廖高祖, 張靜雯, 鄧達(dá)義, 彭立斌, 馬傳軍
(1. 華南師范大學(xué)化學(xué)與環(huán)境學(xué)院,廣州 510006; 2. 中國(guó)石化大連石油化工研究院,大連 116000)
可見光下氮化碳活化過硫酸鈉降解羅丹明B
廖高祖1*, 張靜雯1, 鄧達(dá)義1, 彭立斌1, 馬傳軍2
(1. 華南師范大學(xué)化學(xué)與環(huán)境學(xué)院,廣州 510006; 2. 中國(guó)石化大連石油化工研究院,大連 116000)
以尿素為原材料高溫聚合法制備了石墨相氮化碳(g-C3N4)納米片催化劑,采用X射線衍射(XRD)、紫外可見漫反射光譜(UV-Vis DRS)等對(duì)g-C3N4進(jìn)行表征,研究了可見光下g-C3N4活化過硫酸鈉對(duì)羅丹明B(RhB)的降解效果,并對(duì)降解過程中的影響因素如g-C3N4和過硫酸鈉的質(zhì)量濃度進(jìn)行了考察. 結(jié)果表明:g-C3N4在可見光下協(xié)同過硫酸鈉對(duì)RhB具有較好的降解效果,反應(yīng)30 min后,降解率達(dá)到91.7%. RhB的降解效率隨著g-C3N4和過硫酸鈉質(zhì)量濃度的增加而提高. 對(duì)反應(yīng)過程中過硫酸鈉質(zhì)量濃度的滴定結(jié)果表明:g-C3N4在可見光下對(duì)過硫酸鈉有一定的活化效果. 經(jīng)過4次循環(huán)降解實(shí)驗(yàn),g-C3N4催化劑仍然具有較好的活性.
g-C3N4; 過硫酸鈉; 羅丹明B; 可見光
近年來,一種新型的、可見光下響應(yīng)的非金屬材料石墨相氮化碳(g-C3N4),由于禁帶寬度(約2.7 eV) 較窄、化學(xué)穩(wěn)定性好、制備方法簡(jiǎn)便等優(yōu)點(diǎn)受到廣泛關(guān)注[15-16]. g-C3N4在可見光下可以催化H2O2、O3等氧化劑生成·OH[17-18],但是利用g-C3N4活化過硫酸鹽未見報(bào)道. 本文以尿素為前驅(qū)體,采用直接加熱法制備了g-C3N4納米片催化劑,并采用透射電子顯微鏡(TEM)、X-射線衍射(XRD)和紫外-可見漫反射光譜(UV-Vis DRS)對(duì)催化劑進(jìn)行表征. 以羅丹明B(RhB)為降解對(duì)象,考察了在可見光下g-C3N4活化過硫酸鈉降解RhB的效果,并對(duì)降解過程中的影響因素如g-C3N4與過硫酸鈉的質(zhì)量濃度、自由基捕捉、反應(yīng)過程中過硫酸鈉的質(zhì)量濃度滴定和g-C3N4催化劑的重復(fù)利用進(jìn)行了考察.
1.1 試劑與儀器
尿素、三乙醇胺(AR,廣州化學(xué)試劑廠);過硫酸鈉(AR,SIGMA-ALDRICH,Co.Ltd.);硫酸(AR,天津市百世化工有限公司);硫酸亞鐵、硫酸鈰銨(AR,阿拉丁試劑(上海)有限公司);亞硝酸鈉、叔丁醇(AR,天津市大茂化學(xué)試劑廠);無水乙醇、甲醇(色譜純,天津市科密歐化學(xué)試劑廠).
馬弗爐(天津市中環(huán)實(shí)驗(yàn)電爐有限公司);電子分析天平(JA103,上海市海康電子儀器廠);智能恒溫磁力攪拌器(ZNCL,河南省愛博特科技有限公司);循環(huán)水真空泵(SHZ-D,河南省予華儀器有限公司);可見分光光度計(jì)(V5000,上海元析儀器有限公司);雷磁自動(dòng)電位滴定儀(ZDJ-4A,上海儀電科學(xué)儀器股份有限公司);有機(jī)微孔濾膜(0.45 μm,天津市津騰實(shí)驗(yàn)設(shè)備有限公司);氙燈(GXH500W,北京紐比特科技有限公司).
1.2 實(shí)驗(yàn)方法
1.2.1 g-C3N4催化劑的制備 將10 g尿素加入到半封閉的瓷坩堝中,并放入馬弗爐中以15 ℃/min的速率升溫到550 ℃反應(yīng)2 h,得到黃色產(chǎn)物通過乙醇和去離子水各沖洗2次,烘干備用.
