,,
(三峽大學(xué)電氣與新能源學(xué)院,湖北 宜昌 443000)
能源是國民經(jīng)濟(jì)發(fā)展的基礎(chǔ),是社會(huì)穩(wěn)步發(fā)展的前提。為了社會(huì)的持續(xù)發(fā)展,能源問題已經(jīng)成為了人類社會(huì)發(fā)展的關(guān)鍵點(diǎn),也是大家關(guān)注的焦點(diǎn)。
水電站廠內(nèi)經(jīng)濟(jì)運(yùn)行是在滿足電能生產(chǎn)的安全、可靠、優(yōu)質(zhì)的前提下,合理的組織調(diào)度電廠的發(fā)電生產(chǎn)設(shè)備,以期獲得盡可能大的經(jīng)濟(jì)效益[1]。隨著我國水電站建設(shè)的飛速發(fā)展,水電在電力系統(tǒng)中所占的比重越來越大,截止2014年底水電總裝機(jī)容量已突破3億千瓦,占全國發(fā)電總量的27%。水電事業(yè)的快速發(fā)展,水電站規(guī)模的擴(kuò)大、機(jī)組的增多,裝機(jī)容量的增大使得水電站經(jīng)濟(jì)運(yùn)行研究越來越必要,由于大規(guī)模水電機(jī)組的發(fā)電量基數(shù)是非常龐大的,若發(fā)電量提高一個(gè)百分點(diǎn)左右,就可以帶來相當(dāng)可觀的經(jīng)濟(jì)效益。
水電站最優(yōu)動(dòng)力特性曲線指水電站所有可帶負(fù)荷的最優(yōu)運(yùn)行曲線,包括了水電站所有可帶負(fù)荷的最優(yōu)發(fā)電流量及水電站廠內(nèi)最優(yōu)經(jīng)濟(jì)分配。提高電力系統(tǒng)的動(dòng)能經(jīng)濟(jì)效益一定程度上決定于系統(tǒng)中水電站的運(yùn)行工況最優(yōu)化。為此,必須對(duì)水電站動(dòng)力特性資料,特性曲線,最優(yōu)工作機(jī)組臺(tái)數(shù)和組合,機(jī)組的合理啟動(dòng)與停止以及在各運(yùn)行機(jī)組間有功的最優(yōu)分配等方面作深入的研究,方能得到水電廠內(nèi)最優(yōu)運(yùn)行方式,用以指導(dǎo)水電廠的實(shí)際運(yùn)行,以獲得電站運(yùn)行的最大效益。水電站最優(yōu)動(dòng)力特性曲線集中反映了上述成果,用它指導(dǎo)水電站實(shí)現(xiàn)廠內(nèi)最優(yōu)運(yùn)行十分方便。水電站廠內(nèi)經(jīng)濟(jì)運(yùn)行一般指在總負(fù)荷給定的條件下確定其廠內(nèi)工作機(jī)組最優(yōu)臺(tái)數(shù)、組合及啟停次序,機(jī)組間負(fù)荷的最優(yōu)分配,以提高水電站運(yùn)行時(shí)的經(jīng)濟(jì)效益。
式中:Q—梯級(jí)龍頭水庫的日發(fā)電流量(m3/s);
Q1t—水庫在第t時(shí)段的發(fā)電流量(m3/s);
η1t—水庫在第t時(shí)段的水輪機(jī)綜合效率;
出力平衡約束:
機(jī)組出力限制約束:
Nimin≤Ni≤Nimax
機(jī)組出力禁區(qū)約束:
Ni∈[N0min,N0max]
水量平衡約束:
Vt,j=Vt-1,j+(αjqt-τj,j-1+ΔIt,j-qt,j-nt,j)Δt
機(jī)組引用流量約束:
qimin≤qi,t≤qimax
水庫庫容約束:
Vt,jmin≤Vt,j≤Vt,jmax
水流聯(lián)系:
It,j=αjqt-τj,t-1+ΔIt,j
邊界條件:
其中:
Ni,t(qi,t,Hi,t,ηi,t)—為t時(shí)段第i臺(tái)機(jī)組的出力;
