金 爭 李 冬 閆東梅 朱 迅
(吉林大學(xué)基礎(chǔ)醫(yī)學(xué)院免疫學(xué)系,長春130021)
·專題綜述·
TRIM蛋白家族調(diào)節(jié)NF-κB信號通路的研究進(jìn)展①
金 爭 李 冬 閆東梅 朱 迅
(吉林大學(xué)基礎(chǔ)醫(yī)學(xué)院免疫學(xué)系,長春130021)
核因子-κB(Nuclear factor-kappa B,NF-κB)作為重要的核轉(zhuǎn)錄因子參與調(diào)節(jié)機(jī)體的免疫應(yīng)答,一旦其調(diào)節(jié)發(fā)生異常將會導(dǎo)致免疫疾病、神經(jīng)退行性病變、新陳代謝疾病、腫瘤等。磷酸化、泛素化等轉(zhuǎn)錄后修飾可調(diào)節(jié)NF-κB信號通路。E3泛素連接酶在泛素化的過程中起重要作用[1]。TRIM(Tripartite motif)蛋白是E3泛素連接酶中RING家族成員,由RING、B-Box、Coil-coiled和C端結(jié)構(gòu)域構(gòu)成[2]。已有研究證明在感染等病理?xiàng)l件下,TRIM蛋白能調(diào)節(jié)固有免疫應(yīng)答[3]。最近研究表明,TRIM作為泛素連接酶調(diào)節(jié)NF-κB信號通路[4]。我們將對TRIM家族蛋白調(diào)節(jié)NF-κB信號通路及其在免疫疾病中的研究進(jìn)展做簡要綜述。
近年來,隨著對TRIM蛋白家族研究的不斷深入,TRIM蛋白的重要性也越來越突出。TRIM蛋白屬于E3泛素連接酶中RING家族,所有的哺乳動物都表達(dá)TRIM蛋白,人類大約表達(dá)60種TRIM蛋白及8種TRIM樣蛋白,小鼠表達(dá)64種TRIM蛋白,蠕蟲和蒼蠅只表達(dá)10~20種TRIM蛋白[3]。TRIM蛋白家族最顯著的特點(diǎn)是具有三結(jié)構(gòu)域(Tripartite-motif domain)結(jié)構(gòu),從N端到C端依次是一個鋅指結(jié)構(gòu)域(RING domain)、一個或兩個B-Box結(jié)構(gòu)域(B-Box domain)、一個卷曲螺旋結(jié)構(gòu)域(Coiled-coil domain)和C端的非特異性的結(jié)構(gòu)域(C-terminal domain),故TRIM蛋白也被稱為RBCC蛋白[5]。大多數(shù)研究認(rèn)為,RING結(jié)構(gòu)域能特異性結(jié)合E2泛素結(jié)合酶,從而發(fā)揮E3泛素連接酶的作用[6,7]。也有研究表明,RING結(jié)構(gòu)域在蛋白相互作用中也有一定作用,可能參與NF-κB信號通路的調(diào)節(jié)[6,8]?,F(xiàn)有的研究對B-Box結(jié)構(gòu)與功能的了解十分有限,TRIM蛋白中的B-Box被證實(shí)與自身免疫疾病有關(guān)。B-Box在結(jié)構(gòu)上與RING類似,有人認(rèn)為它也可以作為E2的結(jié)合位點(diǎn)發(fā)揮E3泛素連接酶的作用,如TRIM16缺少RING結(jié)構(gòu)域,在體外實(shí)驗(yàn)中仍發(fā)揮E3泛素連接酶的作用[9]。Coiled-coil結(jié)構(gòu)域主要參與同源二聚體的相互作用和低聚反應(yīng)[10-12],促進(jìn)大分子復(fù)合物的形成,影響蛋白的亞細(xì)胞定位[12],并且異源二聚體的形成使卷曲螺旋結(jié)構(gòu)域的功能更加多元化[5]。
TRIM蛋白有多種表達(dá)形式,細(xì)胞質(zhì)、細(xì)胞核中均有表達(dá)。表達(dá)的部位大多數(shù)與明確定義的亞細(xì)胞結(jié)構(gòu)如內(nèi)質(zhì)網(wǎng)、高爾基體無關(guān),而是表達(dá)于其他亞細(xì)胞區(qū)域[12,13],如TRIM19表達(dá)于核體,參與轉(zhuǎn)錄的調(diào)節(jié)[14,15]。