1.2.2 表征方法 采用透射電子顯微鏡(JEOL, JEM-2100HR)觀察催化劑的形貌(加速電壓為120 kV);采用X-射線衍射儀(Bruker, D8 Advance)分析催化劑的晶體結(jié)構(gòu)(Cu靶Kα射線,=0.154 18 nm,掃描范圍10°~60°,掃描速度6.0°/min);采用紫外-可見漫反射儀(Hitachi, U-3010)測(cè)試催化劑對(duì)光的吸收;采用紅外光譜儀(Nicolet 6700)測(cè)定樣品官能團(tuán)的特征(掃描波長(zhǎng)范圍為 4 000~550 cm-1).1.2.3 可見光下g-C3N4活化過硫酸鈉降解RhB 將氙燈置于冷凝管中組成可見光燈管,利用冷凝套管中循環(huán)流動(dòng)的NaNO2溶液(1 mol/L)濾除紫外光,提供可見光. RhB溶液的初始ρ(RhB)為10 mg/L, 過硫酸鈉Na2S2O8(200 mg/L)和RhB的質(zhì)量比為20∶1.ρ(g-C3N4)為0.2 g/L. 加入g-C3N4后先吸附30 min,然后再加入Na2S2O8,立即打開可見光燈管,開始計(jì)時(shí),間隔一定時(shí)間取樣并稀釋1倍,立即于552 nm波長(zhǎng)處測(cè)其吸光度.
1.2.4 Na2S2O8與g-C3N4的質(zhì)量濃度對(duì)可見光下活化Na2S2O8降解RhB的影響 在可見光/g-C3N4/Na2S2O8條件下,保持其他實(shí)驗(yàn)條件和參數(shù)不變,ρ(g-C3N4)分別為1、2、4 g/L,考察不同催化劑用量對(duì)可見光下活化Na2S2O8降解RhB的影響;保持ρ(g-C3N4)為2 g/L,改變Na2S2O8和RhB的質(zhì)量比為10∶1、20∶1、40∶1和60∶1,考察ρ(Na2S2O8)對(duì)可見光中活化Na2S2O8降解RhB的影響.1.2.5ρ(Na2S2O8)的變化 反應(yīng)過程中采用滴定法測(cè)定ρ(Na2S2O8),具體過程和原理如下:在反應(yīng)后的樣品中加入20 mL 2 mol/L的H2SO4溶液和5 mL 0.1 mol/L FeSO4溶液,放入冰箱暫時(shí)保存,以去離子水為空白對(duì)照. 然后用標(biāo)準(zhǔn)的硫酸鈰銨溶液滴定反應(yīng)剩余的Fe2+,從而計(jì)算出反應(yīng)液中過硫酸根離子的質(zhì)量濃度(g/L):
(1)
2.1 g-C3N4的表征
g-C3N4呈現(xiàn)出數(shù)十微米長(zhǎng)寬的納米片狀結(jié)構(gòu)(圖1),納米片的中心顏色較淺,邊緣顏色較深,說明在其邊緣存在卷曲和褶皺. 這種片狀結(jié)構(gòu)將會(huì)為過硫酸鈉的活化反應(yīng)提供較多的活性位點(diǎn).
圖1 g-C3N4的TEM圖Figure 1 TEM image of g-C3N4
產(chǎn)物在2θ為13.1°和27.5°的位置有2個(gè)明顯的特征衍射峰(圖2). 其中27.5°處的衍射峰最強(qiáng),是芳香化合物的層間堆積特征峰,說明g-C3N4具有類似石墨的層狀結(jié)構(gòu). 另一個(gè)衍射峰出現(xiàn)在13.1°的位置,該峰是3-s-三嗪結(jié)構(gòu)類物質(zhì)的特征峰.
圖2 g-C3N4的XRD譜Figure 2 XRD pattern of g-C3N4
g-C3N4的吸收邊帶大約為450 nm(圖3),通過Kubelka-Munk函數(shù)可以計(jì)算出g-C3N4的禁帶寬度為2.7 eV.
2.2 影響RhB降解效果的因素
2.2.1 可見光下g-C3N4活化Na2S2O8降解RhB 可見光下g-C3N4活化Na2S2O8降解RhB的效果如圖4所示,在60 min內(nèi),Na2S2O8在可見光下(Na2S2O8/Vis)對(duì)RhB的降解率為47.2%;無光照時(shí),Na2S2O8/g-C3N4過程對(duì)RhB的降解率為80.4%. 而在可見光下,g-C3N4活化Na2S2O8對(duì)RhB的降解率在30 min就達(dá)到了91.7%. 說明g-C3N4在可見光下對(duì)Na2S2O8具有一定的活化作用.
