陳新,李紫薇,覃宗敏,商群,唐敏,*
1. 海南大學(xué)材料與化工學(xué)院,海口 5702282. 海南大學(xué)環(huán)境與植物保護(hù)學(xué)院,???570228
吡啶硫酮金屬對(duì)華美盤管蟲(Hydroides elegans)精子DNA的損傷效應(yīng)
陳新1,李紫薇2,覃宗敏1,商群1,唐敏1,*
1. 海南大學(xué)材料與化工學(xué)院,???5702282. 海南大學(xué)環(huán)境與植物保護(hù)學(xué)院,海口 570228
吡啶硫酮銅(CuPT)和吡啶硫酮鋅(ZnPT)在滲出型海洋防污涂料中的應(yīng)用日益廣泛,其生態(tài)毒性引起了人們的關(guān)注。本文以南海海域常見優(yōu)勢(shì)種——華美盤管蟲(Hydroides elegans Haswell)為試驗(yàn)動(dòng)物,采用彗星實(shí)驗(yàn)研究了吡啶硫酮金屬對(duì)華美盤管蟲精子細(xì)胞DNA的損傷情況。結(jié)果顯示,低濃度(4 μg·L-1CuPT或8 μg·L-1ZnPT)處理組的精子細(xì)胞,其“彗星”尾長、尾DNA含量及Olive尾矩都顯著高于溶劑對(duì)照組(P<0.05);較高濃度(8 μg·L-1或16 μg·L-1CuPT,16 μg·L-1或32 μg·L-1ZnPT)處理組的精子細(xì)胞,其“彗星”尾長和尾矩多數(shù)顯著高于溶劑對(duì)照組(P<0.01)。此外,尾長和Olive尾矩在試驗(yàn)濃度范圍內(nèi)都呈現(xiàn)“效應(yīng)-濃度”正相關(guān)。CuPT為4 μg·L-1、ZnPT為8 μg·L-1時(shí),對(duì)精子DNA造成輕度損傷;CuPT為8 μg·L-1、16 μg·L-1,ZnPT為16 μg·L-1、32 μg·L-1時(shí),則達(dá)到了中度損傷的程度??梢娺拎ち蛲饘倬哂休^明顯的海洋生態(tài)遺傳毒性;另一方面,華美盤管蟲精子細(xì)胞DNA對(duì)吡啶硫酮金屬的脅迫呈現(xiàn)出較高的敏感性和效應(yīng)-濃度相關(guān)性,在作為生態(tài)遺傳毒性的生物指標(biāo)方面具有潛在優(yōu)勢(shì),進(jìn)一步的研究將促進(jìn)其在海洋重金屬污染評(píng)價(jià)中的應(yīng)用,特別是用于南海海洋環(huán)境的早期預(yù)警監(jiān)測(cè)。
吡啶硫酮金屬;華美盤管蟲;精子;生態(tài)遺傳毒性
海洋資源開發(fā)已經(jīng)成為眾多沿海國家發(fā)展戰(zhàn)略的重要組成部分,我國制定的“十三五”規(guī)劃和“一帶一路”建設(shè)目標(biāo),使海洋成為開拓發(fā)展的新空間,為我國經(jīng)濟(jì)和社會(huì)發(fā)展提供了更多的契機(jī)。然而,值得關(guān)注的是隨之帶來的一系列海洋生態(tài)環(huán)境問題亟待解決,這在我國一些局部海域非常嚴(yán)峻。其中重金屬污染問題特別突出,它在海洋環(huán)境中殘余時(shí)間長、生物毒性效應(yīng)明顯、沿食物鏈易富集、難以治理,對(duì)海洋生物和人類健康危害性很高,一直是海洋生態(tài)環(huán)境學(xué)領(lǐng)域研究的熱點(diǎn)之一[1]。特別是很多有機(jī)重金屬,例如有機(jī)汞和有機(jī)錫[2-3]都曾給海洋生態(tài)和人類健康帶來過嚴(yán)重危害。近來吡啶硫酮金屬在海洋防污產(chǎn)品應(yīng)用廣泛,作為防污助劑的含量通常占10%以上[4-5],同時(shí)也因其優(yōu)良的抗菌性能大量應(yīng)用于抗菌防霉涂料、護(hù)發(fā)去屑品等化工產(chǎn)品中[6]。已有研究表明吡啶硫酮鋅對(duì)淡水生物麥穗魚、青鳉、直突搖蚊亞科2齡幼蟲屬劇毒物質(zhì)[7],對(duì)海水多毛類Dinophilus gyrociliatus的生存和生殖都會(huì)帶來負(fù)面影響[8]。為了及時(shí)而客觀地評(píng)價(jià)吡啶硫酮金屬的生態(tài)風(fēng)險(xiǎn),有必要對(duì)其進(jìn)行系統(tǒng)而全面的生態(tài)毒性研究。