TRIM蛋白因有RING結(jié)構(gòu)而被歸為E3泛素連接酶的RING家族,在泛素化中發(fā)揮作用[3]。泛素化是泛素分子以共價鍵結(jié)合特異性目的蛋白的賴氨酸殘基,發(fā)生轉(zhuǎn)錄后修飾的過程[16]。泛素活化酶(E1)、泛素交聯(lián)酶(E2)、泛素連接酶(E3)是泛素化的重要組成部分,其中E3的作用是將E2與目的蛋白連接[16]。最初,泛素化被認(rèn)為是蛋白酶降解的一種機(jī)制,隨著研究的深入,人們發(fā)現(xiàn)泛素化也可以調(diào)節(jié)其他的細(xì)胞過程,如轉(zhuǎn)錄、蛋白質(zhì)的運(yùn)輸[16]。泛素化參與了許多病理過程,如腫瘤、炎癥及自身免疫紊亂[17-19]。TRIM蛋白作為泛素連接酶參與抗病毒和調(diào)節(jié)免疫相關(guān)信號通路的過程。但是,TRIM蛋白家族所有成員是否都具有泛素連接酶作用并未得到證實(shí)[20]。
NF-κB信號通路和TRIM蛋白之間存在相互作用。有研究表明,NF-κB信號通路能調(diào)節(jié)TRIM家族蛋白的表達(dá),TRIM家族蛋白也能雙向調(diào)節(jié)NF-κB信號通路。如腫瘤壞死因子(Tumor necrosis factor alpha,TNF-α)介導(dǎo)的NF-κB信號通路活化能上調(diào)TRIM9、TRIM21、TRIM62的表達(dá),而這些TRIM蛋白反過來又可對NF-κB信號通路產(chǎn)生正向或負(fù)向調(diào)節(jié)[2,21,22],見表1。
NF-κB是一個轉(zhuǎn)錄因子蛋白家族,包括5個亞單位:RelA(p65)、RelB、c-Rel、p50和p52。NF-κB分為經(jīng)典通路和非經(jīng)典通路兩大部分,二者既相互影響又相互獨(dú)立。經(jīng)典通路中,TNF-α、脂多糖(LPS)、IL-1等通過受體將信號傳遞至細(xì)胞內(nèi),接頭蛋白MyD88(Myeloid differentiation primary response gene 88)招募TRAF6(TNF receptor associated factor 6),后者通過自身泛素化形成一個包括在內(nèi)IKK(Inhibitor of nuclear factor kappa-B kinase)復(fù)合物激酶(TAK1、TAB2/3)的復(fù)合物,復(fù)合物中的TAK1能激活I(lǐng)KK復(fù)合物(IKK-α、IKK-β、NEMO),IKK復(fù)合物被激活后,作用于NF-κB抑制物IκBα(Inhibitor of NF-κB),使之磷酸化,進(jìn)而發(fā)生泛素化修飾并通過蛋白酶體通路降解,從而釋放核因子p65/RelA和p50/52復(fù)合物入核,結(jié)合相應(yīng)的DNA位點(diǎn),調(diào)控相關(guān)基因轉(zhuǎn)錄[23]。在非經(jīng)典通路中,CD40L(腫瘤壞死因子相關(guān)激活蛋白)、B細(xì)胞激活因子(BAFF/Blys)、LT-β(Lymphotoxin-β)等刺激下,TRAF3、TRAF2被招募與受體形成復(fù)合物,TRAF2的RING結(jié)構(gòu)使TRAF3發(fā)生多聚泛素化,復(fù)合物降解,NIK(NF-κB-inducing kinase)被激活,促進(jìn)IKK-α的磷酸化,被激活的NIK和IKK-α 一起磷酸化p100并加工成p52,使p52/RelB復(fù)合物活化,啟動NF-κB非經(jīng)典通路[24,25]。近年來大量的研究證實(shí),RIG-Ⅰ(Retinoic acid inducible gene Ⅰ)也可激活NF-κB信號通路。