)滿足(11)式的條件時(shí),偽相關(guān)函數(shù)也為偶函數(shù),這是一個(gè)充分條件.
將(11)式代入(9)式后可得
根據(jù)Rss′(τ)的分段線性特性和(8)式,從(13)式可得到分段點(diǎn)處相關(guān)值r′k需要滿足的一個(gè)約束條件為
(14)和(15)式就是(13)式的充分條件,將(7)式展開后可以得到的具體形式為
(16)式中,接收信號(hào)s(t)的波形取值矢量d=[d0,d1,···,dK-1]已知,根據(jù)(14)式和(15)式的約束條件,可以求出參考信號(hào)s′(t)的波形取值矢量].需要注意的是,(15)式中約束條件方程是非線性的,對(duì)于一般MCS信號(hào)的波形取值矢量,無法求出顯示解,只能采取迭代的方式求出數(shù)值解.在求得參考信號(hào)s′(t)的波形取值矢量的基礎(chǔ)上,下面討論參考信號(hào)s′′(t)的波形取值矢量的求解方法,根據(jù)(11)式和(8)式可以得到
將(18)式整理為矩陣的形式可以得到
令
則(19)式可以寫為以下形式:
對(duì)于MCS調(diào)制信號(hào),波形取值矢量d中的元素dk均為非零值,因此,矩陣DΔ為可逆矩陣,進(jìn)而可求得d′′的表達(dá)式為
根據(jù)(17)式可以得出參考信號(hào)s′(t)和參考信號(hào)s′′(t)的兩個(gè)形狀點(diǎn)取值向量滿足r′=-r′′,將其代入(21)式中可得
將(16)式中k≥0的上半部分整理為以下的矩陣形式
(25)式清晰地反映了兩路參考信號(hào)的波形取值矢量d′′和d′之間的關(guān)系,在求得d′之后便可很容易的求解出d′′,由于波形取值矢量還需要滿足以下的能量歸一化條件
因此,在對(duì)參考波形取值矢量d′和d′′能量歸一化后,可分別求出與接收信號(hào)的互相關(guān)函數(shù)Rss′(τ)和Rss′′(τ),最后根據(jù)(9)式求出偽相關(guān)函數(shù)(τ).
以上討論了任意MCS調(diào)制信號(hào)的PCF構(gòu)造方法.BCS調(diào)制作為MCS調(diào)制的特例,也適用于上述方法,BOC調(diào)制作為BCS調(diào)制的特例,同樣也適用于該方法.由于MCS信號(hào)和BCS信號(hào)的波形取值矢量沒有任何規(guī)律,因而對(duì)于具體的信號(hào),都需要利用該方法進(jìn)行完整的求解.但BOC信號(hào)的波形取值矢量存在一定的規(guī)律,可以得到更簡(jiǎn)化的形式.因此,下面討論BOC信號(hào)的PCF設(shè)計(jì).
3.2 BOC信號(hào)PCF設(shè)計(jì)
BOC(m,n)信號(hào)根據(jù)副載波相位的不同分為SinBOC和CosBOC,而調(diào)制階數(shù)Φ=2m/n又包括偶數(shù)和奇數(shù)兩種情況,因此,BOC信號(hào)可分為四種類型. 但是根據(jù)波形取值矢量d=[d0,d1,...,dK-1]的對(duì)稱性,BOC信號(hào)分為以下兩種情形:
1)奇對(duì)稱
包括偶數(shù)階SinBOC和奇數(shù)階CosBOC,此時(shí)
2)偶對(duì)稱
包括奇數(shù)階SinBOC和偶數(shù)階CosBOC,此時(shí)
下面求解參考信號(hào)的波形取值矢量d′和d′′,以奇對(duì)稱為例,通過觀察(16)式可以發(fā)現(xiàn),r′kr′-k可以表示為
對(duì)于(29)式的表示形式,根據(jù)(27)式的已知條件,可將(14)式的約束條件轉(zhuǎn)化為以下形式:
同理,可求出偶對(duì)稱類型下的結(jié)果為
結(jié)合(26)式中的能量歸一化條件,另外,借鑒文獻(xiàn)[19]中的思想,引入控制參數(shù)α∈[0,1),最后得到兩種類型下的結(jié)果分別為:
至此,針對(duì)四種不同類型的BOC調(diào)制信號(hào),分別構(gòu)造出了兩路參考信號(hào)的波形取值矢量d′和d′′.下面分別求解不同類型下的偽相關(guān)函數(shù)(τ).
