劉姣娣,曹衛(wèi)彬,許洪振,田東洋,焦灝博,歐陽異能
?
自動補苗裝置精準定位自適應(yīng)模糊PID控制
劉姣娣1,2,曹衛(wèi)彬1※,許洪振3,田東洋1,焦灝博1,歐陽異能4
(1. 石河子大學(xué)機械電氣工程學(xué)院,石河子 832000; 2. 重慶大學(xué)機械傳動國家重點實驗室,重慶 404100; 3. 新疆天業(yè)股份有限公司,石河子 832000; 4. 石河子大學(xué)理學(xué)院,石河子 832000)
為實現(xiàn)補苗裝置精準定位控制,解決自動移栽作業(yè)過程中因穴盤缺苗和取苗投苗失敗而導(dǎo)致的漏栽問題,采用自適應(yīng)Fuzzy-PID 控制算法來實現(xiàn)缽苗輸送的步進定位控制。構(gòu)建了步進電機角速度控制傳遞函數(shù)的數(shù)學(xué)模型,設(shè)計了自適應(yīng) Fuzzy-PID控制器及其模糊規(guī)則,通過MATLAB的Simulink模塊建立了基于模糊PID控制器的步進電機系統(tǒng)角速度控制模型,以階躍信號作為激勵信號,自適應(yīng)模糊PID控制和PID控制的仿真試驗表明:PID控制的響應(yīng)時間為7 s,出現(xiàn)超調(diào)量為0.1的振蕩,通過調(diào)整PID控制器參數(shù)增大比例系數(shù),系統(tǒng)響應(yīng)時間縮短為2.2 s,系統(tǒng)響應(yīng)速度明顯加快,且未出現(xiàn)振蕩環(huán)節(jié);自適應(yīng)模糊 PID 的響應(yīng)時間為 0.12 s,步進電機系統(tǒng)快速到達階躍響應(yīng)的穩(wěn)態(tài)值,步進電機角速度控制穩(wěn)定,角速度響應(yīng)快,滿足缽苗輸送的定位要求。自動補苗試驗結(jié)果表明:在植苗頻率為40、50與60株/min時,補苗成功率分別為100%,100%、95.8%,且只要光纖傳感器檢測到漏苗信號,基于自適應(yīng)Fuzzy-PID控制的步進電機系統(tǒng)快速響應(yīng),補苗控制系統(tǒng)都能準確及時地進行自動補苗。該研究可為解決自動移栽機田間作業(yè)的漏栽問題提供參考。
農(nóng)業(yè)機械;試驗;控制;自動補苗;定位控制
穴盤苗自動移栽機取苗方式主要有2種:一是通過取苗針從穴盤中夾取出缽苗,并投入到栽植器中;另一種是通過頂桿頂出缽苗,并將缽苗輸送到栽植器中。這2種取苗方式都會存在移栽漏苗現(xiàn)象,主要是因為:1)育苗穴盤穴格本身缺苗造成空取苗現(xiàn)象;2)取苗過程中取苗夾片夾碎缽體,無法將缽苗成功夾取進行投苗,頂桿式取苗機構(gòu)頂出位置錯位,無法將缽苗從穴格中頂出;3)植苗機構(gòu)與取苗機構(gòu)運動配合不穩(wěn)定,造成取苗機構(gòu)投苗失敗[1]。
目前研究集中在對穴盤缺苗進行識別,利用機器視覺系統(tǒng)檢測穴孔中的缽苗是否存在和是否健康缽苗,計算出最佳的移栽路徑來引導(dǎo)末端執(zhí)行器移栽缽苗,以降低移栽漏栽率。Vol[2]利用機器視覺系統(tǒng)檢測穴盤缽苗移缽作業(yè)質(zhì)量;Tai等[3]開發(fā)了一種機器視覺移缽系統(tǒng)提高穴盤缽苗移栽的質(zhì)量,對16種不同的作物進行試驗,檢測空穴孔的準確率可達95%;蔣煥煜等[4-5]開發(fā)了適用于穴盤缽苗健康狀態(tài)信息檢測和溫室內(nèi)缽苗移栽的軟、硬件系統(tǒng),利用機器視覺技術(shù)獲取穴盤缽苗的健康信息;金鑫[6]開發(fā)了自動識別取苗系統(tǒng)對幼苗莖桿進行識別,判斷穴盤穴格有無苗,指導(dǎo)供苗機構(gòu)進行取苗動作;王僑等[7]基于Fuzzy-PID控制理論對苗盤的步進輸送定位控制。國內(nèi)研究基本是利用機器視覺技術(shù)來檢測苗盤,對苗盤缺苗進行檢測,解決因苗盤穴格本身缺苗造成空取苗的漏栽問題。但實際移栽作業(yè)中,漏栽還會因為取苗針夾持穴盤苗缽體失敗和投苗失敗而產(chǎn)生。
本文針對自動移栽機產(chǎn)生漏栽的原因,設(shè)計一套架構(gòu)于自動移栽機的自動補苗裝置[8],對自動移栽機補苗裝置的補苗定位控制進行了系統(tǒng)分析和研究,對比于移栽機控制系統(tǒng)中常見的簡單的閉環(huán)定位控制,提出自適應(yīng)Fuzzy-PID控制算法,以達到精準補苗的目的。
1.1 自動補苗裝置組成及工作原理
基于苗缽力學(xué)特性試驗和取苗植苗機構(gòu)理論與參數(shù)仿真優(yōu)化分析的基礎(chǔ)上[1,9],設(shè)計自動補苗系統(tǒng),該系統(tǒng)不僅要實現(xiàn)對取苗機構(gòu)是否成功取苗、投苗進行自動準確檢測,同時能夠?qū)崿F(xiàn)補苗裝置精準定位控制,解決自動移栽作業(yè)過程中因取苗、投苗失敗而導(dǎo)致的漏栽問題。