RIG-Ⅰ能夠識別病毒的RNA組分,并通過自身的CARD(Anino-terminal caspase recruitment domain)與下游信號分子MAVS(Mitochondrial antiviral signaling proteinprovided)的CARD相互作用來傳遞信號,MAVS含有兩個TRAF6結(jié)合模序,能夠與TRAF6結(jié)合,激活細(xì)胞轉(zhuǎn)錄因子NF-κB,使其進(jìn)入細(xì)胞核內(nèi),結(jié)合相應(yīng)的DNA序列,增強(qiáng)機(jī)體抵抗病毒的能力[26]。TRIF(TIR-domain-containing adaptor inducing interferon-β)及RIP1(Receptor-interacting protein 1)也可介導(dǎo)NF-κB信號通路。在LPS等刺激下,Toll樣受體招募TRIF,RIP1結(jié)合于TRIF C端,并通過同型DD結(jié)構(gòu)域與TRADD(TNF receptor associated death domain protein)結(jié)合,TRADD連接E3泛素連接酶,使RIP1發(fā)生K63位多聚泛素化修飾,泛素化的RIP1被TAB2/TAB3識別,并由此激活TAK1,從而激活NF-κB信號通路[27]。TRIM家族蛋白可結(jié)合以上通路中的多個靶點(diǎn),正向或負(fù)向調(diào)節(jié)NF-κB信號通路,從而調(diào)節(jié)各種生理或病理活動,見圖1。
表1 TRIM家族蛋白對NF-κB信號通路的調(diào)節(jié)
圖1 NF-κB信號通路Fig.1 NF-κB signaling pathways
3.1TRIM家族蛋白對TRAF6調(diào)節(jié) TRAF6蛋白屬于TRAF家族,能介導(dǎo)多種信號通路,其中包括NF-κB信號通路。在LPS等刺激物激活的NF-κB信號通路中,TRAF6通過自身泛素化而活化IKK激酶TAK1,調(diào)節(jié)NF-κB信號通路[28]。TRIM12c是TRIM5樣蛋白,在巨噬細(xì)胞和樹突狀細(xì)胞中,能結(jié)合TRAF6,促進(jìn)其泛素化,激活TAK1,正向調(diào)節(jié)NF-κB信號通路[29]。人巨細(xì)胞病毒與TRIM23結(jié)合,后者促進(jìn) TRAF6的自身泛素化,從而實(shí)現(xiàn)對 NF-κB信號通路的正向調(diào)節(jié)[30]。TFG(TPK-fused gene)能作用于TRAF6,激活NF-κB。在TLR3(Toll-like receptor 3)介導(dǎo)的信號通路中,TRIM68通過結(jié)合TFG抑制TRAF6激活,負(fù)向調(diào)節(jié)NF-κB信號通路[31]。在巨噬細(xì)胞中,TRIM38結(jié)合TRAF6,對其進(jìn)行K48位的多聚泛素化修飾,促進(jìn)TRAF6蛋白酶體通路的降解,抑制TLR(Toll-like receptor)介導(dǎo)的NF-κB信號通路[32]。
3.2TRIM家族蛋白對IKK復(fù)合物激酶的調(diào)節(jié) IKK復(fù)合物激酶(TAK1、TAB2/3)對IKK復(fù)合物的激活至關(guān)重要。在IL-1β、TNF-α等介導(dǎo)的NF-κB信號通路中,TRIM8結(jié)合TAK1,介導(dǎo)其K63位的多聚泛素化,激活TAK1,正向調(diào)節(jié)NF-κB信號通路[33]。TRIM30α結(jié)合TAB2-TAB3-TAK1復(fù)合物,促進(jìn)TAB2-TAB3的降解,抑制TLRs介導(dǎo)的NF-κB信號通路的激活[34]。TRIM22能激活人巨噬細(xì)胞中的NF-κB信號通路,但其機(jī)制不清[35,36]。也有研究發(fā)現(xiàn)TRIM22通過RING結(jié)構(gòu)域降解TAB2,負(fù)向調(diào)節(jié)TRAF6介導(dǎo)的NF-κB信號通路[36]。最近研究顯示,TRIM38作為E3泛素連接酶促進(jìn)TAB2/3的溶酶體降解,抑制TNF-α和IL-1β介導(dǎo)的NF-κB信號通路[37]。