將(35)式和(36)式代入(6)式中,并令p= τ/Ts-k,對(duì)于?τ∈[kTs,(k+1)Ts),p∈[0,1).因此,可得到互相關(guān)函數(shù)Rss′(τ)和Rss′′(τ)的表達(dá)式分別為
以上討論了偶數(shù)階SinBOC的情況,對(duì)于其他三種BOC信號(hào)類型具有同樣的結(jié)果.從(42)式可以看出(τ;α)為對(duì)稱的單峰三角函數(shù),完全消除了邊峰,其最大值h(α)和底部寬度w(α)的表達(dá)式為
從(43)式可以看出,最大值h(α)和底部寬度w(α)均受控制參數(shù)α的影響,根據(jù)文獻(xiàn)[17],α的典型取值為0或0.3.由于α∈[0,1),因此hPCF和 wPCF的范圍分別為和(0,Ts].通過與BOC信號(hào)的自相關(guān)函數(shù)比較,可以得出以下結(jié)論:
4)偽相關(guān)函數(shù)方法徹底解決了BOC信號(hào)自相關(guān)函數(shù)的多峰問題,對(duì)于GNSS信號(hào)的無模糊處理具有非常重要的現(xiàn)實(shí)意義.
3.3 跟蹤環(huán)路設(shè)計(jì)
圖1給出了基于偽相關(guān)函數(shù)的碼跟蹤環(huán)路模型,可以看出,MCS信號(hào)的跟蹤環(huán)路與BOC信號(hào)的跟蹤環(huán)路沒有明顯區(qū)別[17],這也說明接收機(jī)是通用的,主要區(qū)別在于生成的參考信號(hào)不同.
圖1中,超前和滯后支路的四個(gè)積分結(jié)果分別送入偽相關(guān)函數(shù)生成器后,進(jìn)行如下的非線性組合
因此,碼鑒別器的輸出結(jié)果為
圖1 基于偽相關(guān)函數(shù)的碼跟蹤環(huán)路模型Fig.1.Code tracking loop model based on pseudo correlation function.
對(duì)于MCS信號(hào),由于無法得出偽相關(guān)函數(shù)的顯示表達(dá)式,因而也就無法得到碼鑒別器輸出的顯示表達(dá)式.對(duì)于BOC類信號(hào)則可以得出具體表達(dá)式,結(jié)合(42)式和(43)式,可得到碼鑒別的結(jié)果為
仿真信號(hào)包括一般MCS信號(hào)和特殊MCS信號(hào),一般MCS信號(hào)的波形取值矢量可以任意設(shè)置,仿真中僅以d=[2,-1,4,1]為例,特殊MCS信號(hào)選取已在新一代GNSS系統(tǒng)中應(yīng)用的MBOC信號(hào)和BOC信號(hào).MBOC信號(hào)為Galileo系統(tǒng)E1頻點(diǎn)的CBOC(6,1,1/11)信號(hào),調(diào)制階數(shù)Φ=12,擴(kuò)頻碼速率為fc=1.023 MHz,擴(kuò)頻碼長(zhǎng)為4092.偶數(shù)階BOC信號(hào)包括:GPS系統(tǒng)L1和L2頻點(diǎn)的M碼信號(hào)、Galileo系統(tǒng)E6頻點(diǎn)的PRS信號(hào)、E1頻點(diǎn)的PRS信號(hào)以及北斗系統(tǒng)B3頻點(diǎn)的民用信號(hào)B3C,它們分別采用SinBOC(10,5),CosBOC(10,5), CosBOC(15,2.5)和SinBOC(15,2.5)信號(hào);奇數(shù)階BOC信號(hào)包括:SinBOC(15,10)和CosBOC(15, 10)信號(hào),Galileo系統(tǒng)的E5信號(hào)也可以看成是這兩種信號(hào)的復(fù)合信號(hào).BOC信號(hào)的擴(kuò)頻碼長(zhǎng)均為10230;控制參數(shù)α=0.3.特殊MCS信號(hào)仿真中與SCPC方法進(jìn)行比較,但由于SCPC方法不能用于一般MCS信號(hào),因而對(duì)于一般MCS信號(hào)只能利用本文方法.