Ni—t時(shí)段整個(gè)梯級(jí)子系統(tǒng)的負(fù)荷;
It,j—第j級(jí)電站t時(shí)段的入庫流量;
qt,j—第j級(jí)電站t時(shí)段的入庫流量;
τj—流達(dá)時(shí)間,即(j-1)級(jí)水庫的出庫水流流達(dá)j級(jí)水庫入庫的時(shí)間,j≥1;
ΔIt,j—(j-1)級(jí)水庫與j級(jí)水庫間在t時(shí)段的區(qū)間入庫流量,j≥1;
αj—坦化系數(shù),其大小與上游水電廠至下游水庫距離有關(guān);
nt,j—第j級(jí)電站t時(shí)段的非發(fā)電用水流量;
j—梯級(jí)水電站中水電站的數(shù)目,j=1,2,3,…M;
i—梯級(jí)水電站中機(jī)組的臺(tái)數(shù),i=1,2,3,…N;
Vt,j—j級(jí)水庫t計(jì)算時(shí)段末的水庫容量;
ZO,j,ZE,j—j級(jí)水庫t計(jì)算時(shí)段末的水庫容量;
Δt—計(jì)算時(shí)間間隔(1小時(shí));
N0min,N0max—分別為各機(jī)組的出力禁區(qū)的下限、上限;
懲罰函數(shù)法是求解約束優(yōu)化問題的一種有效方法,其將約束優(yōu)化問題中的約束違反度乘以懲罰項(xiàng)加到目標(biāo)函數(shù)中,從而構(gòu)造出帶參數(shù)的增廣目標(biāo)函數(shù)。這種構(gòu)造的主要思想是把一系列的約束優(yōu)化問題轉(zhuǎn)化為無約束的優(yōu)化問題進(jìn)行求解。在增廣目標(biāo)函數(shù)中,懲罰因子的不斷變化,導(dǎo)致最優(yōu)解也不斷變化,最終趨于原問題的最優(yōu)解。由于懲罰函數(shù)每一迭代步不涉及可行方向的計(jì)算法,因此更適合非線性約束優(yōu)化問題的求解。
現(xiàn)在懲罰函數(shù)法一般具有兩種形式:外點(diǎn)懲罰法和內(nèi)點(diǎn)懲罰法。外點(diǎn)懲罰法的搜索是從不可行域到可行域。而內(nèi)點(diǎn)懲罰法是從可行域中進(jìn)行搜索,懲罰項(xiàng)的大小和解與約束邊界的距離成反比關(guān)系,當(dāng)解接近約束邊界時(shí),懲罰項(xiàng)將趨于無窮大。這樣,可行域的邊界如同一道不可逾越的墻,將內(nèi)點(diǎn)懲罰函數(shù)的極小值點(diǎn)限制在可行域的內(nèi)部,從而失去不可行域中有價(jià)值的信息。內(nèi)點(diǎn)懲罰法最大的不足是初始種群中要有一個(gè)可行解,而對(duì)于某些問題而言,找到可行解本身就是一個(gè)問題[2]。
在實(shí)際運(yùn)算中,懲罰項(xiàng)太大或太小都會(huì)影響最終的結(jié)果。
3.1.1 內(nèi)點(diǎn)法
內(nèi)點(diǎn)法的特點(diǎn)是將構(gòu)造的新的無約束目標(biāo)函數(shù)——障礙函數(shù)定義在可行域內(nèi),并在可行域內(nèi)求懲罰函數(shù)的極值點(diǎn),即求解無約束問題時(shí)的探索點(diǎn)總是在可行域內(nèi)部,這樣,在求解內(nèi)點(diǎn)懲罰函數(shù)的序列無約束優(yōu)化問題的過程中,所求得的系列無約束優(yōu)化問題的解總是可行解,從而在可行域內(nèi)部逐步逼近原約束優(yōu)化問題的最優(yōu)解。
內(nèi)點(diǎn)法是求解不等式約束問題的一種行之有效的方法,但不能處理等式約束。因?yàn)闃?gòu)造的內(nèi)點(diǎn)懲罰函數(shù)是定義在可行域內(nèi)的函數(shù),而等式約束優(yōu)化問題不存在可行域空間,因此,內(nèi)點(diǎn)法不能用來求解等式約束優(yōu)化問題。