3.3TRIM家族蛋白對IKK復(fù)合物的調(diào)節(jié) IKK復(fù)合物能激活I(lǐng)κB,使其降解,解除IκB對NF-κB的抑制作用。TRIM23不僅能通過TRAF6調(diào)節(jié)NF-κB信號通路,還可通過調(diào)節(jié)IKK復(fù)合物影響NF-κB信號通路。有研究證明在抗病毒的免疫應(yīng)答中,TRIM23作為E3泛素連接酶介導(dǎo)NEMO(IKKγ)的K27位多聚泛素化,激活下游通路,正向調(diào)節(jié)NF-κB通路[38]。TRIM13是內(nèi)質(zhì)網(wǎng)上的E3泛素連接酶,能通過抑制NEMO泛素化,抑制NF-κB信號通路[39]。NEDD8(Neural precursor cell-expressed developm-entally downregulated 8)分子是一類結(jié)構(gòu)上與泛素相似的分子,參與蛋白質(zhì)翻譯后修飾,這一過程被稱為Neddylation。在消化道腫瘤的研究中,NEDD8能特異性結(jié)合并修飾NEMO,抑制NEMO的活化,從而抑制NF-κB信號通路。TRIM40結(jié)合NEDD8,增強(qiáng)NEDD8對NEMO的抑制作用,從而負(fù)向調(diào)節(jié)NF-κB信號通路。進(jìn)一步研究發(fā)現(xiàn),TRIM40在正常胃腸道上皮細(xì)胞中高表達(dá),在胃腸道的炎癥和腫瘤中低表達(dá)[40]。TRIM68不僅能通過結(jié)合TFG抑制TRAF6激活,也可通過結(jié)合TFG 抑制NEMO的激活,從而抑制NF-κB信號通路[31]。在感染HTLV1(Human T-lymphotropic virus 1)的細(xì)胞中,Tax蛋白使IKK-β持續(xù)磷酸化,激活NF-κB信號通路,促進(jìn)細(xì)胞增殖。TRIM21抑制Tax蛋白的表達(dá),介導(dǎo)寡聚泛素化使IKK-β發(fā)生自噬降解,從而抑制NF-κB信號通路[41]。TRIM27結(jié)合IKK復(fù)合物,抑制后者的激活,負(fù)向調(diào)節(jié)TNF、IL-1、TLR3及病毒感染激活的NF-κB信號通路[42]。
3.4TRIM家族蛋白對IκB的調(diào)節(jié) 在靜息狀態(tài)下,IκB與NF-κB結(jié)合,抑制NF-κB信號通路。TRIM20,也稱為MEFV(Mediterranean fever)蛋白,是Caspase-1的靶蛋白,其N端結(jié)構(gòu)域結(jié)合IκBα,促進(jìn)鈣蛋白酶介導(dǎo)的IκBα的降解,從而正向調(diào)節(jié)NF-κB信號通路[43]。TRIM9結(jié)合β-TrCP(E3泛素連接酶復(fù)合物),阻止β-TrCP與IκBα結(jié)合,并防止β-TrCP降解,負(fù)向調(diào)節(jié)NF-κB信號通路[44]。
3.5TRIM家族蛋白對NF-κB轉(zhuǎn)錄的調(diào)節(jié) TRIM家族蛋白對NF-κB也有一定的調(diào)節(jié)作用。TRIM19,又稱PML(Promyelocytic leukemia)蛋白,其C端結(jié)構(gòu)域能結(jié)合RelA和p65,阻止RelA和p65與同源增強(qiáng)子的結(jié)合,抑制NF-κB信號通路[45]。PIAS3(Protein inhibitor of activated STAT 3)可作為SUMO(Small ubiquitin-like modifier)的E3連接酶,通過加強(qiáng)SUMO與NF-κB的結(jié)合促進(jìn)NF-κB的SUMO化修飾,使p65從細(xì)胞核轉(zhuǎn)移至細(xì)胞質(zhì),抑制NF-κB信號通路。TRIM8不僅能通過TAK1激活NF-κB,同時它也是一個核蛋白,在核內(nèi)通過抑制PIAS3,促進(jìn)p65從細(xì)胞質(zhì)轉(zhuǎn)移至細(xì)胞核,正向調(diào)節(jié)NF-κB信號通路[46]。TRIM20的N端結(jié)構(gòu)域不僅能結(jié)合IκBα,還能結(jié)合p65,促進(jìn)p65入核,正向調(diào)節(jié)NF-κB信號通路[43]。
