王軍林,郭 華,任小強,孫建恒
?
災害風荷載下溫室單層柱面網(wǎng)殼整體動力倒塌分析
王軍林,郭 華,任小強,孫建恒※
(河北農(nóng)業(yè)大學城鄉(xiāng)建設學院,保定 071001)
該文針對大跨輕質(zhì)單層柱面網(wǎng)殼在災害強風天氣下存在動力倒塌破壞的可能性,利用顯式有限元分析軟件ANSYS/LS-DYNA及自編前后處理程序,綜合考慮了幾何非線性、材料非線性和接觸非線性,建立了災害風荷載下溫室單層柱面網(wǎng)殼結(jié)構(gòu)整體動力倒塌的數(shù)值分析模型,考察了單層柱面網(wǎng)殼的動力倒塌發(fā)展全過程。以節(jié)點位移和變形形態(tài)等幾何特征響應對網(wǎng)殼結(jié)構(gòu)進行了動力倒塌過程分析,將網(wǎng)殼結(jié)構(gòu)倒塌過程依據(jù)其特性劃分為輕度損傷階段,倒塌形成階段和整體倒塌階段3個階段;同時以桿件內(nèi)力和截面塑性發(fā)展等力學特征響應對網(wǎng)殼結(jié)構(gòu)進行了動力倒塌機理研究,指出網(wǎng)殼結(jié)構(gòu)的風致動力倒塌原因是風壓區(qū)壓桿反復屈曲和拉桿依次失效相互作用的綜合體現(xiàn)。對比分析考慮下部支承與不考慮下部支承單層柱面網(wǎng)殼的動力倒塌過程,結(jié)果表明,考慮下部支承柱時網(wǎng)殼結(jié)構(gòu)動力倒塌對應的臨界荷載系數(shù)發(fā)生了25%的明顯降幅。該研究為溫室網(wǎng)殼結(jié)構(gòu)的抗風設計、工程應用和防災評估提供了理論參考。
溫室;模型;荷載;單層柱面網(wǎng)殼;風荷載;動力倒塌
設施農(nóng)業(yè)是衡量一個國家農(nóng)業(yè)現(xiàn)代化程度的重要標志之一,快速發(fā)展的設施農(nóng)業(yè)對溫室結(jié)構(gòu)提出了標準化、大型化、高效化的更高要求,并且需要具備抵御風雪等自然災害的抗災防災能力[1]。區(qū)別于傳統(tǒng)的文洛型等輕型鋼框架平面結(jié)構(gòu)(彎矩結(jié)構(gòu)),空間網(wǎng)殼結(jié)構(gòu)(軸力結(jié)構(gòu))具有傳力能力強,跨越空間大,經(jīng)濟指標優(yōu),建筑造型美等優(yōu)點[2],尤其是跨度30 m以上溫室單層網(wǎng)殼的受力性能和用鋼指標明顯優(yōu)于文洛型等平面溫室結(jié)構(gòu)[3-4];同時網(wǎng)殼結(jié)構(gòu)僅由細長桿件和節(jié)點組成,相比雙層網(wǎng)殼結(jié)構(gòu),單層柱面網(wǎng)殼透光性更好,結(jié)構(gòu)表面鏤空率一般在90%以上,滿足溫室透光性要求,在國內(nèi)外大型溫室建筑中得到了廣泛應用[5-9]。大跨輕質(zhì)溫室網(wǎng)殼結(jié)構(gòu)為典型風荷載敏感性結(jié)構(gòu),風荷載成為溫室網(wǎng)殼結(jié)構(gòu)抗風設計及防災分析的主要荷載,風致動力響應明顯,在不利的風荷載下很可能將直接導致結(jié)構(gòu)的動力倒塌[10-11]。近年來,沿海國家或地區(qū)極端強風、暴雪等災害天氣頻發(fā),導致大量的溫室結(jié)構(gòu)倒塌損毀,造成嚴重的農(nóng)業(yè)經(jīng)濟損失[12-14]。因此,關于溫室網(wǎng)殼結(jié)構(gòu)在災害風荷載下防倒塌、抗倒塌方面的研究需引起重點關注。
目前,國內(nèi)外對空間網(wǎng)殼結(jié)構(gòu)的研究主要集中在簡單荷載、地震等作用下的動力失穩(wěn)和強度失效方面,而在災害風荷載作用下的災變機理方面的研究相對較少。在強風災變機理研究方面,Li等[15-16]分析了球面網(wǎng)殼在風荷載下的振動特性及穩(wěn)定性;Uemats等[17-18]研究了大跨球面網(wǎng)殼在風荷載下的非線性動力響應;黃友欽等[19]通過風洞實驗研究了不同風向角下單層柱面網(wǎng)殼的動力失穩(wěn);陳宇峰等[20]研究了大跨空間結(jié)構(gòu)在隨機數(shù)值風場作用下的動力穩(wěn)定性能,并與靜力全過程進行了對比分析;王軍林等[21-24]考察了風荷載下單層網(wǎng)殼結(jié)構(gòu)動力響應特征及動力失效破壞過程,進行了較全面的參數(shù)分析,探討了臨界風速的不同影響因素及規(guī)律。喻瑩等[25]研究了雙層柱面網(wǎng)殼風致動力倒塌破壞性能,建立了結(jié)構(gòu)倒塌破壞的控制指標,優(yōu)化了網(wǎng)殼結(jié)構(gòu)參數(shù)。謝恩獻等[26]分析了弦支網(wǎng)殼在臺風作用下的動力失效全過程,提出了適用于弦支網(wǎng)殼在臺風作用下的動力失效判定標準。