內(nèi)點(diǎn)法構(gòu)造方法:
對(duì)于數(shù)學(xué)模型:
minf(X)
gi(X)≥0
令k=1,ε=0.0001,r1=1,c=0.1并給定可行的初始解X(0)。
第一步:構(gòu)造障礙函數(shù):
第二步:求解無約束非線性優(yōu)化問題:得到了一組最優(yōu)解X(k)。
(本例中,運(yùn)用的是共軛梯度法求解)
第三步:驗(yàn)證解的收斂性。
‖X(k)-X(k-1)‖<ε或|f(X(k))-f(X(k-1))|<ε
若成立則所得解X(k)最優(yōu),否則令r(k+1)=cr(k),且X(0)=X(k)重復(fù)第一步的迭代。
其中:r(k)—第k次迭代中的障礙因子;
c—降低系數(shù)
注意的幾個(gè)問題:
(1)初始點(diǎn)的選擇:①在可行域內(nèi)②不要離邊界太近。
(2)障礙因子初值的選擇:不要太大,也不能太小。
(3)降低系數(shù)的選擇:一般在0.1~0.7之間。
評(píng)價(jià):用于目標(biāo)函數(shù)比較復(fù)雜,或可行域外無定義時(shí),求解過程中的所有過程量都是可行的解,但是,內(nèi)點(diǎn)法不能解決等式約束且初值的選擇也會(huì)影響最后結(jié)果。
3.1.2 外點(diǎn)法
外點(diǎn)法是一種將新的目標(biāo)函數(shù)構(gòu)建在可行域外,然后隨著懲罰因子的遞增,生成一系列的新目標(biāo)函數(shù)。外點(diǎn)法可以解決含有等式約束的非線性優(yōu)化問題。
對(duì)于數(shù)學(xué)模型:
minf(X)
gj(X)≥0
hi(X)=0
令k=1,ε=0.0001,M1=1,a=10并給定不可行的初始解X(0)。
第一步,構(gòu)造懲罰函數(shù)。
第二步:求解無約束非線性優(yōu)化問題:得到了一組最優(yōu)解X(k)。
(本例中運(yùn)用的是共軛梯度法求解)
第三步:判斷是否在邊界外。
對(duì)任意的j,都有-gj(X(k))<ε迭代停止,最優(yōu)解為X(k),否則下一步。
第四步:驗(yàn)證解的收斂性。
‖X(k)-X(k-1)‖<ε或|f(X(k))-f(X(k-1))|<ε
若成立則所得解X(k)最優(yōu),否則令M(k+1)=aM(k),且X(0)=X(k)重復(fù)第一步的迭代。
注意的幾個(gè)問題:
(1)初始點(diǎn)的選擇:基本上是可以隨意選擇;
(2)懲罰因子初值的選擇:不要太大,也不能太小;
(3)遞增系數(shù)的選擇:一般在5~10之間;
(4)求解工程中的所有過程量都是不可行的。
3.1.3 混合懲罰函數(shù)法
對(duì)比上述兩種方法,不難看出,外點(diǎn)法和內(nèi)點(diǎn)法的區(qū)別主要就是初始點(diǎn)的選擇和過程量是否在可行域。根據(jù)這個(gè)特點(diǎn),我們可以很好得分辨出兩種算法的應(yīng)用范圍。
內(nèi)點(diǎn)法適合應(yīng)用于初始點(diǎn)易找或者在已有的某種結(jié)果上進(jìn)行改進(jìn)。而外點(diǎn)法則更適用于約束條件復(fù)雜,可行點(diǎn)難以尋找的問題。由于外點(diǎn)法只有最終迭代的結(jié)果是可行解,所以對(duì)于一些工程問題可能對(duì)過程量有要求的內(nèi)點(diǎn)法也更加合適。
因此,綜合兩種方法的特點(diǎn),擬采用內(nèi)點(diǎn)法解決約束范圍內(nèi)的約束,用外點(diǎn)法解決約束范圍外的約束及等式約束。
對(duì)于數(shù)學(xué)模型:
minf(X)
gj(X)≥0
hi(X)=0
構(gòu)造懲罰函數(shù):
運(yùn)算過程和外點(diǎn)法基本一樣。
對(duì)于無約束非線性優(yōu)化模型:
minf(X)
令k=0,ε=0.0001并給定可行的初始解X(0)并計(jì)算f(X(0)),令P(0)=-f(X(0))
第一步:計(jì)算步長。
采用(海塞矩陣的方法):
第一次迭代計(jì)算:X(k+1)=X(k)+λkP(k)
第二步:驗(yàn)證收斂性。
第三步:確定迭代方向:
P(k+1)=-f(X(k+1))+βkP(k),
重復(fù)第一步的迭代計(jì)算。
整體流程圖如圖1所示。
圖1 懲罰函數(shù)法流程圖
對(duì)于某水電站,其中有4臺(tái)機(jī)組,其運(yùn)行特性如下表所示,運(yùn)用上述懲罰函數(shù)法,可以得到如下結(jié)果。
表1 機(jī)組特性數(shù)據(jù)
從圖中看出各個(gè)機(jī)組的分配采用一種梯度的分配方式,當(dāng)需要負(fù)荷達(dá)到100WM時(shí),第2臺(tái)機(jī)組投入運(yùn)行,當(dāng)負(fù)荷到達(dá)200WM時(shí),第3臺(tái)機(jī)組投入運(yùn)行,當(dāng)負(fù)荷達(dá)到287WM時(shí),第4臺(tái)機(jī)組投入運(yùn)行。然而從圖中還不能完全看出各個(gè)機(jī)組具體分配方式,因?yàn)榫€段重合看不清楚后續(xù)的分配方式,因此得到下列4張圖分別表示各個(gè)機(jī)組的分配方式看起來更加清晰。
[1] 李文沅.電力系統(tǒng)安全經(jīng)濟(jì)運(yùn)行-模型與方法[M].重慶大學(xué)出版社,1989.
[2] 盧永忠.梯級(jí)水電站的優(yōu)化調(diào)度研究[J].重慶大學(xué),2007.
[3] 覃暉,周建中,肖舸,等.梯級(jí)水電站多目標(biāo)發(fā)電優(yōu)化調(diào)度[J].水科學(xué)進(jìn)展,2010,3:377-384.
[4] 胡國強(qiáng).梯級(jí)水電站優(yōu)化調(diào)度模型與算法研究[D].華北電力大學(xué)(北京),2007.
[5] 吳杰康,郭壯志,丁國強(qiáng).采用梯級(jí)水電站動(dòng)態(tài)棄水策略的多目標(biāo)短期優(yōu)化調(diào)度[J].中國電機(jī)工程學(xué)報(bào),2011,4:15-23.
[6] 吳杰康,朱建全.機(jī)會(huì)約束規(guī)劃下的梯級(jí)水電站短期優(yōu)化調(diào)度策略[J].中國電機(jī)工程學(xué)報(bào),2008,13:41-46.
[7] 徐剛,馬光文.基于蟻群算法的梯級(jí)水電站群優(yōu)化調(diào)度[J].水力發(fā)電學(xué)報(bào),2005,5:7-10.
[8] 王錚.梯級(jí)水電站群聯(lián)合優(yōu)化調(diào)度及其決策方法[D].華北電力大學(xué),2014.
[9] 段云輝.小型梯級(jí)水電站優(yōu)化調(diào)度運(yùn)行研究[D].鄭州大學(xué),2014.
[10] 歐陽俊,袁中祥,鄭丹,等.基于改進(jìn)粒子群算法的梯級(jí)水電站優(yōu)化調(diào)度[J].陜西電力,2013,1:48-51+56.
[11] 朱敏,王定一.電力系統(tǒng)中梯級(jí)水電站實(shí)時(shí)優(yōu)化運(yùn)行控制新算法[J].電力系統(tǒng)自動(dòng)化,1997,4:33-36.