從圖2可以看出,無論對(duì)于一般MCS信號(hào)還是特殊MCS信號(hào),均得到了理想的偽相關(guān)函數(shù),其底部寬度和幅度均小于自相關(guān)函數(shù)主峰的底部寬度和幅度,這是因?yàn)樯鲜鲂盘?hào)的調(diào)制階數(shù)均大于等于6.需要注意的是,相對(duì)于SinBOC信號(hào)而言, CosBOC信號(hào)偽相關(guān)函數(shù)的底部寬度又減小了一半,原因在于相同的調(diào)制階數(shù)下,CosBOC信號(hào)的波形取值矢量的長(zhǎng)度是SinBOC信號(hào)的兩倍.對(duì)于特殊MCS信號(hào),雖然利用SCPC方法也可消除多峰問題,但是損失了原始信號(hào)窄相關(guān)主峰的優(yōu)勢(shì),本文方法不僅能夠用于各類MCS信號(hào),同時(shí)也能保持窄相關(guān)主峰的優(yōu)勢(shì),而窄相關(guān)主峰能夠大大提高碼跟蹤精度.因此,本文方法具有突出的優(yōu)勢(shì).上述仿真僅以個(gè)別信號(hào)為例,本文方法對(duì)任意的MCS信號(hào)均能取得同樣的結(jié)果,具有良好的有效性和通用性.
本文針對(duì)MCS信號(hào)的跟蹤模糊問題,通過構(gòu)造兩路特殊的參考信號(hào),然后將接收信號(hào)與參考信號(hào)的兩個(gè)互相關(guān)函數(shù)進(jìn)行非線性組合,從而得到理想的偽相關(guān)函數(shù),很好地保留了接收信號(hào)自相關(guān)函數(shù)的窄主峰優(yōu)勢(shì),徹底解決了原始信號(hào)的跟蹤模糊問題,之后給出了基于本文方法的碼跟蹤環(huán)路模型.作為MCS信號(hào)的特例,推導(dǎo)出了BOC信號(hào)的參考信號(hào)、偽相關(guān)函數(shù)的參數(shù)以及碼鑒別器的輸出結(jié)果表達(dá)式,對(duì)于具體信號(hào)的理論分析提供了極大便利.仿真結(jié)果進(jìn)一步驗(yàn)證了本文方法的有效性和通用性.因此,本文方法對(duì)未來MCS信號(hào)接收機(jī)的研制具有重要的理論指導(dǎo)和實(shí)際應(yīng)用價(jià)值.
圖2 (網(wǎng)刊彩色)基于本文方法的M CS信號(hào)的相關(guān)函數(shù) (a)MCS([2,-1,4,1],1);(b)M CS-CBOC(6,1,1/11);(c)SinBOC(10,5); (d)CosBOC(10,5);(e)SineBOC(15,2.5);(f)CosBOC(15,2.5);(g)SinBOC(15,10);(h)CosBOC(15,10)Fig.2.(color on line)Correlation functions of MCS signals based on this paper method:(a)M CS([2,-1,4,1],1);(b)MCSCBOC(6,1,1/11);(c)SinBOC(10,5);(d)CosBOC(10,5);(e)SineBOC(15,2.5);(f)CosBOC(15,2.5);(g)SinBOC(15,10); (h)CosBOC(15,10).