華美盤管蟲(Hydroides elegans)屬管棲多毛類,分布廣泛,生活史短,在我國南海全年都能繁殖、附著,且易在實(shí)驗(yàn)室養(yǎng)殖,對(duì)很多污染物敏感,是較理想的生態(tài)毒性檢測(cè)生物[9-13]。此外,熱帶海洋多毛類華美盤管蟲是南海污損生物群落常見優(yōu)勢(shì)種,在當(dāng)?shù)胤牢酃ぷ鞣矫鎮(zhèn)涫荜P(guān)注。Bao等[9]研究了無機(jī)銅、吡啶硫酮銅(CuPT)、吡啶硫酮鋅(ZnPT)、敵草隆對(duì)華美盤管蟲擔(dān)輪幼蟲的急性毒性作用,發(fā)現(xiàn)48 h半致死濃度(LC50)分別為100、5.7、7.6、16 000 μg·L-1;重金屬也會(huì)阻礙華美盤管蟲受精過程,導(dǎo)致發(fā)育停止,以及胚胎及幼蟲出現(xiàn)畸形發(fā)育,華美盤管蟲不同生命階段對(duì)重金屬表現(xiàn)出不同的敏感性[10-12, 14];此外,華美盤管蟲配子受精及胚胎發(fā)育對(duì)氟氯青霉素也較敏感[15];Thilagam等[16]利用處于早期生命階段的華美盤管蟲作為指示生物,評(píng)價(jià)了印度東海岸不同水域的生態(tài)毒性現(xiàn)狀。上述研究大多集中在毒物對(duì)華美盤管蟲個(gè)體生長發(fā)育的影響,對(duì)其生態(tài)遺傳毒性方面的報(bào)道很少。已知環(huán)境中具有遺傳毒性的物質(zhì)會(huì)損傷生物的遺傳物質(zhì),加大生物的遺傳負(fù)荷,從而給生物種群以及生態(tài)系統(tǒng)的遺傳方面帶來深遠(yuǎn)的負(fù)面影響,所以水生生態(tài)遺傳毒性的研究在水質(zhì)質(zhì)量監(jiān)測(cè)和生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)中具有重要意義[17]。
目前對(duì)DNA損傷程度進(jìn)行檢測(cè)的遺傳毒性方法主要分為2類:(1)從DNA損傷引起的生物學(xué)效應(yīng)來進(jìn)行檢測(cè),如染色體畸變、細(xì)胞突變分析、微核試驗(yàn)等;(2)直接對(duì)DNA損傷進(jìn)行檢測(cè),如單細(xì)胞凝膠電泳(也稱為彗星實(shí)驗(yàn))、沉降技術(shù)、洗脫技術(shù)等。其中單細(xì)胞凝膠電泳應(yīng)用最為廣泛,實(shí)驗(yàn)操作較簡單、快速靈敏,可在單個(gè)細(xì)胞水平檢測(cè)DNA損傷[18-19],在生態(tài)遺傳毒性檢測(cè)領(lǐng)域有很好的應(yīng)用前景[20-22],在溞、軟體動(dòng)物、魚等水生生物的多種細(xì)胞中獲得了較滿意的檢測(cè)結(jié)果[23-24]。但是在水生生態(tài)遺傳毒性研究和應(yīng)用過程中,彗星實(shí)驗(yàn)在程序標(biāo)準(zhǔn)化、提高結(jié)果重復(fù)性、增強(qiáng)結(jié)果的可比性、從機(jī)理角度進(jìn)行結(jié)果解釋等方面還需進(jìn)一步的優(yōu)化和完善。Sunjog等[25]分別使用鰱魚(Squalius cephalus L.)紅細(xì)胞、鰓細(xì)胞和肝細(xì)胞進(jìn)行彗星實(shí)驗(yàn)以檢測(cè)河水及水庫淡水的潛在遺傳毒性,發(fā)現(xiàn)彗星尾矩和尾長度是評(píng)價(jià)DNA損傷的靈敏參數(shù)。Pellegri等[17]研究了大型溞(Daphnia magna)血淋巴細(xì)胞彗星實(shí)驗(yàn)的操作程序,期望加快其在淡水生態(tài)遺傳毒性檢測(cè)的標(biāo)準(zhǔn)化進(jìn)程。另外,Speit等[26]認(rèn)為使用生殖細(xì)胞進(jìn)行遺傳毒性研究具有更重要的意義。
本文以海洋多毛類華美盤管蟲為實(shí)驗(yàn)動(dòng)物,利用彗星實(shí)驗(yàn)研究了吡啶硫酮金屬對(duì)華美盤管蟲精子DNA的損傷情況,以了解CuPT和ZnPT對(duì)華美盤管蟲的遺傳毒性效應(yīng),探討CuPT和ZnPT對(duì)華美盤管蟲精子的毒性作用機(jī)理,期望為加快無脊椎動(dòng)物生殖細(xì)胞彗星實(shí)驗(yàn)在海洋生態(tài)遺傳毒性領(lǐng)域的應(yīng)用以及在結(jié)果解釋方面提供參考資料。
實(shí)驗(yàn)用華美盤管蟲成體采集于海南陵水黎安灣(18°30′N,110°01′E),年平均水溫為25.5 ℃,鹽度為35‰,pH為8.2。