3.6TRIM家族蛋白對NF-κB信號通路其他分子的調(diào)節(jié) 除上述分子外,TRIM家族蛋白還通過其他分子調(diào)節(jié)NF-κB信號通路。仙人掌素(Cactin)是NF-κB的抑制劑,在TNF-α介導(dǎo)的NF-κB信號通路中,TRIM39通過增強(qiáng)仙人掌素的穩(wěn)定性,間接負(fù)向調(diào)節(jié)NF-κB信號通路[47]。非小細(xì)胞肺癌中,TRIM44通過上調(diào)CXCL16(C-X-C chemokine ligand 16)和MMP9(Matrix metallopeptidase 9)激活NF-κB信號通路,促進(jìn)非小細(xì)胞肺癌的發(fā)展,但其機(jī)制不清[48]。另有研究表明,在抗病毒感染中,TRIM44通過B-Box結(jié)合MAVS,阻止MAVS的K48位多聚泛素化修飾,避免其降解,增強(qiáng)了穩(wěn)定性,正向調(diào)節(jié)NF-κB信號通路[49]。ECSIT(Evolutionarily conserved signaling intermediate in Toll pathways)是RLR信號通路中的關(guān)鍵分子,TRIM59結(jié)合并抑制ECSIT的激活,抑制RIG-Ⅰ介導(dǎo)的NF-κB信號通路[50]。 TRIM25羧基末端的SYBR結(jié)構(gòu)域結(jié)合于RIG-Ⅰ N端的CARD結(jié)構(gòu)域,促進(jìn)了CARD結(jié)構(gòu)域K63位的泛素化修飾,正向調(diào)節(jié)NF-κB信號通路[51]。通過調(diào)節(jié)RIG-Ⅰ多聚泛素化正向調(diào)節(jié)NF-κB信號通路。TRIM4也是通過對RIG-Ⅰ進(jìn)行K63位的泛素化修飾,正向調(diào)節(jié)NF-κB信號通路[52]。TRIM1、TRIM62和TRIM32正向調(diào)節(jié)NF-κB信號通路,TRIM45負(fù)向調(diào)節(jié)NF-κB信號通路,但其機(jī)制尚不十分明確[53,54]。以上研究表明,在生理或病理情況下,TRIM家族蛋白對NF-κB信號通路的調(diào)節(jié)具有重要意義。
TRIM家族蛋白對NF-κB信號通路的調(diào)節(jié)在炎癥、細(xì)胞信號通路中起重要作用。對于許多疾病,如腫瘤、炎癥、自身免疫病,NK-κB是有效的藥物作用靶點(diǎn)[55,56]。但是目前針對NF-κB的非選擇性或完全性抑制存在一定的局限性及副作用。非甾體類抗炎藥最早應(yīng)用于炎癥的治療中,阿司匹林和水楊酸鈉通過作用于IKK-β上三磷酸腺苷(ATP)的結(jié)合位點(diǎn)抑制NF-κB信號通路[57],但其可引發(fā)嚴(yán)重的超敏反應(yīng)[58]。糖皮質(zhì)激素類藥物用于過敏及自身免疫病,是利用其對NF-κB信號通路的抑制作用[59],而隨之而來的是肝、肌肉等葡萄糖不耐受疾病[60]。硼替佐米是蛋白酶體抑制劑,能阻斷IκBα的降解,抑制NF-κB,目前已成功應(yīng)用于血液腫瘤的治療[61,62],但在實(shí)體瘤中應(yīng)用十分有限。TRIM家族蛋白能適度調(diào)節(jié)NF-κB信號通路,在特定的生理病理?xiàng)l件下,可以形成高級結(jié)構(gòu)作為信號轉(zhuǎn)導(dǎo)體,因此可以作為一個有效的作用靶點(diǎn),為臨床許多與NF-κB信號通路異常有關(guān)疾病的治療提供新思路。
[1] Won M,Byun HS,Park KA,etal.Post-translational control of NF-κB signaling by ubiquitination[J].Archives Pharmacal Res,2016,39(8):1075-1084.