但以上研究主要存在2個問題:一是分析對象大都為直接落地網(wǎng)殼結(jié)構(gòu),未考慮下部支承對上部結(jié)構(gòu)的作用和影響,實際工程中網(wǎng)殼結(jié)構(gòu)大都支承于下部結(jié)構(gòu)之上。目前國內(nèi)外規(guī)范對于大跨網(wǎng)殼與下部支承體系協(xié)同作用分析的規(guī)定也僅限于概念建議和定性要求上[27-28],分開或單獨建模與整體建模計算明顯存在差異,且可能出現(xiàn)不安全的情況,并且在計算方面缺少定量分析;二是分析過程中桿件均未細分為多個單元,即不能考慮桿件撓曲失穩(wěn),而網(wǎng)殼結(jié)構(gòu)由細長桿件組成,且桿件屈曲會直接影響網(wǎng)殼整體穩(wěn)定性[29],同時也未考慮拉桿的塑性失效對網(wǎng)殼倒塌過程的影響。因此,研究考慮下部支承和上部網(wǎng)殼整體結(jié)構(gòu)的風致動力倒塌特性,對于溫室網(wǎng)殼結(jié)構(gòu)的工程應用和防災評估均具有重要意義。不同形式單層柱面網(wǎng)殼鏤空率的大致范圍為90%~95%,其中三向網(wǎng)格單層柱面網(wǎng)殼的鏤空率約為92%,透光率約為84%,透光性能好。兼顧受力性能,本文以三向網(wǎng)格單層柱面網(wǎng)殼和下部支承整體模型為研究對象,使其更為接近工程實踐中溫室結(jié)構(gòu)的實際情況,以考察下部支承對溫室網(wǎng)殼結(jié)構(gòu)在災害風荷載下動力倒塌性能的影響;同時,在歷經(jīng)倒塌的大變形過程中考慮了壓桿屈曲和拉桿失效的影響。為了對網(wǎng)殼結(jié)構(gòu)在災害風荷載作用下從破壞直至倒塌整個過程中的動力失效機理進行全面而深入的認識,利用通用顯式有限元分析軟件ANSYS/LS-DYNA,對災害風荷載下柱面網(wǎng)殼和下部支承整體動力倒塌進行全過程分析,結(jié)合結(jié)構(gòu)宏觀和細觀的力學性能和響應特征,考察壓桿屈曲和拉桿失效對倒塌破壞過程的影響。以期為溫室網(wǎng)殼結(jié)構(gòu)的抗風設計提供參考。
1.1 柱面網(wǎng)殼整體模型的建立
基本模型上部結(jié)構(gòu)選取縱向長度=45 m,跨度=30 m,矢高=13.5 m的三向網(wǎng)格單層柱面網(wǎng)殼,支承柱高度=10 m(圖1)。網(wǎng)殼桿件為截面121 mm×8 mm圓形鋼管,邊梁為截面250 mm×250 mm×10 mm×8 mm矩形鋼管,下部支承結(jié)構(gòu)由12根800 mm×20 mm圓形鋼管支承柱組成。經(jīng)計算網(wǎng)殼結(jié)構(gòu)中心點位置的最大撓度為53 mm,小于現(xiàn)行規(guī)范中要求的單層網(wǎng)殼結(jié)構(gòu)跨度的1/400[27]。上部網(wǎng)殼桿件和下部支承柱均采用Beam161單元模擬,各構(gòu)件均沿長度方向劃分為6個單元;屋面荷載簡化成為Mass166集中質(zhì)量單元施加于節(jié)點;剛性地面采用實體單元Solid164,所有單元之間的連接均視為剛性連接。
在災害風荷載下結(jié)構(gòu)材料將進入塑性階段,鋼材在強動荷載下比靜載下可呈現(xiàn)出更高的屈服應力,對結(jié)構(gòu)在風荷載下的動力響應及倒塌有顯著影響,故材料模型采用LS-DYNA 中適用于鋼材且考慮應變率效應的塑性隨動模型(plastic kinematic model),該模型采用Cowper- Symonds 準則可考慮應變速率效應對材料屈服應力的影響。網(wǎng)殼和支承材料均采用工程中常用鋼材Q235,其屈服強度為235 MPa,彈性模量為206 GPa,泊松比為0.3,密度為7 850 kg/m3,失效應變?yōu)?.02[30],即如某單元有效塑性應變達到0.02,表示該單元發(fā)生斷裂失效,程序會自動從求解中除去該失效單元。同時,采用LS-DYNA 材料庫中剛性材料Mat-Rigid模型來模擬剛性地面。阻尼模型采用Reyleigh模型。
在振動和倒塌過程中,單元的失效可能使相鄰構(gòu)件發(fā)生碰撞現(xiàn)象,而且倒塌時掉落的構(gòu)件和剛性地面之間的相互作用也會對倒塌過程產(chǎn)生影響,故在分析中需要考慮接觸效應。本文采用LS-DYNA提供的自動單面接觸(contact automatic single surface)模擬上部構(gòu)件之間以及上部構(gòu)件和剛性地面之間的碰撞作用,該接觸類型尤其適用于未知接觸表面的自身接觸或大變形問題。
1.2 風載時程的實現(xiàn)