參照文獻(xiàn)[10]方法培養(yǎng)華美盤管蟲成體,先用過濾(0.45 μm)后的采集地海水,次日及以后均采用人工海水(所用海鹽購于青島海之鹽水族科技公司)半量換水進(jìn)行培養(yǎng)。連續(xù)充氣,每日早晚投餌1次,餌料為牟式角毛藻(Chaetoceros muelleri)(海南大學(xué)海洋學(xué)院藻種室提供),密度約為5×104cells·mL-1,每天觀察并記錄華美盤管蟲及其水質(zhì)狀態(tài)。
1.2 實(shí)驗(yàn)方法
1.2.1 獲取華美盤管蟲精子
采取機(jī)械方式破壞華美盤管蟲棲息的石灰質(zhì)管,因應(yīng)激反應(yīng)[10-11]處于繁殖成熟期的蟲體在數(shù)分鐘內(nèi)會(huì)釋放大量配子。用400目篩網(wǎng)過濾精子溶液,再用冷凍離心機(jī)離心2次(SIGMA 3k-18,4 000 r·min-1,2 min),去上層液體,將精子用適量過濾海水重懸。血球計(jì)數(shù)板計(jì)數(shù),用過濾海水稀釋到6×104sperm·μL-1。
1.2.2 精子染毒處理
利用二甲基亞砜(DMSO, Sigma-Aldrich Co. LLC)作為助溶劑分別配制1 g·L-1的CuPT和ZnPT(上海廣拓化學(xué))母液,避光保存。試驗(yàn)時(shí)采用人工配制海水稀釋到相應(yīng)濃度。實(shí)驗(yàn)所用試劑均為分析純。
企業(yè)應(yīng)制定簡潔的工作流程,這也是提高工作效率、縮短時(shí)間成本的一項(xiàng)措施。拖沓冗長的環(huán)節(jié)程序不僅會(huì)降低工作效率,還會(huì)影響外界與企業(yè)的正常銜接,產(chǎn)生不必要的時(shí)間成本。
分別吸取50 μL精子溶液(6×104sperm·μL-1),暴露于不同濃度的待檢溶液中,參照文獻(xiàn)[10]數(shù)據(jù),CuPT和ZnPT分別設(shè)定3個(gè)濃度處理組,CuPT濃度為4.00、8.00、16.00 μg·L-1,ZnPT濃度為8.00、16.00、32.00 μg·L-1,海水為空白對(duì)照組,DMSO為溶劑對(duì)照組(0.07 mL·L-1)。參考美國環(huán)境保護(hù)署(EPA)對(duì)無脊椎動(dòng)物海膽精子的毒性試驗(yàn)[27-28],選擇室溫黑暗條件下染毒處理1 h后,離心(4 000 r·min-1,22 ℃,2 min),棄去上清液,加入磷酸鹽緩沖溶液(PBS)溶液,混勻。取少量精子細(xì)胞懸浮液進(jìn)行臺(tái)盼藍(lán)染色,計(jì)算細(xì)胞存活率。
1.2.3 彗星試驗(yàn)
實(shí)驗(yàn)步驟參照文獻(xiàn)[29]方法稍作修改。以1%正常熔點(diǎn)瓊脂糖和0.7%低熔點(diǎn)瓊脂糖在磨砂載玻片上鋪膠,三層膠中底膠為正常熔點(diǎn)瓊脂糖,中層為混合細(xì)胞的低熔點(diǎn)瓊脂糖,上層為低熔點(diǎn)瓊脂糖。在4 ℃條件下凝固后,在新鮮配制并預(yù)冷的細(xì)胞裂解液(2.5 mol·L-1NaCl,100 mmol·L-1Na2EDTA,10 mmol·L-1Tris,0.2 mmol·L-1NaOH,體積分?jǐn)?shù)為10%的DMSO,體積分?jǐn)?shù)為1%的TritonX-100,pH=10)中,4 ℃避光裂解4 h。隨后用預(yù)冷的去離子水充分漂洗。在20 V、300 mA條件下電泳20 min。
在0.4 mmol·L-1Tris-HCl(pH=7.5)緩沖液,4 ℃條件下中和15 min。取出載玻片后,采用SYBR Green I(Invitrogen)染液避光染色。使用熒光顯微鏡(OLYMPU BX51),選擇波長495 nm,進(jìn)行細(xì)胞觀察和拍照。每一對(duì)照組和處理組都在200×下隨機(jī)統(tǒng)計(jì)分析50個(gè)細(xì)胞圖像,利用CASP軟件分析,測(cè)量彗星細(xì)胞的頭長和全長、尾長和尾矩。
1.3 數(shù)據(jù)統(tǒng)計(jì)與分析
用Excel 2010進(jìn)行數(shù)據(jù)整理,利用SPSS 19.0分析實(shí)驗(yàn)組與對(duì)照組各相關(guān)數(shù)據(jù)。數(shù)據(jù)結(jié)果顯示為平均值±標(biāo)準(zhǔn)誤差(用誤差線顯示),P < 0.05、P < 0.01為差異顯著。