本文基于石河子大學(xué)研制的2ZXM-2全自動膜上移栽機[10],在移栽機上架構(gòu)的自動補苗裝置如圖1所示,主要由移栽機機架1、補苗系統(tǒng)2、斜置隔板3、缽苗輸送帶4、取苗機構(gòu)5、苗盤輸送裝置6、取苗檢測系統(tǒng)7、栽植機構(gòu)8組成。缽苗輸送帶的斜置隔板上有預(yù)先放置好的健康缽苗。取苗檢測系統(tǒng)的光纖傳感器選擇信號穩(wěn)定、受干擾小的日本OMRON公司生產(chǎn)的歐姆龍E3X-DAC11-S 2M與E32-ZD200 2M組合,調(diào)整光纖傳感器的安裝位置,使其對準取苗機械手松開投苗的位置點,確保能準確檢測到取苗機械手是否成功取苗和投苗。移栽作業(yè)過程中,取苗檢測系統(tǒng)對取苗機械手的取苗、投苗狀況進行檢測。當(dāng)檢測到取苗機械手取投苗失敗時,與該取苗機械手對應(yīng)的步進電機驅(qū)動器控制步進電機轉(zhuǎn)動,供苗輸送帶向前運動一定的距離,斜置隔板向前移動一格,當(dāng)取苗機械手進行放苗這個動作時,同時放置于斜置隔板上的健康苗進行滑落,并落入植苗鴨嘴,代替取苗機械手完成投苗。當(dāng)連續(xù)多次檢測到取苗機械手取投苗失敗,補苗裝置也執(zhí)行連續(xù)多次補苗,實現(xiàn)取苗、投苗適時檢測并及時準確補苗的功能[8,11-12]。
1.2 補苗裝置定位控制要求
補苗裝置步進電機位置控制精度直接影響補苗裝置工作效果,補苗裝置架構(gòu)直接由傳動帶帶動。每當(dāng)檢測到漏苗時,步進電機旋轉(zhuǎn)指定角度,傳送帶上秧苗向前運動指定距離,最后秧苗植入土壤中,實現(xiàn)適時補苗功能。為保證補苗時間和正常栽苗時間一致,則需要在檢測到有漏苗情況時,補苗裝置立刻開始進行補苗。
在正常栽苗時,設(shè)栽植鴨嘴從接苗到完成植苗的總耗時為,秧苗落入栽植嘴到完成栽植的正常輸送時間1=0.38 s,秧苗從投苗點落入鴨嘴的時間,其中為取苗機械手投苗位置點到鴨嘴的高度且=90 mm,即可得,故總耗時=1+2=0.51 s。
補苗裝置補苗耗時包括以下4部分:1)為防止移栽作業(yè)中缽苗落入栽植鴨嘴外,缽苗輸送帶上的隔板設(shè)計成槽形,使其具有將缽苗向栽植鴨嘴導(dǎo)入的作用,且通過試驗確定缽苗輸送帶運行時,隔板間放置的缽苗能準確落入栽植鴨嘴的落苗點位置。缽苗從輸送帶的落苗點落入鴨嘴的時間1b,缽苗輸送帶落苗點到鴨嘴的高度1=400 mm,即可得;2)光纖傳感器檢測到漏苗并反饋信息所用時間2b=0.01 s;3)各元件反饋時間及滯后時間3b=0.01 s;4)缽苗輸送帶傳送秧苗時間,即缽苗輸送帶運動1個隔板間距所用時間4b=?1b?2b?3b=0.21 s,輸送帶2個隔板之間間距為80 mm,可求得輸送帶平均速度b=0.38 m/s;由于步進電機和輸送帶之間采用聯(lián)軸器直聯(lián)進行傳動,其中輸送帶滾筒直徑為80 mm,故可得步進電機平均角速度b=4.75 rad/s,單純通過控制步進電機轉(zhuǎn)動,以控制傳送帶運動路程,并不能保證每次都與取苗機械手投苗及栽植鴨嘴送苗植苗的總耗時0.51 s一致,即在0.51 s內(nèi)完成補苗,可能會存在時間偏差,因為單純控制步進電機運動圈數(shù)(對應(yīng)傳送帶運動路程)無法控制時間;但如果以步進電機運動角速度作為控制量,以步進電機平均角速度b為步進電機角速度控制的預(yù)期值,即可保證步進電機在指定時間內(nèi)運動指定角位移。
2.1 兩相混合式步進電機建模
本文采用步進電機型號為86BYG250-H,為兩相混合式,混合式步進電機結(jié)合了永磁式和反應(yīng)式步進電機優(yōu)點,轉(zhuǎn)矩可調(diào)范圍大、噪音小,廣泛應(yīng)用于高精度伺服控制系統(tǒng)中,是目前應(yīng)用及其廣泛的電機[13]。為構(gòu)建步進電機控制系統(tǒng)模型,在建立步進電機數(shù)學(xué)模型時忽略渦流損耗和磁滯效應(yīng),端部漏磁的情況忽略不計,得到步進電機電壓平衡方程如式(1)所示[14]。
式中a、b、a、b分別對應(yīng)步進電機的A、B相電壓和實時工作電流;a、b為電機的內(nèi)部A、B相線圈繞組電阻,?;aa、ab、bb、ba對應(yīng)電機兩相A、B的自感和互感值;N為電機轉(zhuǎn)子齒數(shù);為極距角,(°);T為反電勢系數(shù);為電機轉(zhuǎn)速,r/min;為旋轉(zhuǎn)角度,(°);為時間,s。同時根據(jù)步進電機內(nèi)部結(jié)構(gòu)運動,可得電機運動平衡方程如(2)所示[15]。