MATLAB風荷載模擬主要參數(shù):采用自回歸濾波器模型法(autoregressive models,AR),平均風速為指數(shù)律模型,目標譜為Davenport脈動風速譜,回歸階數(shù)=4,下截止頻率=0.01 Hz,上截止頻率=10 Hz,頻率增量為Δ=0.01 Hz,時間步長Δ=0.1 s,模擬時長=30 s,地面粗糙度=0.003,10 m高處標準風速10=21.6 m/s,衰減系數(shù)C,C,C各為16,8,10[23]。依據(jù)中國現(xiàn)行溫室結(jié)構(gòu)設計荷載規(guī)范[31],本文以軸負向為來風向為例作受風分析(圖1)。圖2為91節(jié)點在標準風速10=21.6 m/s時的風速時程曲線。AR法模擬脈動風速時程時,相應功率譜模擬函數(shù)和目標函數(shù)的吻合度較高,說明該法適用于模擬網(wǎng)殼結(jié)構(gòu)中各節(jié)點的脈動風速[23]。
施加于網(wǎng)殼結(jié)構(gòu)各節(jié)點的風荷載時程可描述為
(2)
不考慮風荷載空間相關性情況下,網(wǎng)殼結(jié)構(gòu)得到的極限承載力要小幅降低,也就是不考慮風荷載的相關性并不會帶來安全性方面的問題[23],同時使得問題分析得到簡化。較地震等其它形式動荷載,風荷載輸入數(shù)據(jù)量明顯要大,故對風荷載不考慮其空間相關性的簡化處理是必要且可行的。為便于分析,本文網(wǎng)殼結(jié)構(gòu)上所有節(jié)點的風荷載均按某一點的風速時程輸入[23]。
1.3 動力響應的分析方法
有限單元法適合于解決網(wǎng)殼結(jié)構(gòu)動力響應的高度非線性問題,在動力分析整個過程中的基礎理論就是動力體系運動方程的建立,有限單元法多采用經(jīng)典的Hamilton原理,表述如下
(5)
(6)
式中,,,,分別為體系的質(zhì)量矩陣、阻尼矩陣、剛度矩陣、動力荷載向量、位移矩陣。利用LS-DYNA分析網(wǎng)殼風致動力倒塌,采用中心差分法進行求解,該方法利用集中質(zhì)量矩陣,動力方程的求解過程是非耦合的,不需要反復迭代,同時采用中心單點積分,計算效率較高,適用于模擬具有高度非線性的工程問題。
2.1 災害風載下的倒塌過程
假定(,)為風荷載()下柱面網(wǎng)殼結(jié)構(gòu)一單元在某時刻的響應量,則結(jié)構(gòu)的特征響應量為網(wǎng)殼結(jié)構(gòu)上所有單元在整個計算周期內(nèi)具有的最大響應量,可進一步描述為
式中N為n的最大值,即網(wǎng)殼結(jié)構(gòu)單元總數(shù);T為t的最大值,即一個計算周期時長。研究中首先將基本風壓對應的風荷載作為初始風荷載作用于網(wǎng)殼結(jié)構(gòu),通過調(diào)節(jié)荷載系數(shù)按比例不斷增加風荷載水平,對網(wǎng)殼結(jié)構(gòu)進行非線性動力響應分析,確定動力倒塌臨界荷載系數(shù)。通過多次試算,網(wǎng)殼結(jié)構(gòu)在輸入荷載系數(shù)λ= 6對應的風荷載時發(fā)生動力倒塌。圖3、圖4分別為荷載系數(shù)λ=2、λ=4、λ=6等3種情況下的特征位移量wmax所在節(jié)點5156的位移時程曲線和網(wǎng)殼結(jié)構(gòu)對應的正立面和側(cè)立面變形形態(tài)。在荷載系數(shù)λ=2、λ=4等2種較低水平風荷載的情況下,網(wǎng)殼結(jié)構(gòu)主要以彈性振動為主,平衡位置在振動過程中基本保持不變,振動幅度較小,見圖3、圖4a和圖4b。在荷載系數(shù)λ=6對應較高水平風荷載的情況下,網(wǎng)殼結(jié)構(gòu)進行彈塑性振動,平衡位置在振動過程中先是保持為穩(wěn)定狀態(tài)接著發(fā)生突變,振動幅度隨之驟然增大,最終呈現(xiàn)出正弦波形的倒塌形態(tài),見圖3和圖4c。
當荷載系數(shù)= 6時,柱面網(wǎng)殼結(jié)構(gòu)的倒塌全過程可分為以下3個階段:
第1階段(自開始至21.7 s),網(wǎng)殼結(jié)構(gòu)桿件總體上處于變形可恢復的彈性階段,從受壓中心區(qū)到靠近兩端橫隔受壓區(qū)先后僅有極少數(shù)桿件進入屈服階段,該階段發(fā)生了一定程度的塑性變形,但進入屈服的桿件各自發(fā)展,并未彼此相連,故該階段無明顯的局部塌陷區(qū)域形成(圖5a),結(jié)構(gòu)的完整性尚保持完好。
第2階段(21.7~22.6 s),網(wǎng)殼兩端自底部至頂部受風壓區(qū)桿件發(fā)生動力屈曲,形成帶狀屈曲區(qū)域;同時,不同區(qū)域的獨立塑性桿件向鄰近桿件加速發(fā)展,局部連通形成塑性區(qū)域,受拉桿件積累了較高程度的塑性變形,故結(jié)構(gòu)振動平衡位置開始明顯偏移,受壓區(qū)塌陷區(qū)域開始形成,結(jié)構(gòu)整體性遭受破壞,見圖5b。
