王蒙蒙,馬擁軍,2
(1.西南科技大學(xué)四川省非金屬?gòu)?fù)合與功能材料重點(diǎn)實(shí)驗(yàn)室-省部共建國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,四川 綿陽(yáng) 621010;2.西南科技大學(xué)分析測(cè)試中心,四川 綿陽(yáng) 621010)
花狀α-Co(OH)2的制備及其對(duì)高氯酸銨熱分解的催化作用
王蒙蒙1,馬擁軍1,2
(1.西南科技大學(xué)四川省非金屬?gòu)?fù)合與功能材料重點(diǎn)實(shí)驗(yàn)室-省部共建國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,四川 綿陽(yáng) 621010;2.西南科技大學(xué)分析測(cè)試中心,四川 綿陽(yáng) 621010)
以六水氯化鈷、氫氧化鈉及氨水為原料,在室溫且不使用表面活性劑的條件下制備了納米花狀α-Co(OH)2球形顆粒;用X射線衍射儀(XRD)、紅外光譜儀(FT-IR)和場(chǎng)發(fā)射掃描電子顯微鏡(FESEM)表征了α-Co(OH)2納米花的組分、結(jié)構(gòu)和形貌,用差示掃描量熱儀( DSC) 研究了α-Co(OH)2納米花對(duì)高氯酸銨(AP) 熱分解性能的影響。結(jié)果表明,α-Co(OH)2為球形顆粒,粒徑大小均一,是由納米片組成的花狀結(jié)構(gòu),納米花的直徑為300~400nm;當(dāng)α-Co(OH)2納米花質(zhì)量分?jǐn)?shù)為3%時(shí),AP的分解溫度為281℃,與純AP相比提前了158℃,放熱量達(dá)1502J/g,表明α-Co(OH)2納米花對(duì)AP的熱分解具有優(yōu)異的催化作用。
納米材料; α-Co(OH)2; 高氯酸銨;AP; 熱分解; 催化作用
高氯酸銨(AP) 具有相容性好、氣體生成量高、吸濕性小和成本低等優(yōu)點(diǎn),是復(fù)合推進(jìn)劑、改性雙基推進(jìn)劑和NEPE推進(jìn)劑中最常用的氧化劑。因而提高AP的熱分解性能成為研究固體推進(jìn)劑燃燒性能的一個(gè)重要方向。改變熱分解溫度、增加實(shí)際放熱量是提高AP熱分解性能的主要研究?jī)?nèi)容。其主要方法是添加各種催化劑,其中納米級(jí)過渡金屬(如Co[1,2]、Cu[3]、Ni[4])及氧化物(如 Fe2O3[5,6]、NiO[7]、Mn3O4[8-9]、Co3O4[10]等)由于其特殊的電子結(jié)構(gòu)及半導(dǎo)體性能,已經(jīng)作為AP的熱分解催化劑被廣泛研究。相對(duì)來說,氫氧化物作為催化劑用于催化AP的研究較少,WenJing Zhang[11]等發(fā)現(xiàn)加入質(zhì)量分?jǐn)?shù)為5%的納米Al(OH)3·Cr(OH)3,可使AP的低溫和高溫分解峰溫分別降低33℃和119℃。Xiaodan Zheng等[12]合成了直徑為70nm的Cu(OH)2·2Cr(OH)3納米粒子,當(dāng)這種納米粒子的質(zhì)量分?jǐn)?shù)為2%、5%和10%時(shí),可把AP的分解峰溫分別提前75、85和137℃,且認(rèn)為Cr(OH)3可以促進(jìn)NH3的氧化,較Cr2O3具有明顯的優(yōu)勢(shì)。
基于以上認(rèn)識(shí),過渡金屬氫氧化物由于羥基的存在可能對(duì)AP的熱分解具有較大的影響。本研究采用鈷鹽與NaOH、NH3·H2O溶液混合的方法在室溫下制備了納米花狀α-Co(OH)2,并探究了其對(duì)AP熱分解的催化作用。
1.1 試劑與儀器
六水氯化鈷(CoCl2·6H2O)、氫氧化鈉、氨水,成都市科龍化工試劑廠;高氯酸銨,阿拉丁試劑公司。以上試劑均為分析純。
X′pert PRO型多晶X射線衍射儀,荷蘭帕納科公司;Spectrum One 型紅外光譜儀,美國(guó)立高立儀器公司;ULTRA 55場(chǎng)發(fā)射掃描電子顯微鏡,德國(guó)蔡司公司;TGA/DSC 1同步熱分析儀,美國(guó)TA儀器公司。
1.2 樣品制備
稱取2.975g的CoCl2·6H2O溶解于50mL的水中,分別滴加0.04mol的氨水溶液和0.0015mol的NaOH溶液,磁力攪拌20min后,在室溫下靜置得到沉淀物,通過高速離心分離,并用去離子水和無水乙醇洗滌3~4次,最后經(jīng)真空干燥得到綠色粉末,即納米花狀α-Co(OH)2。
采用機(jī)械研磨法制備α-Co(OH)2和AP混合樣品。將質(zhì)量分?jǐn)?shù)為 1%、3%、5%、10%和15%的α-Co(OH)2與AP 放到瑪瑙研缽中研磨使二者混合均勻,最終得到不同比例的α-Co(OH)2和AP混合樣品。
1.3 性能測(cè)試