華美盤管蟲精子細(xì)胞的臺(tái)盼藍(lán)染色結(jié)果顯示細(xì)胞存活率為92.4%~95.8%,細(xì)胞密度為2×106cells·mL-1,細(xì)胞存活率和密度達(dá)到了彗星實(shí)驗(yàn)要求。
在熒光顯微鏡下觀察對(duì)照組和各處理組精子細(xì)胞(圖1),發(fā)現(xiàn)空白對(duì)照組的精子核緊密而集中,邊緣較清晰,尾部很短或沒有出現(xiàn)明顯的尾部(圖1A);溶劑對(duì)照組的精子核形態(tài)與和空白對(duì)照類似(圖1B)。CuPT處理組(C~E)和ZnPT處理組(F~H)的“彗星”尾長與溶劑對(duì)照組相比明顯變大,且不同毒物處理組隨著毒物濃度的增加都出現(xiàn)“彗星”頭部變小、頭部亮度變?nèi)酢⑽查L增加,同時(shí)尾部熒光強(qiáng)度逐漸增強(qiáng)的趨勢(shì)。
海水空白組(圖2中以0表示)和溶劑對(duì)照組(圖2中以DMSO表示)精子細(xì)胞的“彗星”尾長、尾DNA含量及Olive尾矩均無顯著差異。處理組中較低濃度(4 μg·L-1CuPT和8 μg·L-1ZnPT)的精子細(xì)胞的“彗星”尾長、尾DNA含量及Olive尾矩顯著高于溶劑對(duì)照組(P<0.05),處理組中較高濃度(8 μg·L-1和16 μg·L-1CuPT,16 μg·L-1和32 μg·L-1ZnPT)的精子細(xì)胞,其“彗星”尾長、尾DNA含量和尾矩多數(shù)是顯著(P<0.01)高于溶劑對(duì)照組的(圖2)。分別比較CuPT和ZnPT處理組的精子細(xì)胞“彗星”的尾長、尾DNA含量和尾矩,可見尾長、尾DNA含量和尾矩在試驗(yàn)濃度范圍內(nèi)都呈現(xiàn)效應(yīng)-濃度正相關(guān),相關(guān)系數(shù)r在0.985~0.996范圍內(nèi)。CuPT為4 μg·L-1、ZnPT為8 μg·L-1時(shí),彗星尾DNA百分比含量分別為15.16%和16.69%,按照Anderson等[30]對(duì)DNA損傷的分級(jí)標(biāo)準(zhǔn),達(dá)到了輕度損傷的程度;CuPT為8 μg·L-1、16 μg·L-1,ZnPT為16 μg·L-1、32 μg·L-1時(shí),彗星尾DNA百分比含量分別為23.38%、34.96%和27.30%、37.83%,則達(dá)到了中度損傷的程度。
圖1 華美盤管蟲精子細(xì)胞彗星圖像(×200)注:A-海水空白組;B-溶劑對(duì)照組;C, D, E分別為4 μg·L-1、8 μg·L-1和16 μg·L-1 CuPT處理組;F, G, H分別為8 μg·L-1、16 μg·L-1和32 μg·L-1 ZnPT處理組。Fig. 1 The comet image of sperms of Hydroides elegans (×200)Note: A-the blank; B-solvent control; C, D, E stand for the treatment groups with 4 μg·L-1, 8 μg·L-1 and 16 μg·L-1 of CuPT respectively; F, G, H stand for the treatment groups with 8 μg·L-1, 16 μg·L-1, 32 μg·L-1 of ZnPT, respectively.
從實(shí)驗(yàn)結(jié)果可知,與空白對(duì)照相比,助溶劑DMSO在實(shí)驗(yàn)濃度范圍對(duì)精子DNA損傷無顯著影響;在CuPT和ZnPT的脅迫下,華美盤管蟲精子細(xì)胞DNA損傷顯著提高,并且隨著CuPT和ZnPT濃度的增加,精子細(xì)胞DNA損傷程度提高,兩者呈正相關(guān)。
圖2 CuPT/ZnPT對(duì)華美盤管蟲精子細(xì)胞DNA的損傷作用注:*、**與對(duì)照組比較差異顯著P<0.05、P<0.01。Fig. 2 DNA damage of Hydroides elegans sperm following the exposure to CuPT/ZnPTNote: Compared with the control, *, ** stand for the significant differences at the level P<0.05, P<0.01.