第3階段(22.6 s以后),在網(wǎng)殼結(jié)構(gòu)帶狀屈曲區(qū)域的塑性桿件首先達到失效應變,桿件開始發(fā)生斷裂失效,在持續(xù)動力作用下,連接塌陷區(qū)和非塌陷區(qū)的桿件相繼被撕扯而失效,塌陷區(qū)域迅速擴大,至24.8 s塌陷區(qū)域桿件跌落至地面,如圖5c所示。結(jié)構(gòu)的完整性完全喪失,最終發(fā)生倒塌破壞。
2.2 災害風載下的倒塌機理
與地震作用下網(wǎng)殼結(jié)構(gòu)的動力倒塌機理不同,風荷載作用下的動力倒塌機理具有特殊性,這主要是由風荷載的特點決定的。作用于網(wǎng)殼結(jié)構(gòu)的風荷載體型系數(shù)和風壓高度變化系數(shù)與網(wǎng)殼的幾何構(gòu)造相聯(lián)系,具體表現(xiàn)為網(wǎng)殼結(jié)構(gòu)是受風吸力或風壓力作用,其中受風吸力作用使桿件受拉,而風壓力作用使桿件處于更為不利的受壓狀態(tài),二者綜合起來體現(xiàn)為對結(jié)構(gòu)失效形態(tài)和極限承載力的影響。在宏觀上網(wǎng)殼結(jié)構(gòu)倒塌變形的3個階段中,桿件的力學特征相應存在著顯著的變化和差別。
第1階段,網(wǎng)殼結(jié)構(gòu)主要承受薄膜內(nèi)力,即桿件以承受軸力為主,承受的彎矩要明顯小于軸力(圖6a),桿件力學參量變化趨勢具有明顯連續(xù)性,結(jié)構(gòu)傳力路徑通暢,無明顯塌陷區(qū)域形成;隨著風壓區(qū)風荷載的不斷作用,網(wǎng)殼主要受壓區(qū)的廣度不斷擴展。網(wǎng)殼中心受壓區(qū)單元2610及端部受壓區(qū)單元1939的內(nèi)力時程曲線分別見圖7a和圖7b;單元編號見圖8a。由圖7可見,單元2610及單元1939不斷出現(xiàn)軸向壓力減小而彎矩增大的現(xiàn)象,這是壓彎單元在動力作用下反復進入屈曲狀態(tài)的典型力學特征[32]。對于單元2610在0.5~1.5 s之間的3次動力屈曲(圖7a),其所在桿件大體上處于彈性狀態(tài)(圖8a),在振動過程中會使桿件受力在拉彎和壓彎狀態(tài)之間不斷轉(zhuǎn)換,仍屬于構(gòu)件層次的單桿屈曲,對結(jié)構(gòu)承載力的影響較小;與單元2610不同的是,單元1939在19.2~21.7 s之間的前2次動力屈曲,其所在桿件主要處于彈塑性狀態(tài)(圖8b),桿件的反復屈曲使得塑性變形在桿件截面不斷積累,將對結(jié)構(gòu)整體剛度產(chǎn)生明顯的影響。整體來看,隨著風荷載的不斷作用,首先是網(wǎng)殼中心受壓區(qū)桿件端部變形持續(xù)增加,率先進入塑性狀態(tài),而后在網(wǎng)殼兩端區(qū)域桿件在反復屈曲作用下進入塑性拉彎狀態(tài)。同時,網(wǎng)殼中上部區(qū)域的振動平衡位置會沿著來風向發(fā)生小幅位移,網(wǎng)殼產(chǎn)生不可恢復的結(jié)構(gòu)性損傷,該階段為輕度損傷階段。
a. 單元2610
a. Element 2610
第2階段,約歷時0.9 s,盡管持時較短,網(wǎng)殼結(jié)構(gòu)兩端部區(qū)域的內(nèi)力成分卻變化迅速,該區(qū)域承受彎曲內(nèi)力明顯(圖6);網(wǎng)殼的幾何形態(tài)與力學特征相適應,產(chǎn)生迎風面風壓區(qū)向下凹陷、背風面風吸區(qū)上凸起的明顯塌陷形態(tài)(圖5b)。塌陷區(qū)域的形成是第1階段的塑性積累與該階段單元動力屈曲的綜合結(jié)果。單元1939在21.5~22.1 s之間發(fā)生第3次動力屈曲(圖7b),其所在桿件的再次屈曲使得桿件由壓彎狀態(tài)轉(zhuǎn)化為拉彎狀態(tài),是屬于結(jié)構(gòu)層次的局部屈曲;在網(wǎng)殼兩端部塑性程度進一步加深而形成軟化帶,使得該帶狀區(qū)域自身傳力能力弱化,對應承擔的荷載部分向受拉區(qū)進行了傳導,受壓區(qū)域由網(wǎng)殼下部向頂部傳遞,網(wǎng)殼受拉區(qū)的面積逐漸被擠壓。結(jié)構(gòu)桿件內(nèi)力重新調(diào)整反過來又適應于幾何形態(tài)的變化,結(jié)構(gòu)的整體性遭到明顯破壞,整體剛度隨之被削弱,這是造成倒塌形成的主要原因,而風荷載的持續(xù)作用使得塌陷區(qū)域進一步迅速發(fā)展,該階段為塌陷形成階段。