采用X射線衍射儀(XRD,常規(guī)測(cè)試:掃描范圍3°~80°,掃描步長(zhǎng)0.0334225)、紅外光譜儀(4000~400cm-1)和場(chǎng)發(fā)射掃描電子顯微鏡( FESEM,EHT=15kV,WD=7.6mm)表征樣品結(jié)構(gòu)。
采用差示掃描量熱儀(DSC),)測(cè)試樣品的熱性能。N2氣氛,溫度范圍為室溫~500℃,升溫速率10℃/min,加蓋。
2.1 XRD和FT-IR表征
圖1為納米花狀α-Co(OH)2的XRD和FT-IR圖譜。
2.2 SEM分析
圖2為花狀α-Co(OH)2的掃描電鏡照片。從圖2(a)可以看出,α-Co(OH)2的形狀為球形顆粒,粒徑大小比較均一。由圖2(b)可以看出,所合成的α-Co(OH)2呈納米片狀,納米片再組裝成為花狀結(jié)構(gòu),納米花的直徑約為300~400nm。
2.3 花狀α-Co(OH)2對(duì)AP熱分解的催化作用
圖3為純AP以及含納米花狀α-Co(OH)2(質(zhì)量分?jǐn)?shù)分別為1%、3%、5%、10%和15%)的AP的DSC-TG曲線。由圖 3(a)可看出,隨著催化劑加入量由0增加到10%,AP完全分解的溫度有逐漸提前的趨勢(shì)。由圖3(b)可知,純AP的熱分解可分為3個(gè)過程:246℃時(shí),AP發(fā)生晶型轉(zhuǎn)變,由斜方晶系轉(zhuǎn)變?yōu)榱⒎骄担?19℃時(shí),AP部分分解并生成中間產(chǎn)物,是AP的低溫分解階段; 439℃是AP的高溫分解峰,AP完全分解為揮發(fā)性產(chǎn)物,放熱量為475.5J/g,這與文獻(xiàn)對(duì)應(yīng)[9, 18]。當(dāng)加入質(zhì)量分?jǐn)?shù)1%、3%和5%納米花狀α-Co(OH)2作為催化劑后,AP的晶型轉(zhuǎn)化溫度分別為245、246和245℃,可見花狀α-Co(OH)2的加入量對(duì)AP的晶型轉(zhuǎn)變過程沒有明顯的影響,但AP的低溫分解峰和高溫分解峰重合,放熱更加集中,分解峰溫度分別是287、285和286℃,與純AP相比,AP的分解峰溫度分別提前了152、158和153℃。當(dāng)α-Co(OH)2的質(zhì)量分?jǐn)?shù)達(dá)到10%時(shí), AP的高、低溫分解峰重合,溫度為251℃,與AP的轉(zhuǎn)晶溫度過于接近,使得AP的轉(zhuǎn)晶峰不明顯。但是當(dāng)催化劑的質(zhì)量分?jǐn)?shù)增加至15%時(shí),AP的分解峰溫為282℃,與催化劑質(zhì)量分?jǐn)?shù)為10%時(shí)相比滯后了31℃。通過Gibbs-Thomson方程計(jì)算了AP熱分解的放熱量,當(dāng)納米花狀α-Co(OH)2質(zhì)量分?jǐn)?shù)為1%、3%、5% 、10%和15%時(shí),AP熱分解的放熱量分別為1510、1502、1118、1196和1000J/g。說明納米花狀α-Co(OH)2對(duì)AP熱分解具有優(yōu)異的催化作用。
綜上所述,當(dāng)添加質(zhì)量分?jǐn)?shù)為1%、3%、5%、10%和15%的納米花狀α-Co(OH)2時(shí),AP的分解峰溫分別達(dá)到了287、285、286、251和282℃,與文獻(xiàn)[19-23]報(bào)道的Co3O4對(duì)AP的催化作用相比,催化性能有了進(jìn)一步的提高。
分析可能的催化機(jī)理為:AP的熱分解是固-氣多相反應(yīng),包括低溫和高溫兩個(gè)分解階段,存在分解和升華競(jìng)爭(zhēng)過程,反應(yīng)方程式如下[24]:
NH3(g)+HClO4(g)
(1) 以六水氯化鈷和氫氧化鈉以及氨水為原料,在室溫下制備了納米花狀α-Co(OH)2球形顆粒,其微觀形貌是由納米片組裝成的花狀結(jié)構(gòu),納米花直徑300~400 nm,粒徑大小比較均一。
(2)納米花狀α-Co(OH)2對(duì)AP的熱分解具有良好的催化作用,當(dāng)其質(zhì)量分?jǐn)?shù)為1%、3%、5%和10%時(shí),使AP的低溫?zé)岱纸膺^程消失,高溫?zé)岱纸夥宸謩e提前至287、285、286和251℃,較純AP的高溫?zé)岱纸夥宸謩e提前了152、158、153和188℃。
[1] Duan H, LIN X, Liu G, et al. Synthesis of Co nanoparticles and their catalytic effect on the decomposition of ammonium perchlorate[J]. Chinese Journal of Chemical Engineering, 2008, 16(2): 325-328.