重金屬對(duì)動(dòng)物細(xì)胞DNA的損傷機(jī)制目前還未完全解析,有專家研究認(rèn)為重金屬誘導(dǎo)自由基是DNA損傷一個(gè)重要因素,已知重金屬會(huì)破壞或抑制很多動(dòng)物的抗氧化防御系統(tǒng),導(dǎo)致自由基增加,自由基攻擊DNA鏈而導(dǎo)致DNA分子斷裂,在不能及時(shí)修復(fù)的情況下出現(xiàn)DNA片段[36];此外,彗星實(shí)驗(yàn)已應(yīng)用于抗氧化劑效應(yīng)檢測(cè),這也進(jìn)一步肯定了自由基對(duì)DNA的損傷作用[37];CuPT和ZnPT對(duì)華美盤管蟲的抗氧化系統(tǒng)具有較明顯的影響,抗氧化系統(tǒng)受損后不能及時(shí)清除過多的自由基[38],故推測(cè)本實(shí)驗(yàn)中CuPT和ZnPT對(duì)DNA的損傷效應(yīng)與抗氧化系統(tǒng)受損和自由基的積累是密切關(guān)聯(lián)的。對(duì)于吡啶硫酮金屬對(duì)華美盤管蟲的生態(tài)毒性效應(yīng)及其機(jī)理,還有待更加深入的研究,如吡啶硫酮金屬在華美盤管蟲體內(nèi)的輸送和代謝規(guī)律、吡啶硫酮金屬及其代謝物與生物活性大分子物質(zhì)的相互作用、吡啶硫酮金屬的聯(lián)合毒性以及與其他污染物對(duì)華美盤管蟲的復(fù)合效應(yīng)等。在此領(lǐng)域的深入研究,有望為探索無脊椎動(dòng)物在海洋環(huán)境監(jiān)測(cè)以及防污劑生態(tài)遺傳毒性評(píng)價(jià)中作為實(shí)驗(yàn)動(dòng)物提供參考數(shù)據(jù)。
彗星實(shí)驗(yàn)在脊椎動(dòng)物遺傳毒性檢測(cè)方面的研究和應(yīng)用較多,對(duì)無脊椎動(dòng)物的研究相對(duì)較少,而且多采用體細(xì)胞[39-41]。海洋環(huán)境中無脊椎動(dòng)物種類豐富,數(shù)量龐大,是海洋生態(tài)系統(tǒng)中最主要的消費(fèi)者,在物質(zhì)循環(huán)和能量流動(dòng)過程中承擔(dān)重要作用。體外受精現(xiàn)象在海洋無脊椎動(dòng)物繁殖過程中普遍存在,釋放到體外的精子直接與海水接觸,易受到環(huán)境中有毒物質(zhì)的影響。若在環(huán)境因子的脅迫下無脊椎動(dòng)物精子DNA的完整性受到破壞,將不可避免地影響到精子的健康和存活,進(jìn)而限制該動(dòng)物種群的發(fā)展,并可能由此對(duì)局部區(qū)域生態(tài)系統(tǒng)的健康和可持續(xù)發(fā)展產(chǎn)生潛在的深遠(yuǎn)影響。所以,以海洋無脊椎動(dòng)物精子細(xì)胞作為遺傳毒性檢測(cè)對(duì)象具有明顯的優(yōu)勢(shì)。本實(shí)驗(yàn)采用彗星實(shí)驗(yàn),以南海近岸常見的無脊椎動(dòng)物——華美盤管蟲精子細(xì)胞為遺傳毒性檢測(cè)對(duì)象,發(fā)現(xiàn)較低濃度的CuPT(8 μg·L-1)或ZnPT(8、16 μg·L-1)即可對(duì)華美盤管蟲精子細(xì)胞DNA產(chǎn)生中度損傷,呈現(xiàn)出較高的敏感性,這在南海海洋生態(tài)環(huán)境評(píng)價(jià)中具有一定的現(xiàn)實(shí)意義,也為今后發(fā)展合理快速的生態(tài)遺傳毒性檢測(cè)方法提供參考資料。
綜上所述,利用彗星實(shí)驗(yàn)研究了CuPT和ZnPT對(duì)華美盤管蟲精子細(xì)胞DNA的損傷情況。結(jié)果表明,一定濃度CuPT和ZnPT均能引起華美盤管蟲精子細(xì)胞DNA的損傷,并且在一定范圍內(nèi),尾長、尾DNA含量和Olive尾矩與吡啶硫酮金屬濃度呈明顯的劑量-效應(yīng)關(guān)系,即隨著濃度增大,對(duì)精子細(xì)胞DNA的損傷程度明顯增加;華美盤管蟲精子細(xì)胞對(duì)CuPT的敏感性高于ZnPT。CuPT為4 μg·L-1、ZnPT為8 μg·L-1時(shí),對(duì)DNA造成輕度損傷;CuPT為8 μg·L-1、16 μg·L-1,ZnPT為16 μg·L-1、32 μg·L-1時(shí),則達(dá)到了中度損傷的程度。對(duì)于吡啶硫酮金屬對(duì)華美盤管蟲的生態(tài)毒性機(jī)理還有待進(jìn)一步的深入探究,這將促進(jìn)其作為生物標(biāo)志的應(yīng)用進(jìn)程。
致謝:感謝海南大學(xué)分析測(cè)試中心;感謝邱立國、朱秀琴等同學(xué)在試驗(yàn)中給予的幫助,特別感謝審稿專家和編輯提出的寶貴意見。
[1] 蔡廷祿, 倪建宇, 賈建軍, 等. 海南島典型港灣沉積物化學(xué)特征及重金屬污染評(píng)價(jià)[J]. 第四紀(jì)研究, 2016, 36(1): 93-102
Cai T L, Ni J Y, Jia J J, et al. The characteristics of chemical parameters and the pollution evaluation of heavy metals in surficial sediments of four typical bays, Hainan Province [J]. Quaternary Sciences, 2016, 36(1): 93-102 (in Chinese)
[2] 周名江, 李正炎, 顏天, 等. 海洋環(huán)境中的有機(jī)錫及其對(duì)海洋生物的影響[J]. 環(huán)境科學(xué)進(jìn)展, 1994, 2(4): 67-76