第3階段,網(wǎng)殼結(jié)構(gòu)的力學特征和幾何形態(tài)發(fā)生深刻變化,力學參量的連續(xù)性隨著桿件失效斷裂而破壞(圖6c)。在第2階段末,網(wǎng)殼靠近橫隔的單元3063發(fā)生歷時約0.15 s的動力屈曲,隨著桿端彎矩持續(xù)增大,進入塑性桿件不斷增加(圖8c);同時桿端塑性變形不斷積累,在=22.6 s時,達到失效應變0.02;隨后單元失效,歷時0.1 s,彎矩和軸力各從18.7 kN·m、12.0 kN均卸載為0,單元3063退出計算過程(圖9),其所在桿件自然由拉彎構(gòu)件轉(zhuǎn)換為懸臂構(gòu)件,也就說明對應的傳力路徑被截斷,網(wǎng)殼兩端塑性軟化帶的相鄰構(gòu)件由于失效單元瞬間卸載的撕扯作用而相繼斷裂;同時,網(wǎng)殼結(jié)構(gòu)在風荷載來風向上整體的拉扯作用,主要由來風向側(cè)網(wǎng)殼底部與鋼梁相連的桿件承擔,對應桿件為受軸向拉力為主的拉彎構(gòu)件,在失效單元卸載的突增動力效應下迅速斷裂,失效桿件比例隨時間變化曲線如圖10所示,進而形成3個主要的斷裂區(qū)域(圖11a),主要包括網(wǎng)殼左右側(cè)2個帶狀區(qū)域和網(wǎng)殼風壓區(qū)底部1個帶狀區(qū)域;圖11b為網(wǎng)殼左側(cè)斷裂區(qū)域中失效桿件失效順序示意圖。塌陷區(qū)域的有效傳力路徑隨著失效桿件的增多而減少,塌陷區(qū)在風荷載作用下沿來風向及豎向快速移動,風吸區(qū)面積不斷轉(zhuǎn)換新的塌陷區(qū),在=24.8 s時,網(wǎng)殼底部與邊梁相連的桿件跌落至地面。至此,網(wǎng)殼結(jié)構(gòu)形成了工程直觀意義上的風致動力整體倒塌,該階段為整體倒塌階段。
2.3 下部支承柱對上部網(wǎng)殼的影響
與大多直接落地網(wǎng)殼不同,一般的溫室結(jié)構(gòu)主要由上部的大跨度空間屋面和其下部支承結(jié)構(gòu)組成,而下部支承結(jié)構(gòu)的剛度是影響上部網(wǎng)殼結(jié)構(gòu)動力特性的關鍵因素。為考察風荷載下整體結(jié)構(gòu)中下部支承對上部網(wǎng)殼動力倒塌性能的量化影響,建立無支承結(jié)構(gòu)的網(wǎng)殼結(jié)構(gòu)模型,將網(wǎng)殼縱向邊緣與下部支承柱相連的節(jié)點相應設置為三向固接,其它條件和參數(shù)不變,以便與上述有支承結(jié)構(gòu)的網(wǎng)殼結(jié)構(gòu)整體模型進行對比分析,通過試算得到無支承柱網(wǎng)殼結(jié)構(gòu)發(fā)生動力倒塌時對應的荷載系數(shù)為=8,發(fā)生動力倒塌時無支承柱網(wǎng)殼結(jié)構(gòu)和有支承柱網(wǎng)殼結(jié)構(gòu)的特征節(jié)點時間位移曲線如圖12所示。由圖12可知,與不考慮下部支承柱時的荷載系數(shù)=8相比,考慮下部支承柱時網(wǎng)殼結(jié)構(gòu)動力倒塌對應的荷載系數(shù)=6,發(fā)生了明顯的降低,降幅達25%。主要原因是一方面下部支承柱對上部網(wǎng)殼的約束剛度是有限的,一般情況下要小于無支承柱網(wǎng)殼結(jié)構(gòu)固接支座提供的約束剛度;另一方面下部支承柱在風荷載水平分量的作用下存在較大的水平位移,且相應2個支承柱頂端在水平向上有位移差,造成網(wǎng)殼結(jié)構(gòu)在跨度方向上的擠壓現(xiàn)象,引起結(jié)構(gòu)整體剛度的弱化。來風向和背風向支承柱頂時間位移曲線見圖13。
大跨度溫室單層柱面網(wǎng)殼為典型風敏感性結(jié)構(gòu);同時,組成網(wǎng)殼結(jié)構(gòu)的桿件具有細長特點,易發(fā)生桿件屈曲。分析中在考慮幾何非線性、材料非線性和接觸非線性的基礎之上,進一步引入了壓桿屈曲和拉桿失效2個因素,建立了溫室單層柱面網(wǎng)殼在風荷載下的動力倒塌分析模型。
1)以節(jié)點位移和變形形態(tài)等幾何特征響應對網(wǎng)殼結(jié)構(gòu)進行了動力倒塌過程分析,將網(wǎng)殼結(jié)構(gòu)倒塌過程劃分為輕度損傷階段、塌陷形成階段和整體倒塌階段3個階段;以桿件內(nèi)力和截面塑性發(fā)展等力學特征響應對網(wǎng)殼結(jié)構(gòu)進行了動力倒塌機理分析,網(wǎng)殼結(jié)構(gòu)的動力倒塌是壓桿反復屈曲和拉桿依次失效綜合發(fā)展的結(jié)果。
2)將無支承柱的網(wǎng)殼結(jié)構(gòu)與有支承柱的網(wǎng)殼結(jié)構(gòu)進行對比分析,結(jié)果表明,考慮下部支承柱時網(wǎng)殼結(jié)構(gòu)動力倒塌對應的荷載系數(shù)發(fā)生了25%的明顯降幅。因此,在考察風荷載下網(wǎng)殼結(jié)構(gòu)的動力倒塌分析時考慮下部支承柱的影響是有必要的;否則,將高估網(wǎng)殼結(jié)構(gòu)的抗倒塌風荷載而易存安全隱患。
[1] 初江,徐麗波,姜麗娟,等. 設施農(nóng)業(yè)的發(fā)展分析[J]. 農(nóng)業(yè)機械學報,2003,35(3):191-192.