[2] Xu X, Zhao Y, Li J, et al. Hydrothermal synthesis of cobalt particles with hierarchy structure and physicochemical properties[J]. Materials Research Bulletin, 2015, 72: 7-12.
[3] Chaturvedi S, Dave P N. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate[J]. Journal of Saudi Chemical Society, 2013, 17(2): 135-149.
[4] Duan H, Lin X, Liu G, et al. Synthesis of Ni nanoparticles and their catalytic effect on the decomposition of ammonium perchlorate[J]. Journal of Materials Processing Technology, 2008, 208(1): 494-498.
[5] Zhou Z, Tian S, Zeng D, et al. MOX (M= Zn, Co, Fe)/AP shell-core nanocomposites for self-catalytical decomposition of ammonium perchlorate[J]. Journal of Alloys and Compounds, 2012, 513: 213-219.
[6] 鄧競(jìng)科, 陳人杰, 李國(guó)平,等. AP/SiO2/Fe2O3納米復(fù)合材料的制備與表征[J]. 火炸藥學(xué)報(bào), 2013, 35(6): 51-54. DENG Jing-ke, CHEN Ren-jie, LI guo-ping, et al. Preparation and characterization of AP/SiO2/Fe2O3nanocomposite[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),2013, 35(6): 51-54.
[7] Sharma J K, Srivastava P, Singh G, et al. Biosynthesized NiO nanoparticles: potential catalyst for ammonium perchlorate and composite solid propellants[J]. Ceramics International, 2015, 41(1): 1573-1578.
[8] Fan Y, Zhang X, Liu Y, et al. One-pot hydrothermal synthesis of Mn3O4/graphene nanocomposite for supercapacitors[J]. Materials Letters, 2013, 95: 153-156.
[9] 李露明,李兆乾,馬擁軍,等. Mn3O4微球的制備及其對(duì)高氯酸銨熱分解的催化作用[J]. 含能材料, 2014, 22(6): 758-761. LI Lu-ming, LI Zhao-qian, MA Yong-jun, et al. Preparation of Mn3O4microspheres and their catalytic effects upon thermal decomposition of ammonium perchlorate[J]. Chinese Journal of Energetic Materials, 2014,22(6):758-761.
[10] Kang M, Zhou H. Facile synthesis and structural characterization of Co3O4nanocubes[J].AIMS Biophysics,2015,2(1):16-27.
[11] Zhang W J, Li P, Xu H B, et al. Thermal decomposition of ammonium perchlorate in the presence of Al(OH)3·Cr(OH)3nanoparticles[J]. Journal of hazardous materials, 2014, 268: 273-280.
[12] Zheng X, Li P, Zheng S, et al. Thermal decomposition of ammonium perchlorate in the presence of Cu(OH)2·2Cr(OH)3nanoparticles[J]. Powder Technology, 2014, 268: 446-451.
[13] Gupta V, Gupta S, Miura N. Al-substituted α-cobalt hydroxide synthesized by potentiostatic deposition method as an electrode material for redox-supercapacitors[J]. Journal of Power Sources, 2008, 177(2): 685-689.
[14] Gao Z, Yang W, Yan Y, et al. Synthesis and exfoliation of layered α-Co(OH)2nanosheets and their electrochemical performance for supercapacitors[J]. European Journal of Inorganic Chemistry,2013(27): 4832-4838.
[15] Tang J, Liu D, Zheng Y, et al. Effect of Zn-substitution on cycling performance of α-Co (OH)2nanosheet electrode for supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(8): 2585-2591.