Zhou M J, Li Z Y, Yan T, et al. Organotin in marine environment and its effects on marine organisms [J]. Progress in Environmental Science, 1994, 2(4): 67-76 (in Chinese)
[3] 秦捷, 趙文, 張鵬. 環(huán)境汞污染對(duì)藻類的毒性效應(yīng)及其影響因素[J]. 生物學(xué)雜志, 2011, 28(3): 74-76, 83
Qin J, Zhao W, Zhang P. The environment mercury pollution toxicity effect to the alga and their influencing factors [J]. Journal of Biology, 2011, 28(3): 74-76, 83 (in Chinese)
[4] 史航, 陳曉蕾, 石建高, 等. 新型海洋防附著涂層的制備及釋放研究[J]. 涂料工業(yè), 2009, 39(3): 10-13
Shi H, Chen X L, Shi J G, et al. Preparation of novel antifouling marine coatings and research on leaching of NaPT antifouling compound [J]. Paint & Coatings Industry, 2009, 39(3): 10-13 (in Chinese)
[5] 王健. 船舶防污涂料的現(xiàn)狀和發(fā)展趨勢(shì)[J]. 防污涂料與涂裝, 2012, 27(5): 6-10
Wang J. Present situation and development trend of marine antifouling coatings [J]. Antifouling Coatings and Application, 2012, 27(5): 6-10 (in Chinese)
[6] Konstantinou I, Albanis T. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: A review [J]. Environment International, 2004, 30(2): 235-248
[7] 張旋, 劉利民, 皮鈺珍, 等. 吡啶硫酮鋅對(duì)水生生物的急性毒性[J]. 生態(tài)毒理學(xué)報(bào), 2010, 5(1): 83-86
Zhang X, Liu L M, Pi Y Z, et al. Acute toxicity effects of zinc pyrithione on aquatic organisms [J]. Asian Journal of Ecotoxicology, 2010, 5(1): 83-86 (in Chinese)
[8] Marcheselli M, Conzo F, Mauri M, et al. Novel antifouling agent—Zinc pyrithione: Short- and long-term effects on survival and reproduction of the marine polychaete Dinophilus gyrociliatus [J]. Aquatic Toxicology, 2010, 98(2): 204-210
[9] Bao V W W, Leung K M Y, Qiu J W, et al. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species [J]. Marine Pollution Bulletin, 2011, 62(5): 1147-1151
[10] 商群, 陳新, 王超超, 等. 吡啶硫酮類防污劑對(duì)華美盤管蟲早期不同發(fā)育階段的毒性效應(yīng)研究[J]. 海洋科學(xué), 2015, 39(9): 33-38
Shang Q, Chen X, Wang C C, et al. Toxic effect of metal pyrithione on different early life stages of Hydroides elegans [J]. Marine Sciences, 2015, 39(9): 33-38 (in Chinese)
[11] Gopalakrishnan S, Thilagam H, Raja P V. Comparison of heavy metal toxicity in life stages (spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroides elegans [J]. Chemosphere, 2008, 71(3): 515-528
[12] Gopalakrishnan S, Thilagam H, Raja P. Toxicity of heavy metals on embryogenesis and larvae of the marine sedentary polychaete Hydroides elegans [J]. Archives of Environmental Contamination and Toxicology, 2007, 52(2): 171-178
[13] 周進(jìn), 李新正. 中國海多毛綱動(dòng)物研究現(xiàn)狀及展望[J]. 海洋科學(xué), 2011, 35(6): 82-89
Zhou J, Li X Z. Analysis and outlook for polychaete studies from China's seas [J]. Marine Sciences, 2011, 35(6): 82-89 (in Chinese).