Chu Jiang, Xu Libo, Jiang Lijuan, et al. Analysis of development of agricultural facilities[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003, 35(3): 191-192. (in Chinese with English abstract)
[2] 王仕統(tǒng). 簡論空間結(jié)構(gòu)新分類[J]. 空間結(jié)構(gòu),2008,14(3):13-21.
Wang Shitong. Brief discussion on new classification for spatial structures[J]. Spatial Structures, 2008, 14(3): 13-21. (in Chinese with English abstract)
[3] 齊飛,童根樹. 連棟溫室鋼結(jié)構(gòu)框架穩(wěn)定設計方法[J]. 農(nóng)業(yè)工程學報,2009,25(9):202-209.
Qi Fei, Tong Genshu. Stability design methods for steel frame of agricultural gutter-connected greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(9): 202-209. (in Chinese with English abstract)
[4] 張中昊,付強,范峰. 斜拉桿增強溫室雙向網(wǎng)格型單層柱面網(wǎng)殼穩(wěn)定性[J]. 農(nóng)業(yè)工程學報,2016,32(10):172-179.
Zhang Zhonghao, Fu Qiang, Fan Feng. Tension members strengthening stability of two-way grid single-layer cylindrical shell in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 172-179. (in Chinese with English abstract)
[5] 馬明,錢基宏,孔慧,等. 鄂爾多斯東勝區(qū)植物園溫室屋蓋結(jié)構(gòu)設計研究[J]. 建筑結(jié)構(gòu),2013,43(6):5-9.
Ma Ming, Qian Jihong, Kong Hui, et al. Design research on greenhouse of botanical garden in Erdos Dongsheng district[J]. Build Structure, 2013, 43(6): 5-9. (in Chinese with English abstract)
[6] 宋劍波. 黑瞎子島展覽溫室異型網(wǎng)殼結(jié)構(gòu)設計[J]. 建筑結(jié)構(gòu),2011,41(增刊1):768-772.
Song Jianbo. Design and analysis of the steel structure for Heixiazi Island Greenhouse[J]. Build Structure, 2011, 41(Supp.1): 768-772. (in Chinese with English abstract)
[7] 袁煥鑫,王元清,施剛,等. 將臺花園鋼結(jié)構(gòu)網(wǎng)殼焊接節(jié)點承載性能試驗[J]. 沈陽工業(yè)大學學報,2014,36(1):93-99.
Yuan Huanxin, Wang Yuanqing, Shi Gang, et al. Experiment on bearing capacity of welded steel joints lattice shell of Beijing Jiangtai Garden[J]. Journal of Shenyang University of Technology, 2014, 36(1): 93-99. (in Chinese with English abstract)
[8] 白音,王元清,石永久,等. 新加坡植物園展覽溫室Cool Dry拱殼雜交結(jié)構(gòu)的設計與整體穩(wěn)定性分析[J]. 空間結(jié)構(gòu),2011,17(1):81-85.
Bai Yin, Wang Yuanqing, Shi Yongjiu, et al. Design and global stability analysis of arch-shell structure for Cool Dry conservatory at gardens by the bay, Singapore[J]. Spatial Structures, 2011, 17(1): 81-85. (in Chinese with English abstract)
[9] 周曉峰,張良蘭,胡佳軼,等. 辰山植物園溫室鋁合金結(jié)構(gòu)設計[J]. 工業(yè)建筑,2011,41(11):30-35.
Zhou Xiaofeng, Zhang Lianglan, Hu Jiayi, et al. Structure design of Shanghai botanical garden greenhouses[J]. Industrial Construction, 2011, 41(11): 30-35. (in Chinese with English abstract)
[10] 周岱,舒新玲,周笠人. 大跨空間結(jié)構(gòu)風振響應及其計算與試驗方法[J]. 振動與沖擊,2002,21(4):9-14.
Zhou Dai, Shu Xinling, Zhou Liren. Wind-induced dynamic responses of long-span spatial structures and their computational and experimental methods[J]. Journal of Vibration and Shock, 2002, 21(4): 9-14. (in Chinese with English abstract)
[11] 范學偉,徐國彬,黃雨. 工程結(jié)構(gòu)的風災破壞和抗風設計[J]. 中國安全科學學報,2001,11(5):76-79.
Fan Xuewei, Xu Guobin, Huang Yu. Disaster caused by wind and wind-resistant design of engineering structure[J]. China Safety Science Journal, 2001, 11(5): 76-79. (in Chinese with English abstract)
[12] 陳佩燕,楊玉華,雷小途,等. 我國臺風災害成因分析及災情預估[J]. 自然災害學報,2009,18(1):64-73.
Chen Peiyan, Yang Yuhua, Lei Xiaotu, et al. Cause analysis and preliminary estimate of typhoon disaster in China[J]. Journal of Natural Disasters, 2009, 18(1): 64-73. (in Chinese with English abstract)
[13] 喬克,張其林. 大跨度雙層球面網(wǎng)架溫室動力特性研究[J]. 施工技術,2014,43(14):110-114.