[1]Guo F 2016 Ph.D.Dissertation(Beijing:Tsinghua University)(in Chinese)[郭甫2016博士學(xué)位論文(北京:清華大學(xué))]
[2]W ang S Z,Zhu G W,BaiW H,Liu C L,Sun Y Q,Du Q F,W ang X Y,M eng X G,Yang G L,Yang Z D,Zhang X X,Bi Y M,W ang D W,X ia J M,W u D,Cai Y R, Han Y 2015 Acta Phys.Sin.64 089301(in Chinese)[王樹志,朱光武,白偉華,柳聰亮,孫越強(qiáng),杜起飛,王先毅,孟祥廣,楊光林,楊忠東,張效信,畢研盟,王冬偉,夏俊明,吳迪,蔡躍榮,韓英2015物理學(xué)報(bào)64 089301]
[3]Betz JW 2001 Navigation 48 227
[4]Sun Z X,Yu Y,Zhou F,Liu S Z,Q iao G 2014 Acta Phys.Sin.63 104301(in Chinese)[孫宗鑫,于洋,周鋒,劉凇佐,喬鋼2014物理學(xué)報(bào)63 104301]
[5]Hegarty C J,Betz JW,Said i A 2004 Proceedings of the National Technical M eeting of the Institute of Navigation San D iego,California,USA,June 7-9,2004 p56
[6]Zhang X M,Yao Z,Lu M Q 2011 Sci.China:Phys. M ech.54 1077
[7]Zhou Y L,W ang D P 2010 Telecomm un.Syst.50 21(in Chinese)[周艷玲,王代萍2010電訊技術(shù)50 21]
[8]Zitouni S,Rouabah K,Chikouche D,M ok rani K,A ttia S,Harba R,Ravier P 2016 Aerosp.Sci.Techno l.50 112
[9]M artin N,Leb lond V,Guillotel G,Heiries V 2003 Proceedings of the 16th In ternational Technical M eeting of the Satellite D ivision of The Institute of Navigation Portland,OR,USA,September 9-12,2003 p188
[10]Lohan E S,Burian A,Ren fors M 2008 In t.J.Satell. Comm un.N.26 503
[11]Benedetto F,G iunta G,Lohan E S,Ren fors M 2013 IEEE Trans.on Veh.Technol.62 1350
[12]Fine P,W ilson W 1999 Proceedings of the 1999 Nationa l Technical M eeting of The Institu te of Navigation San D iego,CA,USA,January 25-27,1999 p671
[13]M argaia D,Falletti E,Bagnasco A,Parizzi F 2014 Proceedings of 2014 7th ESA W orkshop on Satellite Navigation and European W orkshop on GNSS Signals and Signal Processing ESTEC Noordw ijk,Netherlands,Decem ber 3-5,2014 p1
[14]W ard P 2003 Proceedings of Institu te of Navigation Annua l M eeting Albuquerque,NM,USA,2003 p146
[15]Zhang T W,Yang K D,M a Y L,W ang Y 2015 Acta Phys.Sin.64 024303(in Chinese)[張同偉,楊坤德,馬遠(yuǎn)良,汪勇2015物理學(xué)報(bào)64 024303]
[16]Ju lien O,M acabiau C,Cannon M E,Lachapelle G 2007 IEEE Trans.on Aerosp.Electron Sys.43 150
[17]Juang J C,Kao T L 2010 Proceedings of the 23rd In ternational Technica l M eeting of The Satellite D ivision of the Institute ofNavigation Portland,OR,USA,September 21-24,2010 p3251
[18]Shivaram aiah N C,Dem pster A G 2008 Proceeding of the European Navigation Conference Tou louse,France, April 23-25,2008 p186
[19]Yao Z,Cui X W,Lu M Q,Feng Z M 2010 IEEE Trans. on Aerosp.Electron Sys.46 1782
[20]Yao Z,Lu M Q,Feng Z M 2010 IEEE Trans.on W irel Comm un.9 577
[21]Chen H H,W ang R,Jia W M,Yao M L 2012 J.Syst. Eng.E lectron.34 1090(in Chinese)[陳輝華,王榕,賈維敏,姚敏立2012系統(tǒng)工程與電子技術(shù)34 1090]
[22]Yan T,Wei J L,Tang Z P,Qu B,Zhou Z H 2015W ireless Pers.Comm un.84 2835
[23]Chen H H,Ren JW,Yao M L 2012 J.Astronaut.33 1646(in Chinese)[陳輝華,任嘉偉,姚敏立2012宇航學(xué)報(bào)33 1646]
[24]Chen H H,Ren J W,Jia W M,Yao M L 2013 Acta Electron.Sin.41 1(in Chinese)[陳輝華,任嘉偉,賈維敏,姚敏立2013電子學(xué)報(bào)41 1]
[25]Ren J W,Yang G T,Jia W M,Yao M L 2014 Acta Aeronaut.Astron.Sin.35 2031(in Chinese)[任嘉偉,楊貴同,賈維敏,姚敏立2014航空學(xué)報(bào)35 2031]
[26]Yan T,W ei J L,Tang Z P,Qu B,Zhou Z H 2015 GPS So lut.19 623
[27]Zhang T Q,Jiang X L,Zhao J T,W ang J X 2017 J. E lectron.Inform at.Technol.39 451(in Chinese)[張?zhí)扃?江曉磊,趙軍桃,王俊霞2017電子與信息學(xué)報(bào)39 451]
[28]Liu W,X i Y,Deng Z L,Jiao J C,Y in L 2015 China Comm un.12 86
[29]Zhang H L,Ba X H,Chen J,Zhou H 2016 Acta Aeronaut.Astronaut.Sin.37 1(in Chinese)[張洪倫,巴曉輝,陳杰,周航2016航空學(xué)報(bào)37 1]
[30]Jin S G 2012 G lobal Navigation Satellite System s:Signa l,Theory and App lications(Rijeka Croatia:InTech-Pub lisher)p72
(Received 13 March 2017;revised manuscript received 11 April 2017)
Generalized unambiguous tracking method based on pseudo correlation function for multi-level coded symbol modulated signals?