(2)
式中為電機轉(zhuǎn)軸轉(zhuǎn)動慣量,kg/cm2;e為電機電磁轉(zhuǎn)矩,N·m;為電機的粘滯摩擦系數(shù);L為負載轉(zhuǎn)矩,N·m。與傳統(tǒng)的直流電機相比較,步進電機內(nèi)部工作過程較為復(fù)雜,假設(shè)在實際控制中,以步進電機角位移為控制量,0為目標值,1為控制量,且有角度偏差Δ=1?0,角度偏差值為0時,則控制結(jié)果最優(yōu),此時步進電機轉(zhuǎn)子達到一個平衡位置。設(shè)電機兩相A、B初始預(yù)期工作電流為0,也就是兩相中心λ/2處,以下將按照以上假設(shè)條件和方程推導(dǎo)步進電機數(shù)學(xué)模型[16],則有
(4)
根據(jù)式(2)~式(4),可得出
假設(shè)負載轉(zhuǎn)矩L=0,且有極距角=0,則上式可簡化為
(6)
對式(6)兩邊求一階倒數(shù),可得到式(7)
(8)
可得到步進電機角速度控制傳遞函數(shù)()。
(10)
將步進電機參數(shù)代入式(10),可得步進電機角速度控制傳遞函數(shù)如式(11)所示。
2.2 模糊PID控制系統(tǒng)組成與定參數(shù)PID控制
步進電機反饋控制中,角速度采用編碼器采集,其反饋控制系統(tǒng)框圖如圖2所示。控制系統(tǒng)輸入為步進電機預(yù)期角速度b,輸出為實際角速度s,控制器為模糊PID控制器,為預(yù)期角速度與實際角速度之差值,為差值變化率。為了提高模糊控制器的實時性,故采用二維模糊控制器,以和為模糊控制器輸出,以PID 3個系數(shù)調(diào)整量為輸出,即ΔK,ΔK和ΔK,考慮常規(guī)離散PID控制器如式(12)所示;其中()為離散的角速度偏差值,K、K和K分別為常規(guī)的PID控制器的3個系數(shù),即比例系數(shù),積分系數(shù)和微分系數(shù)。常規(guī)PID以步進電機角速度偏差作為輸入,在微分環(huán)節(jié)中對偏差做了微分運算,考慮了步進電機控制偏差變化率,即對步進電機角速度變化做了一定的預(yù)測,但由于PID控制器參數(shù)固定,當(dāng)系統(tǒng)出現(xiàn)較大擾動時可能出現(xiàn)長時間的振蕩,而自適應(yīng)模糊PID控制器可根據(jù)被控量及環(huán)境變化適時調(diào)整PID參數(shù),實現(xiàn)對PID控制參數(shù)的在線自整定,進而提高控制系統(tǒng)的定位精度以及穩(wěn)定性[17-20],設(shè)計其控制律如式(13)所示。
(13)
式中pus、ius、dus分別為PID控制器系數(shù)初值,模糊控制器根據(jù)二維輸入信號,實時輸出PID控制器系數(shù)調(diào)整值ΔK,ΔK和ΔK,動態(tài)調(diào)整的PID控制器系數(shù)可使系統(tǒng)快速達到穩(wěn)態(tài)值附近,且減小響應(yīng)的振蕩[21]。
2.3 輸入輸出量模糊分布
模糊控制器的核心為制定合理有效的模糊規(guī)則,經(jīng)大量試驗得到模糊控制器的輸入量和的論域為:1)步進電機角速度偏差∈[?0.75,0.75],cm,由于輸送帶負載較小,步進電機角速度波動幅值較?。?)步進電機角速度偏差變化率∈[?1,1],單位cm/s,同時由于輸送帶負載為秧苗,負載力較小,步進電機速度偏差較小。
用7個模糊子集涵蓋角速度偏差:正大(PB)、正中(PM)、正?。≒S)、零(O)、負?。∟S)、負中(NM)和負大(NB);量化因子1=4。用3個模糊子集涵蓋步進電機角速度偏差變化率:正(PS)、零(O)、負(NS);量化因子2=1。用5個模糊子集涵蓋系數(shù)調(diào)整值ΔK:正大(PB)、正小(PS)、零(O)、負?。∟S)和負大(NB);用于涵蓋輸入量ΔK的論域[?3,3]。用5個模糊子集涵蓋系數(shù)調(diào)整值ΔK:正大(PB)、正?。≒S)、零(O)、負?。∟S)和負大(NB);用于涵蓋輸入量ΔK的論域[?2,2]。用5個模糊子集涵蓋系數(shù)調(diào)整值ΔK:正大(PB)、正小(PS)、零(O)、負小(NS)和負大(NB);用于涵蓋輸入量ΔK的論域[?3,3]??傻媚:刂破鬏敵隽康谋壤蜃应?、Δ和Δ分別為1.5、1和1.5。
2.4 模糊規(guī)則設(shè)計
模糊控制器的規(guī)則一般可通過專家經(jīng)驗歸納總結(jié)得出或通過對系統(tǒng)進行測試輸入輸出得到[22-23],根據(jù)專家經(jīng)驗和大量試驗得到角速度偏差、偏差變化率與ΔK,ΔK和ΔK之間存在下列最優(yōu)調(diào)整關(guān)系:
1)基本規(guī)則1:當(dāng)角速度偏差較大時,角速度偏差變化率較大時,增大K以加快響應(yīng)速度;減小K以防止超范圍控制;同時可減小K以減小超調(diào)。
2)基本規(guī)則2:當(dāng)角速度偏差中等大小時,角速度偏差變化率中等大小時,取較小K以減小超調(diào);適當(dāng)增加ΔK,但是不能增加過多;此情況下K作用最明顯,可適當(dāng)增大,以放大K的調(diào)整作用。
3)基本規(guī)則3:當(dāng)角速度偏差較小時,角速度偏差變化率較小時,增大K、K以保證系統(tǒng)穩(wěn)定性;適當(dāng)減小K以減小系統(tǒng)在穩(wěn)態(tài)值附近振蕩。
根據(jù)上述3個基本規(guī)則,每組輸入變量分別有7個、5個模糊子集,得到對應(yīng)模糊規(guī)則,即可得ΔK,ΔK和ΔK模糊控制規(guī)則表如表1所示。模糊控制器解模糊采用重心法,將模糊控制移植到補苗系統(tǒng)處理器時,需通過MATLAB產(chǎn)生對應(yīng)輸出量的模糊規(guī)則表,即將模糊規(guī)則轉(zhuǎn)化成處理器可直接理解并處理的數(shù)字量,處理器按照查表形式獲取模糊輸出,以此進行PID參數(shù)的在線調(diào)整[24-26]。
取模糊控制參數(shù)初值為pus、ius、dus,故有模糊控制參數(shù)pfuzzy、ifuzzy與dfuzzy如式(14)。
表1 PID調(diào)整參數(shù)ΔKP、ΔKi及ΔKd模糊控制規(guī)則表
3.1 PID Simulink仿真模型建立
通過MATLAB的Simulink仿真模塊可以離線有效的整定適用于被控對象的PID參數(shù),能有效提高控制系統(tǒng)控制器設(shè)計效率[27-28]。針對建立的步進電機系統(tǒng)模型,在Simulink仿真中建立缽苗輸送帶步進電機的PID控制仿真模型如圖3所示,以幅值為1的階躍信號輸入系統(tǒng),采用PID控制器實現(xiàn)步進電機角速度的反饋控制,此時PID控制器3個參數(shù)分別為比例系數(shù)K=6,微分系數(shù)、K=5,積分系數(shù)K=3。在實際控制中,比例系數(shù)越大,則系統(tǒng)越靈敏,但當(dāng)補苗系統(tǒng)負載突然變化,即出現(xiàn)干擾時,較大的比例系數(shù)可使系統(tǒng)快速調(diào)整回穩(wěn)態(tài)值,而積分系數(shù)影響系統(tǒng)穩(wěn)定性。
由于積分環(huán)節(jié)累積控制系統(tǒng)的誤差,該環(huán)節(jié)可有效的減小被控系統(tǒng)穩(wěn)態(tài)誤差,但該系數(shù)越大,系統(tǒng)的振蕩次數(shù)越多;微分環(huán)節(jié)可有效的對系統(tǒng)誤差做簡單預(yù)測,調(diào)整超調(diào)量,微分系數(shù)越大,則超調(diào)量越小[29-30]。當(dāng)PID控制器系數(shù)K、K、K分別為6、5、3時,步進電機控制系統(tǒng)輸出如圖4a所示,系統(tǒng)通過階躍信號激勵時,系統(tǒng)響應(yīng)較慢,并且出現(xiàn)超調(diào)量為0.1的振蕩,響應(yīng)時間為7 s。調(diào)整PID控制器參數(shù)且設(shè)置其參數(shù)K、K、K分別為20、5、3,得到系統(tǒng)輸出如圖4b所示,增大比例系數(shù)之后,系統(tǒng)響應(yīng)速度明顯加快,且未出現(xiàn)振蕩環(huán)節(jié),但由于PID控制器參數(shù)是離線調(diào)整的,當(dāng)系統(tǒng)負載突變,且補苗系統(tǒng)工作環(huán)境較為復(fù)雜,容易出現(xiàn)各種干擾,當(dāng)干擾出現(xiàn)時可能導(dǎo)致系統(tǒng)無法快速的調(diào)整到穩(wěn)態(tài)值,按照圖4b中PID系數(shù)時,系統(tǒng)響應(yīng)時間為2.2 s,相比于圖4a中PID控制器,該系數(shù)調(diào)整提高了系統(tǒng)響應(yīng)速度。
3.2 Fuzzy-PID Simulink仿真分析