圖4 可見光下g-C3N4活化Na2S2O8降解RhB的效果
Figure 4 Degradation of RhB by g-C3N4activated Na2S2O8under visible light irradiation
g-C3N4+hv→e-+h+,
(1)
(2)
(3)
(4)
2.2.2ρ(g-C3N4)對(duì)降解RhB的影響 隨著催化劑g-C3N4質(zhì)量濃度的增加,活化Na2S2O8降解RhB的效果就越明顯(圖5). 在4 g/L催化劑g-C3N4、降解30 min時(shí),RhB的質(zhì)量濃度從10 mg/L降低至0.433 mg/L,降解率達(dá)95.67%. 這是因?yàn)間-C3N4的用量越多,在可見光激發(fā)下為S2O82-提供更多的光生電子,從而促進(jìn)RhB的降解.
圖5 不同ρ(g-C3N4)活化Na2S2O8降解RhB的效果
Figure 5 Degradation of RhB with differentmass concentrations of g-C3N4
2.2.3ρ(Na2S2O8)對(duì)降解RhB效果的影響 通過改變Na2S2O8與RhB的質(zhì)量比為10∶1、20∶1、40∶1和60∶1,考察ρ(Na2S2O8)對(duì)降解RhB效果的影響(圖6). 隨著ρ(Na2S2O8)的增加,RhB的降解速率明顯加快. 當(dāng)Na2S2O8與RhB的質(zhì)量比增加到40∶1時(shí),再增加ρ(Na2S2O8)的,對(duì)RhB的降解速率影響不明顯.
圖6 不同ρ(Na2S2O8)的降解效果
Figure 6 Effect of different mass concentrations of Na2S2O8on RhB degradation
2.3 降解過程中ρ(Na2S2O8)的變化
為進(jìn)一步證實(shí)可見光下g-C3N4對(duì)ρ(Na2S2O8)的活化作用,對(duì)降解反應(yīng)過程中的ρ(Na2S2O8)的變化進(jìn)行了滴定和比較(圖7). 在Na2S2O8/可見光降解過程中,ρ(Na2S2O8)的變化不大,說明可見光對(duì)Na2S2O8沒有活化作用;而在Na2S2O8/g-C3N4/可見光過程中,ρ(Na2S2O8)不斷降低,說明g-C3N4在可見光下可以活化Na2S2O8.
圖7 降解過程中ρ(Na2S2O8)的變化Figure 7 Concentration of Na2S2O8 in the degradation process
2.4 催化劑g-C3N4的重復(fù)利用效果
催化劑的穩(wěn)定性是催化劑另一個(gè)需考慮的重要因素. g-C3N4催化劑在可見光下活化Na2S2O8的穩(wěn)定性是通過循環(huán)使用催化劑4次降解RhB來考察,g-C3N4催化劑經(jīng)過1~4次循環(huán)使用后,30 min內(nèi)對(duì)RhB的去除率分別為91.7%、90.9%、90.7%和91.8%,催化劑的循環(huán)穩(wěn)定性較好.
g-C3N4在可見光照條件下對(duì)Na2S2O8具有一定的活化作用,30 min 對(duì)RhB的降解率達(dá)到了91.7%. 并且隨著g-C3N4和Na2S2O8的質(zhì)量濃度的增加,RhB的降解率也增加. 通過對(duì)Na2S2O8/g-C3N4/可見光降解RhB過程中的ρ(Na2S2O8)的測(cè)定,證實(shí)了g-C3N4在可見光下對(duì)Na2S2O8的活化作用. 催化劑g-C3N4經(jīng)過4次循環(huán)使用后,30 min內(nèi)對(duì)RhB的去除率非常穩(wěn)定,展現(xiàn)出較好的穩(wěn)定性.
[1] HORI H,YAMAMOTO A,HAYAKAWA E,et al. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant[J]. Environmental Science & Technology,2005,39(7):2383-2388.
[2] WALDEMER R H,TRATNYEK P G,JOHNSON R L,et al. Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products[J]. Environmental Science & Technology,2007,41(3):1010-1015.
[3] LIANG S H,KAO C M,KUO Y C,et al. Application of persulfate-releasing barrier to remediate MTBE and benzene contaminated groundwater[J]. Journal of Hazardous Materials,2011,185(2):1162-1168.
[4] GAO Y,GAO N,DENG Y,et al. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water[J]. Chemical Engineering Journal,2012,195/196:248-253.