Liu Zhen?Huang Jie Wang Jian-Tao Zhao Yong-Jun Chen Shi-Wen
(School of Navigation and Aerospace Target Engineering,Inform ation Engineering University,Zhengzhou 450001,China)
The global navigation satellite system(GNSS)signal m odu lation type plays a crucial role in determ ining the perform ancesofpositioning,navigation and tim ing(PNT)services.Currently,thebinary off set carrier(BOC)m odu lation signal and binary coded symbol(BCS)modulation signal are both bipolar signals,which greatly restrict the room of im proving the GNSS signal perform ance.Therefore,mu lti-level coded symbol(MCS)m odulation has received great attention in the field of GNSS signal design.The MCSm odulation is them ost extensive step-coded symbolm odu lation mode,where BOC modulation and BCS modulation are its special cases.Since the waveform symbol of the MCS m odulation signalcan be arbitrarily valued,the optim alGNSS signal can be designed.However,like the BOCm odu lation signal,the MCSm odulation signal also has the p roblem of ambiguous tracking,and then results in a large pseudo range measurement error,which is unacceptab le for the new generation GNSS with high accuracy.In recent years,the unambiguous tracking of GNSS signals has becom e a hot research sub ject in the navigation signal processing dom ain and many methods are p resented,and thosemethods can be divided into three categories:BPSK-likemethod,bum p jum p(BJ)method,and side-peak cancellation(SC)method.However,thesemethods are designed for BOC signal,and they are not suitable for MCS signal.
Therefore,in this paper we p ropose a general unambiguous tracking algorithm based on the pseudo correlation function(PCF),which is suitable for MCSm odulated signals.Firstly,the unitary expression of MCSm odulated signal based on waveform value vector is given,then the unitary formula of cross-correlation function for MCS signal is derived and the definition of PCF is given.Then the constraint condition which should be satisfied to realize unambiguous tracking is analyzed in dep th,and the universal constructing method of two reference signals and the relationship between each other are derived according to this constraint condition,which brings great convenience for solving the specifi c MCS signal.The code tracking loop model of GNSS receiver based on the p roposed method is illustrated.It is observed that the p roposed method can receive different MCS signals under the sam e receiver loop fram ework,and can sim p lify the design of the receiver while elim inating the tracking ambiguous prob lem.Finally,as a special case of MCS signal,the app lications of the proposed method in four kinds of BOC signals are discussed respectively,and then the waveform value vector of the reference signal and the unitary expression of code discrim inator are derived.Simu lation resu lts show that the p roposed method can effectively solve the ambiguous tracking prob lem of MCS signal,which has good perform ance and broad app lication prospect.
global navigation satellite system,multi-level coded symbol,unambiguous tracking,pseudo correlation function
PACS:91.10.Fc,84.40.Ua,89.70.-a DO I:10.7498/aps.66.139101
?國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào):61501513)資助的課題.
?通信作者.E-m ail:liuzheninform ation@163.com
PACS:91.10.Fc,84.40.Ua,89.70.-a DO I:10.7498/aps.66.139101
*Pro ject supported by the National Natural Science Foundation of China(G rant No.61501513).
?Corresponding author.E-m ail:liuzhenin form ation@163.com