基于設(shè)計的模糊PID控制器,在MATLAB的Simulink仿真中建立仿真模型,實現(xiàn)PID參數(shù)自動調(diào)整?;贔uzzy-PID的Simulink仿真如圖5所示,F(xiàn)IS系統(tǒng)需要在Fuzzy Toolbox中預(yù)先建立好,同時根據(jù)PID Simulink仿真分析結(jié)果建立PID控制器系數(shù)K、K、K分別為20、5、3,根據(jù)模糊推理系統(tǒng)得到PID控制器參數(shù)的調(diào)整值,以階躍信號為輸入信號激勵系統(tǒng),步進電機控制系統(tǒng)輸出如圖6所示,系統(tǒng)響應(yīng)時間為0.12 s,且不出現(xiàn)振蕩,迅速達到穩(wěn)態(tài)值。與傳統(tǒng)PID控制器相比較,采用模糊PID控制有效提高了系統(tǒng)響應(yīng)速度,當(dāng)補苗裝置負載突變或者步進電機預(yù)期速度值變化時,步進電機可快速響應(yīng)以滿足補苗時間與正常栽苗時間一致的需求。
穴盤自動補苗試驗于2016年7月年5日至8日進行(圖7)。試驗用苗選擇新疆142團育苗公司培育的辣椒穴盤苗,為提高移栽機取苗、植苗成功率,試驗選取“紅線8號”辣椒穴盤苗,育苗基質(zhì)體積配方比例為泥炭∶蛭石=2∶1,育苗時間為60 d,幼苗平均株高為161 mm[1]。預(yù)先選出3盤穴盤苗,穴盤苗出苗率大于95%,為了檢測漏苗補苗系統(tǒng)的工作性能,對每盤苗進行預(yù)先處理,使每盤苗在行列隨機位置上缺苗,并且缺苗株數(shù)也隨機。通過手動調(diào)整變頻器,模擬田間作業(yè)速度變化,測試補苗作業(yè)效果如表2,其中漏苗檢測成功率如式(15),補苗成功率如式(16)。
(16)
式中為補苗數(shù),株;為漏苗數(shù),株;=穴盤缺苗株數(shù)+取苗投苗失敗株數(shù),J為檢測到的漏苗數(shù),株。
試驗使用的2ZXM-2全自動膜上移栽機實際植苗頻率在40~60 株/min,缽苗移栽田間試驗表明,當(dāng)植苗頻率超過60 株/min時,存在取苗機械手與栽植鴨嘴配合誤差,加大了漏苗率,當(dāng)栽植頻率低于40 株/min時,栽植效率低且同時會使移栽缽苗的株距過大。因此,在補苗試驗中,控制移栽機的栽植頻率在40~60 株/min,選擇3種栽植頻率(40、50、60 株/min)的補苗試驗結(jié)果分析如表2,當(dāng)栽植頻率為40和50株/min,漏苗檢測成功率與補苗成功率都高達100%,而當(dāng)栽植頻率提高到60株/min時,由于取苗針的取苗速度變快,存在光纖傳感器漏苗檢測失敗現(xiàn)象,48 株漏苗,有2株未檢測到,造成了漏苗檢測成功率與補苗成功率都是95.8%,但是只要是光纖傳感器檢測到漏苗信號,補苗控制系統(tǒng)都能準確及時地進行自動補苗。
表2 補苗試驗結(jié)果
1)為保證補苗時間和正常植苗時間一致,實現(xiàn)自動補苗裝置適時準確補苗,考慮到自動補苗的定位精度要求高以及補苗系統(tǒng)負載變化,且補苗系統(tǒng)工作環(huán)境較為復(fù)雜,干擾因素多且存在不確定性,論文采用自適應(yīng)Fuzzy-PID 控制實現(xiàn)自動補苗系統(tǒng)精準定位控制。
2)設(shè)計了自適應(yīng)Fuzzy-PID控制器,建立了基于模糊PID控制器的步進電機系統(tǒng)角速度控制模型,以階躍信號作為激勵信號,仿真試驗表明,PID控制的響應(yīng)時間為7 s,出現(xiàn)超調(diào)量為0.1的震蕩,通過調(diào)整PID控制器參數(shù)增大比例系數(shù),系統(tǒng)響應(yīng)時間縮短為2.2 s,系統(tǒng)響應(yīng)速度明顯加快,且未出現(xiàn)振蕩環(huán)節(jié);自適應(yīng)模糊 PID 的響應(yīng)時間為0.12 s,步進電機系統(tǒng)快速到達階躍響應(yīng)的穩(wěn)態(tài)值,步進電機角速度控制穩(wěn)定,角速度響應(yīng)快,滿足缽苗輸送的定位要求。
3)自動補苗試驗結(jié)果表明:在栽植頻率為40、50、60株/min時,補苗成功率分別為100%,100%、95.8%,均達到較高的補苗成功率,且只要是光纖傳感器檢測到漏苗信號,基于自適應(yīng)Fuzzy-PID控制的步進電機系統(tǒng)快速響應(yīng),補苗控制系統(tǒng)都能準確及時地進行自動補苗。本文采用自適應(yīng)Fuzzy-PID控制算法來實現(xiàn)缽苗輸送的步進定位控制,為解決自動移栽機田間作業(yè)的漏栽問題提供了參考。
[1] 劉姣娣,曹衛(wèi)彬,田東洋,等. 基于苗缽力學(xué)特性的自動移栽機執(zhí)行機構(gòu)參數(shù)優(yōu)化試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(16):32-39.