[2] Tomar D,Singh R.TRIM family proteins:emerging class of RING E3 ligases as regulator of NF-kappaB pathway[J].Biol Cell,2015,107(1):22-40.
[3] Kawai T,Akira S.Regulation of innate immune signalling pathways by the tripartite motif (TRIM) family proteins[J].EMBO Mole Med,2011,3(9):513-527.
[4] Rajsbaum R,Garcia-Sastre A,Versteeg GA.TRIMmunity:the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity[J].J Mole Biol,2014,426(6):1265-1284.
[5] Napolitano LM,Meroni G.TRIM family:Pleiotropy and diversi-fication through homomultimer and heteromultimer formation[J].IUBMB life,2012,64(1):64-71.
[6] Kentsis A,Borden KL.Construction of macromolecular assemblages in eukaryotic processes and their role in human disease:linking RINGs together[J].Current Protein Peptide Sci,2000,1(1):49-73.
[7] Meroni G,Diez-Roux G.TRIM/RBCC,a novel class of ′single protein RING finger′ E3 ubiquitin ligases[J].Bio Essays,2005,27(11):114711-114757.
[8] Borden KL.RING fingers and B-boxes:zinc-binding protein-protein interaction domains[J].Biochem Cell Biol,1998,76(2-3):351-358.
[9] Bell JL,Malyukova A,Holien JK,etal.TRIM16 acts as an E3 ubiquitin ligase and can heterodimerize with other TRIM family members[J].PLoS One,2012,7(5):e37470.
[10] Cao T,Borden KL,Freemont PS,etal.Involvement of the rfp tripartite motif in protein-protein interactions and subcellular distribution[J].J Cell Sci,1997,110 (14):1563-1571.
[11] Cainarca S,Messali S,Ballabio A,etal.Functional characterization of the Opitz syndrome gene product (midin):evidence for homodimerization and association with microtubules throughout the cell cycle[J].Human Mole Genetics,1999,8(8):1387-1396.
[12] Reymond A,Meroni G,Fantozzi A,etal.The tripartite motif family identifies cell compartments[J].EMBO J,2001,20(9):2140-2151.
[13] Short KM,Cox TC.Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding[J].J Biological Chemis,2006,281(13):8970-8980.
[14] Bernardi R,Pandolfi PP.Structure,dynamics and functions of promyelocytic leukaemia nuclear bodies[J].Nat Rev Mole Cell Biol,2007,8(12):1006-1016.
[15] Van damme E,Laukens K,Dang TH,etal.A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMO ylation dynamics[J].Int J Biological Sci,2010,6(1):51-67.
[16] Pickart CM,Eddins MJ.Ubiquitin:structures,functions,mechanisms[J].Biochimicaet Biophysica Acta,2004,1695(1-3):55-72.
[17] Cambiaghi V,Giuliani V,Lombardi S,etal.TRIM proteins in cancer[J].Adv Experimental Med Biol,2012,770:77-91.
[18] Micale L,Chaignat E,Fusco C,etal.The tripartite motif:structure and function[J].Adv Experimental Med Biol,2012,770:11-25.
[19] Petrera F,Meroni G.TRIM proteins in development[J].Adv Experimental Med Biol,2012,770:131-141.
[20] Ozato K,Shin DM,Chang TH,etal.TRIM family proteins and their emerging roles in innate immunity[J].Nat Rev Immunol,2008,8(11):849-860.
[21] Schwamborn J,Lindecke A,Elvers M,etal.Microarray analysis of tumor necrosis factor alpha induced gene expression in U373 human glioblastoma cells[J].BMC genomics,2003,4(1):46.
[22] Dos santos CC,Han B,Andrade CF,etal.DNA microarray analysis of gene expression in alveolar epithelial cells in response to TNFalpha,LPS,and cyclic stretch[J].Physiological Genomics,2004,19(3):331-342.
[23] Mitchell S,Vargas J.Signaling via the NFkappaB system[J].2016,8(3):227-241.
[24] Hayden MS,Ghosh S.NF-kappaB in immunobiology[J].Cell Res,2011,21(2):223-244.
[25] Sanjo H,Zajonc DM,Braden R,etal.Allosteric regulation of the ubiquitin:NIK and ubiquitin:TRAF3 E3 ligases by the lymphotoxin-beta receptor[J].J Biological Chem,2010,285(22):17148-17155.