Qiao Ke, Zhang Qilin. Dynamic characteristics investigations of large-span double-layer reticulated dome greenhouse[J]. Construction Technology, 2014, 43(14): 110-114. (in Chinese with English abstract)
[14] 陳文方,徐偉,史培軍. 長三角地區(qū)臺風災害風險評估[J]. 自然災害學報,2011,20(4):77-83. Chen Wenfang, Xu Wei, Shi Peijun. Risk assessment of typhoon disaster at county level in the Yangtze river delta of China[J]. Journal of Natural Disasters, 2011, 20(4): 77-83. (in Chinese with English abstract)
[15] Li Yuanqi, Tamura Yukio. Wind-resistant analysis for large-span single-layer reticulated shells[J]. International Journal of Space Structures, 2004, 19(1): 47-59.
[16] Li Yuanqi, Tamura Yukio. Nonlinear dynamic analysis for large-span single-layer reticulated shells subjected wind loading[J]. Wind and Structures, 2005, 8(1): 35-48.
[17] Uematsu Y, Yamada M, Inoue A, et al. Wind loads and wind-induced dynamic behavior of a single-layer latticed dome[J]. Journal Wind Engineering and Indus-trial Aerodynamics, 1997, 66(3): 227-248.
[18] Uematsu Y, Sone T, Yamada M, Hongo T. Wind-induced dynamic response and its load estimation for structural frames of single-layer latticed domes with long spans[J]. Wind and Structure, 2002, 5(6): 543-562.
[19] 黃友欽,顧明. 風荷載下單層柱面網(wǎng)殼的動力穩(wěn)定[J]. 振動與沖擊,2011,30(2):39-43.
Huang Youqin, Gu Ming. Dynamic instability of a single- layer cylindrical reticulated shell under wind loads[J]. Journal of Vibration and Shock, 2011, 30(2): 39-43. (in Chinese with English abstract)
[20] 陳宇峰,楊凌成,王曙光. 大跨空間結(jié)構(gòu)風致動力穩(wěn)定分析[J]. 南京工業(yè)大學學報,2013,35(4):91-96.
Chen Yufen, Yang Lingcheng, Wang Shuguang. Wind- induced dynamic stability analysis of large-span space structure[J]. Journal of Nanjing University of Technology, 2013, 35(4): 91-96. (in Chinese with English abstract)
[21] 王軍林,李紅梅,任小強,等. 單層柱面網(wǎng)殼結(jié)構(gòu)風振系數(shù)及其參數(shù)分析[J]. 河北農(nóng)業(yè)大學學報,2012,35(3):125-130.
Wang Junlin, Li Hongmei, Ren Xiaoqiang, et al. Wind-induced vibration coefficient and parametric analysis of single-layer cylindrical reticulated shell structures[J]. Journal of Agricultural University of Heibei, 2012, 35(3): 125-130. (in Chinese with English abstract)
[22] Wang Junlin, Li Hongmei, Ren Xiaoqiang, et al. Wind induced bucking analysis of single layer lattice domes[C]// Proc. of Asia-Pacific Conference on Shell and Spatial Structures, Seoul, 2012.
[23] 王軍林,李紅梅,郭華,等. 風荷載下單層柱面網(wǎng)殼彈塑性動力失效破壞有限元分析[J]. 空間結(jié)構(gòu),2013,19(4):40-46.
Wang Junlin, Li Hongmei, Guo Hua, et al. Finite element analysis of elastic-plastic dynamic failure of single-layer cylindrical reticulated shell structures under wind loads[J]. Spatial Structures, 2013, 19(4): 40-46. (in Chinese with English abstract)
[24] 王軍林,李紅梅,郭華,等. 風荷載下單層球面網(wǎng)殼彈塑性動力失效破壞研究[J]. 河北農(nóng)業(yè)大學學報,2014,37(4):107-112.
Wang Junlin, Li Hongmei, Guo Hua, et al. Study on elasto-plastic dynamic failure of single-layer latticed domes under wind loads[J]. Journal of Agricultural University of Heibei, 2014, 37(4): 107-112. (in Chinese with English abstract)
[25] 喻瑩,王繼中,朱興一. 基于有限質(zhì)點法的雙層柱面網(wǎng)殼強風作用下倒塌破壞研究[J]. 東南大學學報,2015,45(4):756-762.
Yu Ying, Wang Jizhong, Zhu Xingyi. Collapse analysis of double-layer cylindrical reticulated shell under strong wind based on finite particle method[J]. Journal of Southeast University, 2015, 45(4): 756-762. (in Chinese with English abstract)
[26] 謝恩獻,袁行飛,陳沖. 臺風作用下弦支網(wǎng)殼結(jié)構(gòu)動力失效[J]. 浙江大學學報,2017,51(2):238-244.
Xie Enxian, Yuan Xingfei, Chen Chong. Analysis of dynamical failure of suspendome under typhoon load[J]. Journal of Zhejiang University, 2017, 51(2): 238-244. (in Chinese with English abstract)
[27] 空間網(wǎng)格結(jié)構(gòu)技術規(guī)程: JGJ7-2010[S]. 北京:中國建筑工業(yè)出版社,2010.
[28] Specification for Structural Steel Buildings: AISC 360-10 [S].2010.
[29] 魏德敏,張科龍,姜正榮. 某大跨單層球面網(wǎng)殼結(jié)構(gòu)的非線性屈曲研究[J]. 空間結(jié)構(gòu),2014,20(1):40-44.
Wei Demin, Zhang Kelong, Jiang Zhengrong. Research of nonlinear buckling for one large-span single-layer spherical latticed shell[J]. Spatial Structures, 2014, 20(1): 40-44. (in Chinese with English abstract)
[30] Wang G. Collision and grounding[C]//16thinternational Ship and Offshore Structures Congress ISSC Southampton, UK, 2006.
[31] 溫室結(jié)構(gòu)設計荷載: GB/T 18622-2002[S]. 北京:中國標準出版社,2002.