Liu Jiaodi, Cao Weibin, Tian Dongyang, et al. Optimization experiment of transplanting actuator parameters based on mechanical property of seedling pot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 32-39. (in Chinese with English abstract)
[2] Vol N. Machine vision assisted robotic seedling transplanting[J]. Transactions of the Asae, 1994, 37(2):661-667.
[3] Tai Y W, Ling P P, Ting K C. Machine vision assisted robotic seedling transplanting[J]. Transactions of the Asae, 1994, 37(2): 661-667.
[4] 蔣煥煜,施經(jīng)揮,任燁,等. 機器視覺在幼苗自動移缽作業(yè)中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(5):127-131.
Jiang Huanyu, Shi Jinghui, Ren Ye, et al. Application of machine vision on automatic seedling transplanting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 127-131. (in Chinese with English abstract)
[5] 童俊華,蔣煥煜,武傳宇. 基于貪心算法的溫室缽苗稀植移栽路徑優(yōu)化[J]. 農(nóng)業(yè)機械學(xué)報,2016,47(3):8-13.
Tong Junhua, Jiang Huanyu, Wu Chuanyu. Optimization of transplanting path based on greedy algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 8-13. (in Chinese with English abstract)
[6] 金鑫. 蔬菜穴盤苗自動移栽技術(shù)與裝置的研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2014.
Jin Xin. Research on Automatic Transplanting Technology and Device for Vegetable Plug Seedling[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract)
[7] 王僑,曹衛(wèi)彬,張振國,等. 穴盤苗自動取苗機構(gòu)的自適應(yīng)模糊PID定位控制[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(12):32-39.
Wang Qiao, Cao Weibin, Zhang Zhenguo, et al. Location control of automatic pick-up plug seedlings mechanism based on adaptive fuzzy-PID[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 32-39. (in Chinese with English abstract)
[8] 劉姣娣,田東洋,曹衛(wèi)彬,等. 一種自動移栽機的補苗裝置:CN105794373A[P].2016-07-27.
[9] 趙勻. 農(nóng)業(yè)機械分析與綜合[M]. 北京:機械工業(yè)出版社,2008.
[10] 曹衛(wèi)彬,李樹峰,趙宏政,等. 一種全自動鋪膜覆土移栽機:CN105027775A[P]. 2015-11-11.
[11] Liu Jiaodi, Cao Weibin, Tian Dongyang, et al. Kinematic analysis and experiment of planetary five-bar planting mechanism for zero-speed transplanting on mulch film[J]. Int J Agric & Biol Eng, 2016, 9(4): 84-91.