[26] Seth RB,Sun L,Ea CK,etal.Identification and characterization of MAVS,a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3[J].Cell,2005,122(5):669-682.
[27] Ermolaeva MA,Michallet MC,Papadopoulou N,etal.Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses[J].Nat Immunol,2008,9(9):1037-1046.
[28] Wang C,Deng L,Hong M,etal.TAK1 is a ubiquitin-dependent kinase of MKK and IKK[J].Nature,2001,412(6844):346-351.
[29] Chang TH,Yoshimi R.Tripartite Motif (TRIM) 12c,a mouse homolog of TRIM5,is a ubiquitin ligase that stimulates Type I IFN and NF-kappaB pathways along with TNFR-associated factor 6[J].J Immunol,2015,195(11):5367-5379.
[30] Poole E,Groves I,Macdonald A,etal.Identification of TRIM23 as a cofactor involved in the regulation of NF-kappaB by human cytomegalovirus[J].J Virol,2009,83(8):3581-3590.
[31] Wynne C,Lazzari E,Smith S,etal.TRIM68 negatively regulates IFN-beta production by degrading TRK fused gene,a novel driver of IFN-beta downstream of anti-viral detection systems[J].PLoS One,2014,9(7):e101503.
[32] Zhao W,Wang L,Zhang M,etal.E3 ubiquitin ligase tripartite motif 38 negatively regulates TLR-mediated immune responses by proteasomal degradation of TNF receptor-associated factor 6 in macrophages[J].J Immunol(Baltimore,Md :1950),2012,188(6):2567-2574.
[33] Li Q,Yan J,Mao AP,etal.Tripartite motif 8 (TRIM8) modulates TNFalpha-and IL-1beta-triggered NF-kappaB activation by targeting TAK1 for K63-linked polyubiquitination[J].Proc Nat Acad Sci U S A,2011,108(48):19341-19346.
[34] Shi M,Deng W,Bi E,etal.TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation[J].Nat Immunol,2008,9(4):369-377.
[35] Yu S,Gao B,Duan Z,etal.Identification of tripartite motif-containing 22 (TRIM22) as a novel NF-kappaB activator[J].Biochemical Biophysical Res Communicat,2011,410(2):247-251.
[36] Qiu H,Huang F,Xiao H,etal.TRIM22 inhibits the TRAF6-stimulated NF-kappaB pathway by targeting TAB2 for degradation[J].Virologica Sinica,2013,28(4):209-215.
[37] Hu MM,Yang Q,Zhang J,etal.TRIM38 inhibits TNFalpha-and IL-1beta-triggered NF-kappaB activation by mediating lysosome-dependent degradation of TAB2/3[J].Proc Nat Acad Sci U S A,2014,111(4):1509-1514.
[38] Arimoto K,Funami K,Saeki Y,etal.Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense[J].Proc Nat Acad Sci U S A,2010,107(36):15856-15861.
[39] Tomar D,Singh R.TRIM13 regulates ubiquitination and turnover of NEMO to suppress TNF induced NF-kappaB activation[J].Cellular Signal,2014,26(12):2606-2613.
[40] Noguchi K,Okumura F,Takahashi N,etal.TRIM40 promotes neddylation of IKKgamma and is downregulated in gastrointestinal cancers[J].Carcinogenesis,2011,32(7):995-1004.
[41] Niida M,Tanaka M,Kamitani T.Downregulation of active IKK beta by Ro52-mediated autophagy[J].Mole Immunol,2010,47(14):2378-2387.
[42] Zha J,Han KJ,Xu LG,etal.The Ret finger protein inhibits signaling mediated by the noncanonical and canonical IkappaB kinase family members[J].J Immunol(Baltimore,Md :1950),2006,176(2):1072-1080.
[43] Chae JJ,Wood G,Richard K,etal.The familial Mediterranean fever protein,pyrin,is cleaved by caspase-1 and activates NF-kappaB through its N-terminal fragment[J].Blood,2008,112(5):1794-1803.
[44] Shi M,Cho H,Inn KS,etal.Negative regulation of NF-kappaB activity by brain-specific TRIpartite motif protein 9[J].Nat Communicat,2014,5(26):4820-4820.