[32] 張毅剛,周海濤,吳金志. 強震下單層球面網(wǎng)殼連續(xù)倒塌機理[J]. 北京工業(yè)大學學報,2013,39(4):562-569.
Zhang Yigang, Zhou Haitao, Wu Jinzhi. Mechanism of progressive collapse of spherical shell under severe earthquake[J]. Journal of Beijing University of Technology, 2013, 39(4): 562-569. (in Chinese with English abstract)
Global dynamic collapse analysis of single-layer cylindrical reticulated shell in greenhouse under disaster wind loads
Wang Junlin, Guo Hua, Ren Xiaoqiang, Sun Jianheng※
(,,071001,)
Single-layer cylindrical reticulated shell structures with the advantages in providing powerful transfer loads capability, large span space, excellent economic index, good light transmission performance and beautiful architectural style, not only are widely used in civil engineering, but also get more and more use in greenhouse construction because they can meet the requirement of rapid development of facility agriculture. Considering the high frequency of disaster winds in many regions of China, and the characteristics of reticulated shell structure including low overall stiffness, numerous vibration modes and great sensitivity to wind loads, the dynamic collapse may occur for single-layer reticulated cylindrical shell structure with large span and light weight in the weather of severe disaster winds. To analyze the collapse mechanism and the influence factor of this type of structure under wind loads is very important for the engineering design and theoretical analysis. In this paper, the analysis model of global dynamic collapse for single-layer cylindrical reticulated shell structure of greenhouse under wind loads was established by considering geometric nonlinearity, material nonlinearity and contact nonlinearity. In the numerical analysis, the effective plastic strain was defined to simulate the failure of tension members. To illustrate the influence of dynamic buckling of compression members on the collapse of the structure, each member was equally divided into 6 beam elements. The finite element explicit analysis software ANSYS/LS-DYNA was employed, and the dynamic buckling of compression members was considered. The collapse process of reticulated shell was analyzed and then was showed with the maximum nodal displacement, the deformed configuration and the plastic member distribution of the structure at different time. Based on the numerical analysis results and performance of the structure, the collapse process of reticulated shell was divided into 3 stages, which were named mild damage stage, collapse formation stage and overall collapse stage respectively. During the first stage (from the beginning to 21.7 s), the reticulated shell was generally in a deformation recoverable state with only a few members entering the plastic state in the compression area of the center and both ends of the structure. Therefore no local collapse occurred and little damage was produced to the structure performance. In the second stage (from 21.7 to 22.6 s), a series of dynamic buckling of members in the wind pressure zone from the bottom to the top of shell occurred, and a band-like buckling region was formed. At the same time, a number of tensile members entered the plastic state and gradually formed a plastic area. This weakened the stiffness of the structure, caused the structural vibration equilibrium position to deviate from its initial position, and finally caused the local collapse in the compression area of the structure. In the third stage (after 22.6 s), the plastic deformation of members in the buckling area of the reticulated shell reached its failure strain at first, and then the fracture failure of the members occurred. Under continuous dynamic forces, the collapse area rapidly expanded with the time, and finally led the shell to lose structural integrity completely at 24.8 s. In addition, considering most of the reticulated shell structures were supported with substructure, this paper also investigated the influence of substructure on the dynamic collapse performance of the upper reticulated shell under wind loads. The same reticulated shell model used above but without substructure was analyzed. The results of calculation showed that the load factor of the collapse of reticulated shell with substructure was reduced by 25% compared with that of the reticulated shell without substructure. The substructure would weaken the stiffness of the whole structure, and therefore reduce the wind loads bearing capacity of reticulated shell structure. It was necessary to consider the influence of substructure in the dynamic collapse analysis of reticulated shell structure under wind loads. Otherwise, the wind loads of the collapse of reticulated shell would be over-estimated. Based on the analysis results, some conclusions are drawn, which provide the basis theoretical reference for engineering analysis and further studies of reticulated shell structure in modern greenhouse.
greenhouse; models; loads; single-layer cylindrical reticulated shell; wind loads; dynamic collapse
10.11975/j.issn.1002-6819.2017.09.025
TU261
A
1002-6819(2017)-09-0195-09
2016-10-27
2017-04-20
建設部科學技術計劃項目(2015-K2-028);河北省科技計劃重點基礎研究項目(15965401D);河北省高等學??茖W研究項目(QN2015047);河北省建設科學技術研究計劃項目(2013-135)
王軍林,男,湖北孝感人,講師,主要從事空間鋼結(jié)構(gòu)抗震、抗風雪穩(wěn)定性能及動力倒塌研究。保定,河北農(nóng)業(yè)大學城鄉(xiāng)建設學院,071001。Email:wangjunlinauh@163.com
孫建恒,男,河北保定人,教授,博士,博士生導師,主要從事工程結(jié)構(gòu)理論及應用研究。保定,河北農(nóng)業(yè)大學城鄉(xiāng)建設學院,071001。Email:sunjianheng@yahoo.com
王軍林,郭 華,任小強,孫建恒. 災害風荷載下溫室單層柱面網(wǎng)殼整體動力倒塌分析[J]. 農(nóng)業(yè)工程學報,2017,33(9):195-203. doi:10.11975/j.issn.1002-6819.2017.09.025 http://www.tcsae.org
Wang Junlin, Guo Hua, Ren Xiaoqiang, Sun Jianheng. Global dynamic collapse analysis of single-layer cylindrical reticulated shell in greenhouse under disaster wind loads[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 195-203. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.09.025 http://www.tcsae.org