[12] 李華,曹衛(wèi)彬,李樹峰,等. 辣椒穴盤苗自動取苗機構(gòu)運動學(xué)分析與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(23):20-27.
Li Hua, Cao Weibin, Li Shufeng, et al. Kinematic analysis and test on automatic pick-up mechanism for chili plug seedling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(23): 20-27. (in Chinese with English abstract)
[13] 宋受俊,劉景林,韓英桃,等. 二相混合式步進電機驅(qū)動器的優(yōu)化設(shè)計[J]. 電氣傳動,2006,36(2):59-64.
Song Shoujun, Liu Jinglin, Han Yingtao, et al. Design of 2-phase hybrid stepping motor driver[J]. Electric Drive, 2006, 36(2): 59-64. (in Chinese with English abstract)
[14] 劉川,劉景林. 基于Simulink仿真的步進電機閉環(huán)控制系統(tǒng)分析[J]. 測控技術(shù),2009,28(1):44-49.
Liu Chuan, Liu Jinglin. Analysis of stepper motor close-loop control based on simulink[J]. Measurement & Control Technology, 2009, 28(1): 44-49. (in Chinese with English abstract)
[15] Tanaka K, Wang H O. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[M]. John Wiley &Sons Inc., 2001.
[16] Tanaka K, Hori T, Wang H O. A multiple Lyapunov function approach to stabilization of fuzzy control systems[J]. IEEE Transactions on Fuzzy Systems, 2003, 11(4): 582-589.
[17] Feng G. A survey on analysis and design of model-based fuzzy control systems[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(5): 676-697.
[18] Gang L, Mcginnity T M, Prasad G. An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network[J]. Fuzzy Sets & Systems, 2005,150(2): 211-243.
[19] Harb A M, Smadi I A. An approach to fuzzy control for a class of nonlinear systems: Stability and design issues[J]. International Journal of Modelling & Simulation, 2005, 25(2): 106-111.
[20] Sugeno M. Industrial Applications of Fuzzy Control[M]. Sole Distributors for the USA and Canada, Elsevier Science Pub.Co, 1985.
[21] 李慶春,沈德耀. 一種PID模糊控制器(fuzzy PI+fuzzy ID型)[J]. 控制與決策,2009,24(7):1038-1042.
Li Qingchun, Shen Deyao. Brand-new PID fuzzy controller ( fuzzy PI+fuzzy ID)[J].Control and Decision, 2009, 24(7): 1038-1042. (in Chinese with English abstract)
[22] Park D, Kandel A, Langholz G. Genetic-based new fuzzy reasoning models with application to fuzzy control[J]. IEEE Transactions on Systems Man & Cybernetics, 1994, 24(1): 39-47.
[23] Tanaka K, Sugeno M. Stability analysis and design of fuzzy control systems[J]. Fuzzy Sets & Systems, 1992,45(2): 135-156.
[24] Rubaai A, Castro-Sitiriche M J, Ofoli A R. Design and implementation of parallel fuzzy PID controller for high- performance brushless motor drives an integrated environment for rapid control prototyping[J]. IEEE Transactions on Industry Applications, 2008, 44(4): 1090-1098.
[25] Wang L X. Stable adaptive fuzzy control of nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 1992, 1(2): 146-155.
[26] Xie X, Su B, Chu X, et al. Stable adaptive fuzzy control of nonlinear systems[J]. Journal of Qufu Normal University, 1998(4): 14-20.
[27] 董全成,馮顯英. 基于自適應(yīng)模糊免疫PID的軋花自動控制系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(23):30-37.
Dong Quancheng, Feng Xianying. Cotton-gin automation by using adaptive fuzzy immune PID controller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(23): 30-37. (in Chinese with English abstract)
[28] 王素青,姜維福. 基于MATLAB/Simulink的PID參數(shù)整定[J]. 工程控制與應(yīng)用,2009,28(3):24-26.
Wang Suqing, Jiang Weifu. PID tuning based on MATLAB/Simulink[J]. Industry Control and Applications, 2009, 28(3): 24-26. (in Chinese with English abstract)
[29] 何芝強. PID 控制器參數(shù)整定方法及其應(yīng)用研究[D]. 杭州:浙江大學(xué),2005.
He Zhiqiang. Parameters Tuning Methods and Its Application Research of PID Controller[D]. Hangzhou: Zhejiang Universuty, 2005. (in Chinese with English abstract)
[30] 宋樂鵬,董志明,向李娟,等. 變量噴霧流量閥的變論域自適應(yīng)模糊PID控制[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(11):114-118.