[45] Wu WS,Xu ZX,Hittelman WN,etal.Promyelocytic leukemia protein sensitizes tumor necrosis factor alpha-induced apoptosis by inhibiting the NF-kappaB survival pathway[J].J Biological Chemist,2003,278(14):12294-12304.
[46] Tomar D,Sripada L,Prajapati P,etal.Nucleo-cytoplasmic trafficking of TRIM8,a novel oncogene,is involved in positive regulation of TNF induced NF-kappaB pathway[J].PLoS One,2012,7(11):e48662.
[47] Suzuki M,Watanabe M,Nakamaru Y,etal.TRIM39 negatively regulates the NFkappaB-mediated signaling pathway through stabilization of cactin[J].Cell Mole Life Sci,2016,73(5):1085-1101.
[48] Luo Q,Lin H,Ye X,etal.Trim44 facilitates the migration and invasion of human lung cancer cells via the NF-kappaB signaling pathway[J].Int J Clin Oncol,2015,20(3):508-517.
[49] Yang B,Wang J,Wang Y,etal.Novel function of Trim44 promotes an antiviral response by stabilizing VISA[J].J Immunol(Baltimore,Md :1950),2013,190(7):3613-3619.
[50] Kondo T,Watanabe M,Hatakeyama S.TRIM59 interacts with ECSIT and negatively regulates NF-kappaB and IRF-3/7-mediated signal pathways[J].Biochemical Biophysical Res Communicat,2012,422(3):501-557.
[51] Gack MU,Shin YC,Joo CH,etal.TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity[J].Nature,2007,446(7138):916-920.
[52] Yan J,Li Q,Mao AP,etal.TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination[J].J Mole Cell Biol,2014,6(2):154-163.
[53] Uchil PD,Hinz A,Siegel S,etal.TRIM protein-mediated regulation of inflammatory and innate immune signaling and its association with antiretroviral activity[J].J Virol,2013,87(1):257-272.
[54] Shibata M,Sato T,Nukiwa R,etal.TRIM45 negatively regulates NF-kappaB-mediated transcription and suppresses cell proliferation[J].Biochemical Biophysical Res Communicat,2012,423(1):104-109.
[55] Niederberger E,Geisslinger G.The IKK-NF-kappaB pathway:a source for novel molecular drug targets in pain therapy?[J].FASEB J,2008,22(10):3432-3442.
[56] Perkins ND.The diverse and complex roles of NF-kappaB subunits in cancer[J].Nat Rev Cancer,2012,12(2):121-132.
[57] Yin MJ,Yamamoto Y,Gaynor RB.The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta[J].Nature,1998,396(6706):77-80.
[58] Saff RR,Banerji A.Management of patients with nonaspirin-exacerbated respiratory disease aspirin hypersensitivity reactions[J].Allergy Asthma Proc,2015,36(1):34-39.
[59] Auphan N,Didonato JA,Rosette C,etal.Immunosuppression by glucocorticoids:inhibition of NF-kappa B activity through induction of I kappa B synthesis[J].Science (New York,NY),1995,270(5234):286-290.
[60] Pasieka AM,Rafacho A.Impact of glucocorticoid excess on glucose tolerance:clinical and preclinical evidence[J].Metabolites,2016,6(3):E24.
[61] Gilmore TD,Herscovitch M.Inhibitors of NF-kappaB signaling:785 and counting[J].Oncogene,2006,25(51):6887-6899.
[62] Baud V,Karin M.Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls[J].Nat Rev Drug Discovery,2009,8(1):33-40.
[收稿2017-10-27 修回2017-12-20]
(編輯 許四平)
10.3969/j.issn.1000-484X.2017.06.025
①本文受國家自然科學(xué)基金(81571530)資助。
金 爭(1992年-),女,在讀碩士,主要從事腫瘤免疫相關(guān)研究,E-mail:jzjinzhengjz@163.com。
及指導(dǎo)教師:閆東梅(1978年-),女,博士,副教授,碩士生導(dǎo)師,主要從事細(xì)胞免疫相關(guān)研究,E-mail:dmyan@jlu.edu.cn。 朱 迅(1958年-),男,博士,教授,博士生導(dǎo)師,主要從事分子免疫與腫瘤免疫相關(guān)研究,E-mail:zxunzhux@vip.sohu.com。
R292.9
A
1000-484X(2017)06-0924-06