[5] SHI Y J,LI Y C,HUANG Y H. Application of UV/persulfate oxidation process for mineralization of 2,2,3,3-tetrafluoro-1-propanol[J]. Journal of the Taiwan Institute of Chemical Engineers,2013,44(2):287-290.
[6] HAZIME R,NGUYEN Q H,FERRONATO C,et al. Comparative study of imazalil degradation in three systems: UV/TiO2,UV/K2S2O8,and UV/TiO2/K2S2O8[J]. Applied Catalysis B: Environmental,2014,144(1):286-291.
[7] YANG S Y,WANG P,YANG X,et al. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat,UV and anions with common oxidants: persulfate,peroxymonosulfate and hydrogen peroxide[J]. Journal of Hazardous Materials,2010,179(1/2/3):552-558.
[8] 楊鑫. 活性炭催化過二硫酸鹽降解水中難生化有機(jī)污染物[D]. 青島:中國(guó)海洋大學(xué),2011.
[9] 趙進(jìn)英. 零價(jià)鐵/過硫酸鈉體系產(chǎn)生硫酸根自由基氧化降解氯酚的研究[D]. 大連:大連理工大學(xué),2010.
[10] 梁云海. 銅氧化物活化過硫酸鹽處理水中芳環(huán)有機(jī)污染物的研究[D]. 廣州:華南理工大學(xué),2013.
[11]MARCHESI M,ARAVENA R,SRA K S,et al. Carbon isotope fractionation of chlorinated ethenes during oxidation by Fe2+activated persulfate[J]. Science of the Total Environment,2012,433:318-322.
[12]RASTOGI A,AL-ABED S R,DIONYSIOU D D. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems[J]. Applied Catalysis B Environmental,2009,85(3/4):171-179.
[13]SIHYUN D, JEONGHWAN J, YOUNGHOON J,et al. Application of a peroxymonosulfate/cobalt (PMS/Co(II)) system to treat diesel-contaminated soil[J]. Chemosphere,2009,77(8):1127-1131.
[14]WANG Y,HONG C S. Effect of hydrogen peroxide,periodate and persulfate on photocatalysis of 2-chlorobiphenyl in aqueous TiO2suspensions[J]. Water Research,1999,33(9):2031-2036.
[15] 孟雅麗. g- C3N4的合成及其光催化研究[D]. 大連:大連理工大學(xué),2011.
[16] 楚增勇,原博,顏廷楠. g-C3N4光催化性能的研究進(jìn)展[J]. 無機(jī)材料學(xué)報(bào),2014,29(8):785-794.
CHUZ Y,YUAN B,YAN T N. Recent progressin photocatalysis materials[J]. Journal of Inorganic Materials,2014,29(8):785-794.
[17]LIAO G,ZHU D,LI L,et al. Enhanced photocatalytic ozonation of organics by g-C3N4under visible light irradiation[J]. Journal of Hazardous Materials,2014,280:531-535.
[18]WANG Y,IBAD M F,KOSSLICK H,et al. Synthesis and comparative study of the photocatalytic performance of hierarchically porous polymeric carbon nitrides[J]. Microporous & Mesoporous Materials,2015,211:182-191.
【中文責(zé)編:譚春林 英文審校:李海航】
Degradation of Rhodamine B by Carbon Nitride Activated Sodium Persulfate under Visible Light Irradiation
LIAO Gaozu1*, ZHANG Jingwen1, DENG Dayi1, PENG Libin1, MA Chuanjun2
(1. School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China;2. Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116000, China)
g-C3N4was synthesized by direct calcination of urea and characterized by XRD and DRS. Degradation of Rhodamine B by g-C3N4activated sodium persulfate under visible light was investigated. The dosage of g-C3N4, sodium persulfate in the degradation process was also studied. Results showed that 91.7% of RhB was degraded in 30 min by g-C3N4activated sodium persulfate under visible light. A positive correlation existed between degradation ratio of RhB and amount of g-C3N4or sodium persulfate. The results of titration experiment indicate that g-C3N4is effective for activation of sodium persulfate under visible light. Moreover, g-C3N4shows good stability after four cycle experiments.
g-C3N4; Na2S2O8; Rhodamine B; visible light
2015-10-11 《華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版)》網(wǎng)址:http://journal.scnu.edu.cn/n
國(guó)家自然科學(xué)基金項(xiàng)目(21207042)
O643.32
A
1000-5463(2017)03-0044-05
*通訊作者:廖高祖,講師,Email:liaogaozu@m.scnu.edu.cn.