Song Lepeng, Dong Zhiming, Xiang Lijuan, et al. Variable universe adaptive fuzzy PID control of spray flow valve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(11): 114-118. (in Chinese with English abstract)
Adaptive fuzzy-PID control of accurate orientation for auto-detect seedling supply device
Liu Jiaodi1,2, Cao Weibin1※, Xu Hongzhen3, Tian Dongyang1, Jiao Haobo1, Ouyang Yineng4
(1.,,832000,; 2.,,404100,; 38320004832000,)
There is more serious seedling leakage phenomenon for duckbill-type automatic transplanter. When the seedlings in plug tray are lacked or the picking seedling machinery fails to pick seedling or the trajectory is inaccurate, throwing seedling to duckbill planter will cause cavity phenomenon on the surface of soil. Current research has focused on seedlings detection out of plug tray, aiming to provide guidelines in picking seedling mechanism’s work regularity. However, it cannot resolve the problems that picking seedling needle clamp fails to grip seedlings into duckbill planter, which leads to seedling trajectory deviation. In this paper, a new auto-detect seedlings device suitable for automatic transplanting machine was designed in order to solve the problems above. Seedling positioning detection control system was analyzed and studied systematically. Different from general control system of transplanting machine, which was commonly simple closed-loop control, a method was developed, which adopted the self-adaptation fuzzy-PID (proportion, integral, derivative) control algorithm. It could control stepping motor angle speed firmly, improve response speed to angle speed, and control seedlings positioning accurately on automatic detection system. The mathematical model of the stepping motor velocity control transfer function was developed, and the adaptive fuzzy-PID controller and the fuzzy rules were designed. The mathematical model of angular speed control of stepping motor was established through MATLAB Simulink module based on fuzzy-PID controller of stepper motor system. The control model took step signal as excitation signal, and the adaptive fuzzy-PID control and PID control simulation experiments showed that when the system exerted incentive through step signal, the response time of PID control was 7 s, the system response was slow, and the shock with a super adjustable volume of 0.1 appeared. Through adjusting PID controller parameter and increasing proportion coefficient, the system response time was shortened to 2.2 s, the system response speed obviously sped up, and the shock did not appear. But, PID controller parameter adjustment was offline, and the system load mutation or tough working environment for seedlings detection system would be prone to all kinds of interference. And it may not quickly be adjusted to the steady state values to fill the gaps with seedlings detection system. Response time of adapted fuzzy-PID was 0.12 s and the stepping motor system quickly reached the steady-state value of the step response. It showed that the angular velocity control of stepping motor was stable and the angle change was fast, which could meet the positioning requirements of seedlings conveying. When the auto-detect seedlings device load mutated or the expected value of stepping motor speed changed, the stepping motor could fast response, and the seedlings could fill the gaps timely and be planted normally, at the same time the seedling which will fill the gap will be conveyed to the required position. The experiment result of automatically filling the gaps with seedlings showed that the actual seeding frequency of 2ZXM-2 automatic membrane transplanting machine was 40-60 seedlings/min. When seeding frequency was more than 60 seedlings/min, there existed matching error between seedlings manipulator and plant duckbill. It could increase the leakage rate of seedlings. When the frequency was lower than 40 seedlings/min, the planting efficiency was low and at the same time it could make planting distance of transplanting seedling larger. The seeding frequency was 40, 50 and 60 seedlings/min in test, and the success rate of filling the gaps with seedlings was 100%, 100%, and 95.8%, respectively. As long as the optical fiber sensor detected slight signal, the stepping motor responded quickly based on adaptive fuzzy-PID control system, and the control system of filling the gaps with seedlings could automatically fill the gaps with seedlings accurately and timely. This provides a new method to solve the problem of seedlings leakage of automatic transplanting machine in field.
agricultural machinery; experiments; control; automatic filling seedlings; positioning control
10.11975/j.issn.1002-6819.2017.09.005
TP273
A
1002-6819(2017)-09-0037-08
2016-10-08
2017-03-23
國家自然科學(xué)基金資助項目(51565048);重慶大學(xué)國家機械傳動重點實驗室開放課題(SKLMT-KFKT-201516);
劉姣娣,女,湖南邵陽人,副教授,博士,主要從事旱地移栽機械的研究。石河子 石河子大學(xué)機械電氣工程學(xué)院,832000。 Email:shzdxljd@163.com
曹衛(wèi)彬,湖北襄陽,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)機械教學(xué)與科學(xué)研究。石河子 石河子大學(xué)機械電氣工程學(xué)院,832000。 Email:wbc828 @163.com
劉姣娣,曹衛(wèi)彬,許洪振,田東洋,焦灝博,歐陽異能. 自動補苗裝置精準定位自適應(yīng)模糊PID控制[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(9):37-44. doi:10.11975/j.issn.1002-6819.2017.09.005 http://www.tcsae.org
Liu Jiaodi, Cao Weibin, Xu Hongzhen, Tian Dongyang, Jiao Haobo, Ouyang Yineng. Adaptive fuzzy-PID control of accurate orientation for auto-detect seedling supply device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 37-44. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.09.005 http://www.tcsae.org