[14] Lau M C, Chan K M, Leung K M Y, et al. Acute and chronic toxicities of tributyltin to various life stages of the marine polychaete Hydroides elegans [J]. Chemosphere, 2007, 69: 135-144
[15] Arumugam S. Studies on the effects of Flucloxacillin (antibiotic) on fertilization and early development of a sedentary polychaete Hydroides elegans [J]. International Journal of Environmental Sciences, 2012, 3(1): 616-630
[16] Thilagam H, Gopalakrishnan S, Vijayavel K, et al. Effluent toxicity test using developmental stages of the marine polychaete Hydroides elegans [J]. Archives of Environmental Contamination & Toxicology, 2008, 54(4): 674-683
[17] Pellegri V, Gorbi G, Buschini A. Comet assay on Daphnia magna in eco-genotoxicity testing [J]. Aquatic Toxicology, 2014, 155(4): 261-268
[18] Tice R R, Agurell E, Anderson D, et al. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing [J]. Environmental and Molecular Mutagenesis, 2000, 35(3): 206-221
[19] Wilson J T, Pascoe P L, Parry J M, et al. Evaluation of the comet assay as a method for the detection of DNA damage in the cells of a marine invertebrate, Mytilus edulis L. (Mollusca: Pelecypoda) [J]. Mutation Research/Fundamental & Molecular Mechanisms of Mutagenesis, 1998, 399(1): 87-95
[20] 封少龍, 羅嶼. 應(yīng)用單細(xì)胞凝膠電泳技術(shù)測(cè)定農(nóng)藥對(duì)蚯蚓的DNA損傷[J]. 南京大學(xué)學(xué)報(bào): 自然科學(xué)版, 2000, 36(5): 649-652
Feng S L, Luo Y. Single cell gel electrophoresis assay in the earthworm for measuring the genotoxity of pesticides to DNA [J]. Journal of Nanjing University: Natural Sciences, 2000, 36(5): 649-652 (in Chinese)
[21] 魯志松. 人體頰黏膜細(xì)胞彗星實(shí)驗(yàn)方法學(xué)研究[J]. 環(huán)境科學(xué)研究, 2004, 17(3): 66-70
Lu Z S. Study on the method of human buccal cell comet assay [J]. Research of Environmental Sciences, 2004, 17(3): 66-70 (in Chinese)
[22] Kameya H, Miyanoshita A, Imamura T, et al. Assessment of gamma ray-induced DNA damage in Lasioderma serricorne using the comet assay [J]. Radiation Physics and Chemistry, 2012, 81(3): 316-321
[23] Buschini A, Martino A, Gustavino B, et al. Comet assay and micronucleus test in circulating erythrocytes of Cyprinus carpio specimens exposed in situ to lake waters treated with disinfectants for potabilization [J]. Mutation Research, 2004, 557(2): 119-129
[24] Pellacani C, Buschini A, Furlini M, et al. A battery of in vivo and in vitro tests useful for genotoxic pollutant detection in surface waters [J]. Aquatic Toxicology, 2006, 77(1): 1-10
[26] Speit G, Vasquez M, Hartmann A. The comet assay as an indicator test for germ cell genotoxicity [J]. Mutation Research/Fundamental & Molecular Mechanisms of Mutagenesis, 2008, 681(1): 3-12
[27] US Environmental Protection Agency. Sperm Cell Toxicity Tests Using the Sea Urchin (Arbacia punctulata) [R]. Washington DC: US EPA, 2009
[28] American Society for Testing and Materials. Proposed standard guide for conducting toxicity tests with sperm and eggs of sea urchins and other echinoids. ASTM Subcommittee E-47.01 on Aquatic Toxicology [R]. Philadelphia, PA: ASTM, 1990
[29] Singh N P, McCoy M, Tice R R, et al. A simple technique for quantitation of low levels of DNA damage in individual cells [J]. Experimental Cell Research, 1988, 175(1): 184-191
[30] Anderson D, Yu T W, Phillips B J, et al. The effect of various antioxidants and other modifying agents on oxygen-radical-generated DNA damage in human lymphocytes in the COMET assay [J]. Mutation Research, 1994, 307(1): 261-271
[31] 趙敏. 兩種價(jià)態(tài)鉻(Ⅲ, Ⅳ)遺傳損傷研究及機(jī)制分析[D]. 上海: 東華大學(xué), 2013: 3-5
Zhao M. A comparison of tri-and hexavalent chromium on genetic damage [D]. Shanghai: Donghua University, 2013: 3-5 (in Chinese)
[32] 任可欣. Cd2+污染脅迫對(duì)多齒圍沙蠶(Perinereis nuntia)的毒性效應(yīng)[D]. 哈爾濱: 黑龍江大學(xué), 2013: 34-35, 43
[33] 張迎梅, 王葉菁, 虞閏六, 等. 重金屬Cd2+、Pb2+和Zn2+對(duì)泥鰍DNA損傷的研究[J]. 水生生物學(xué)報(bào), 2006, 30(4): 399-403
Zhang Y M, Wang Y J, Yu R L, et al. Effects of heavy metals Cd2+, Pb2+and Zn2+on DNA damage of loach Misgurnus anguillicandatus [J]. Acta Hydrobiologica Sinica, 2006, 30(4): 399-403 (in Chinese).