[16] Cai L C,Li J,Huang J B. Electrochemical capacitance performance of one-dimensional nano-alpha-Co(OH)2employing cobalt-cholate supramolecular nanofibers self-template method[J].Jolurnal of Inorganic Materials, 2013, 28(7): 739-744.
[17] Cheng J P, Liu L, Zhang J, et al. Influences of anion exchange and phase transformation on the supercapacitive properties of α-Co(OH)2[J]. Journal of Electroanalytical Chemistry, 2014, 722: 23-31.
[18] 鄭遠(yuǎn)川,李兆乾,徐娟,等.四氧化三鈷_碳化蝶翅的制備及催化高氯酸銨分解的性能[J].含能材料,2016,24(3):256-260. ZHENG Yuan-chuan, LI Zhao-qian, XU Juan,et al. Cobalt oxide @ carbonized wings composite: preparation and catalytic performance for decomposition of ammonium perchlorate[J]. Chinese Journal of Energetic Materials, 2016, 24(3): 256-260.
[19] Li L, Sun X, Qiu X, et al. Nature of catalytic activities of CoO nanocrystals in thermal decomposition of ammonium perchlorate[J]. Inorganic chemistry, 2008, 47(19): 8839-8846.
[20] Jin L N, Liu Q, Sun W Y. Shape-controlled synthesis of Co3O4nanostructures derived from coordination polymer precursors and their application to the thermal decomposition of ammonium perchlorate[J]. Cryst EngComm, 2012, 14(22): 7721-7726.
[21] Zou M, Jiang X, Lu L, et al. Nano or micro? A mechanism on thermal decomposition of ammonium perchlorate catalyzed by cobalt oxalate[J]. Journal of Hazardous Materials, 2012, 225: 124-130.
[22] Jin L N, Wang J G, Qian X Y, et al. Catalytic activity of Co3O4nanomaterials with different morphologies for the thermal decomposition of ammonium perchlorate[J]. Journal of Nanomaterials, 2015, 2015: 9.
[23] Xu H, Wu J X, Chen Y, et al. Synthesis and catalytic performance of Co3O4particles with octahedral crystal shape[J]. Ionics, 2015, 21(5): 1495-1500.
[24] 李彥榮,祝世杰,劉學(xué),等.高氯酸銨熱分解機(jī)理研究進(jìn)展[J].化學(xué)推進(jìn)劑與高分子材料,2015,13(1):32-37. LI Yan-rong, ZHU Shi-jie, LIU Xue, et al. Research progress in thermal decomposition mechanism of ammonium perchlorate[J].Chemical Propellants & Polymeric Materials, 2015,13(1):32-37.
[25] Yuan Y, Jiang W, Wang Y, et al. Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate[J]. Applied Surface Science, 2014, 303: 354-359.
Synthesis of Flower-like α-Co(OH)2and Their Catalytic Effect for the Thermal Decomposition of Ammonium Perchlorate
WANG Meng-meng1,MA Yong-jun1,2
(1.State Key Laboratory Cultivation Base for Composites and Functional Materials, Southwest University of Science and Technology, Mianyang Sichuan 621010, China; 2.Analytical and Testing Center, Southwest University of Science and Technology, Mianyang Sichuan 621010, China)
Flower-like α-Co(OH)2spherical nanoparticles were synthesized using cobalt chloride hexahydrate, sodium hydrooxide and ammonia water as raw materials at room temperature under the condition of no surfactant. The component, morphology and structure of α-Co(OH)2nanoparticles were characterized with X-ray diffractometer (XRD), fourier transform infrared spectrometer (FT-IR) and field emission scanning electron microscopy (FESEM). The effect of flower-like α-Co(OH)2nanoparticles on the thermal decomposition of ammonium perchlorate (AP) was studied by using differential scanning calorimeter (DSC).The results show that α-Co(OH)2particles, which is a flower shaped structure composed of nanosheets, are spherical, its particle size is relatively uniform, and the diameter of the nanometer flower is 300-400nm. When the addition amount of α-Co(OH)2is 3%(mass fraction),the decomposition temperature of AP is 281℃, decreases by 158℃ compared with pure AP, and the decomposition heat is 1502J/g, showing that flower-like α-Co(OH)2has an excellent catalytic effect for thermal decomposition of AP.
nanometer material; α-Co(OH)2; ammonium perchlorate;AP; thermal decomposition; catalytic effect
10.14077/j.issn.1007-7812.2017.03.004
2016-12-30;
2017-02-23
王蒙蒙( 1990-), 女, 碩士研究生, 從事碳納米材料研究。E-mail:1635573756@qq.com
馬擁軍( 1972-),男,副研究員,從事納米材料和含能材料研究。E-mail:mayongjun@swust.edu.cn
TJ55; TB33
A
1007-7812(2017)03-0027-04