[34] 唐建勛, 程樟順, 鄭榮泉, 等. 重金屬Cu、Pb對(duì)泥鰍(Misgurnus anguillicaudatus)卵細(xì)胞凋亡及DNA損傷的SCGE試驗(yàn)[J]. 海洋與湖沼, 2013, 44(1): 177-181
Tang J X, Cheng Z S, Zheng R Q, et al. SCGE test of oocytes apoptosis and DNA damage on loaches Misgurnus anguillicaudatus by heavy metal Cu and Pb [J]. Oceanologia et Limnologia Sinica, 2013, 44(1): 177-181 (in Chinese)
[35] Marcheselli M, Azzoni P, Mauri M. Novel antifouling agent-zinc pyrithione: Stress induction and genotoxicity to the marine mussel Mytilus galloprovincialis [J]. Aquatic Toxicology, 2011, 102(1-2): 39-47
[36] Stohs S J, Bagchi D. Oxidative mechanisms in the toxicity of metal ions [J]. Free Radical Biology & Medicine, 1995, 18(2): 321-336
[37] Cemeli E, Baumgartner A, Anderson D. Antioxidants and the Comet assay. [J]. Mutation Research/Reviews in Mutation Research, 2009, 681(1): 51-67
[38] 陳新, 覃宗敏, 李紫薇, 等. 吡啶硫酮金屬對(duì)華美盤管蟲抗氧化性的影響[J]. 生態(tài)毒理學(xué)報(bào), 2016, 11(6): 234-241
Chen X, Qin Z M, Li Z W, et al. Effect of metal pyrithione on antioxidant activity in Hydroides elegans [J] Asian Journal of Ecotoxicology, 2016, 11(6): 234-241 (in Chinese)
[39] 高上吉, 鐘曉霞, 劉婉瑩, 等. 基于彗星實(shí)驗(yàn)的洛克沙胂對(duì)秀麗隱桿線蟲胚胎細(xì)胞DNA損傷的研究[J]. 生態(tài)毒理學(xué)報(bào), 2016, 11(3): 167-172
Gao S J, Zhong X X, Liu W Y, et al. Comet assay study on DNA damage of embryonic cells in Caenorhabditis elegans induced by roxarsone [J]. Asian Journal of Ecotoxicology, 2016, 11(3): 167-172 (in Chinese)
[40] 蔣玫, 李磊, 沈新強(qiáng), 等. 苯并[a]芘和菲對(duì)縊蟶血細(xì)胞DNA損傷的研究[J]. 生態(tài)毒理學(xué)報(bào), 2015, 10(3): 281-287
Jiang M, Li L, Shen X Q, et al. Effects of benzo[a]pyrene and phenanthrene on DNA damage of hemolymph cell in Sinonovacula constricta [J]. Asian Journal of Ecotoxicology, 2015, 10(3): 281-287 (in Chinese)
[41] 王璐, 惠秀娟, 李雙雙, 等. 鹽酸小檗堿對(duì)小鼠脾細(xì)胞的DNA損傷和氧化性損傷[J]. 生態(tài)毒理學(xué)報(bào), 2014, 9(3): 490-494
Wang L, Hui X J, Li S S, et al. DNA damage and oxidation damage of berberine hydrochloride on spleen of mice [J]. Asian Journal of Ecotoxicology, 2014, 9(3): 490-494 (in Chinese)
◆
The Effects of Metal Pyrithione on Sperm DNA of PolychaeteHydroideselegans
Chen Xin1, Li Ziwei2, Qin Zongmin1, Shang Qun1, Tang Min1,*
1. College of Material and Chemical Engineering, Hainan University, Haikou 570228, China2. College of Environment and Plant Protection, Hainan University, Haikou 570228, China
13 October 2016 accepted 2 December 2016
The application of copper pyrithione (CuPT) and zinc pyrithione (ZnPT) are increasingly widespread in exudation antifouling coatings, and their potential ecotoxicity has attracted a plethora of concerns. In this paper, the effects of CuPT and ZnPT on sperm DNA damage of Hydroides elegans were investigated by comet assay. Results indicated that in groups with low concentration of CuPT (4 μg·L-1) or ZnPT (8 μg·L-1), the length of comet tail, DNA contents in tail, and comet Olive tail moment were significantly greater than that of the control (P<0.05), and also those in the higher concentration groups (CuPT at 8 μg·L-1or 16 μg·L-1, ZnPT at 16 μg·L-1or 32 μg·L-1) were significantly greater than that of the control (P<0.01). A positive “concentration-effect” relationship was observed within the concentration range of this experiment. When CuPT and ZnPT were at 4 μg·L-1and 8 μg·L-1, respectively, DNA damage occurred in a slight degree, while at 8 μg·L-1and 16 μg·L-1CuPT or 16 μg·L-1and 32 μg·L-1ZnPT, moderate DNA damage was detected, indicating that CuPT and ZnPT could have obvious ecogenotoxicity in marine environment. In addition, the results also illustrated that Hydroides elegans sperm were sensitive to stress caused by CuPT and ZnPT, and therefore such test can be considered as a potential biomarker for ecogenotoxicity assessment of marine pollution caused by heavy metals, especially for early alert in the South China Sea.
metal pyrithione; Hydroides elegans; sperm; ecogenotoxicity
國家自然科學(xué)基金項(xiàng)目(31360105,31660128,31160098)
陳新(1973-),男,講師,研究方向?yàn)楹Q蟓h(huán)境與生態(tài)毒理,E-mail: 982912387@qq.com;
*通訊作者(Corresponding author), E-mail: 1251054716@qq.com
10.7524/AJE.1673-5897.20161013001
2016-10-13 錄用日期:2016-12-02
1673-5897(2017)2-201-08
X171.5
A
唐敏(1972-),女,博士,副教授,主要研究方向?yàn)樗鷳B(tài)學(xué),發(fā)表學(xué)術(shù)論文40余篇。
陳新, 李紫薇, 覃宗敏, 等. 吡啶硫酮金屬對(duì)華美盤管蟲(Hydroides elegans)精子DNA的損傷效應(yīng)[J]. 生態(tài)毒理學(xué)報(bào),2017, 12(2): 201-208
Chen X, Li Z W, Qin Z M, et al. The effects of metal pyrithione on sperm DNA of polychaete Hydroides elegans [J]. Asian Journal of Ecotoxicology, 2017, 12(2): 201-208 (in Chinese)