李美君+黃裕立+胡允兆
【摘要】 造影劑腎?。╟ontrast-induced nephropathy,CIN)為血管內(nèi)應(yīng)用造影劑后出現(xiàn)的一過性腎功能異常。雖然CIN為自限性疾病,但仍可能導(dǎo)致慢性腎功能不全,尤其合并多種危險(xiǎn)因素的情況下。目前認(rèn)為CIN的病理生理機(jī)制主要涉及血流動(dòng)力學(xué)改變,氧化應(yīng)激及細(xì)胞毒性。作為醫(yī)源性急性腎功能不全的主要原因之一,目前未有特異性治療措施,以預(yù)防為主。本文將重點(diǎn)討論CIN合并慢性腎臟病的研究進(jìn)展,尤其討論其危險(xiǎn)因素、發(fā)病機(jī)制及預(yù)防措施。
【關(guān)鍵詞】 造影劑腎?。?慢性腎功能不全; 氧化應(yīng)激; 預(yù)防措施
【Abstract】 Contrast-induced nephropathy(CIN) is defined as a transient decline in kidney function following the intravascular administration of contrast media.Though CIN is a disease of self-limited,it has also induced chronic renal insufficiency,especially for patients with many risk factors.Now,we have considered that pathophysiology of CIN is related to hemodynamic changes,oxidative stress and cytotoxicity.As one of mainly causes of hospital-acquired acute renal failure,there are no special therapeutic measures for CIN,but prevention.In the review,we forced on the researches of CIN with chronic kidney disease,especially the risk factor,pathogenesis and prevention strategies.
【Key words】 Contrast-induced nephropathy; Chronic renal insufficiency; Oxidative stress; Prevention strategies
First-authors address:Guangdong Medical University,Zhanjiang 524023,China
doi:10.3969/j.issn.1674-4985.2017.13.041
造影劑腎?。╟ontrast-induced nephropathy,CIN),即血管內(nèi)(靜脈或動(dòng)脈)應(yīng)用造影劑后出現(xiàn)一過性的腎功能異常[1]。歐洲泌尿生殖放射學(xué)會(huì)(European Society of Urogenital Radiolog,ESUR)關(guān)于CIN的診斷標(biāo)準(zhǔn)為:排除造影劑外的其他原因,使用造影劑后24~72 h內(nèi)血清肌酐(serum creatinine,SCr)水平較基線水平升高25%,或SCr水平上升大于0.5 mg/dL(44 mol/L)[2]。CIN的發(fā)病率僅次于藥物相關(guān)性及腎灌注不足所致的急性腎功能不全,成為第三位醫(yī)源性急性腎功能不全的原因[3]。
隨著造影劑的應(yīng)用,尤其廣泛應(yīng)用于心血管病變的診治,CIN的發(fā)病率隨之升高,引起臨床醫(yī)生的關(guān)注。據(jù)文獻(xiàn)報(bào)道,CIN的發(fā)病率大約為12%[4]。然而,當(dāng)患者合并慢性腎功能不全時(shí),CIN的發(fā)病率亦升高[5-6]。目前認(rèn)為CIN是一種自限性疾病,但部分患者可能發(fā)展為持續(xù)性腎功能損傷,甚至發(fā)展為終末期腎臟病,增加患者的死亡率[1]。Solomon等[7]的研究表明,CIN與遠(yuǎn)期不良事件相關(guān),CIN患者遠(yuǎn)期不良事件的發(fā)生率為非CIN患者的兩倍。因此,本文將對(duì)CIN合并慢性腎功能不全進(jìn)行綜述,并對(duì)CIN的危險(xiǎn)因素、病理生理機(jī)制及預(yù)防手段方面加以探討。
1 CIN的危險(xiǎn)因素
根據(jù)Mehran等[8]CIN危險(xiǎn)因素評(píng)分,造影劑腎病的高危因素包括,低血壓、IABP應(yīng)用、心力衰竭、高齡、貧血、糖尿病、造影劑用量、基礎(chǔ)腎肌酐值或血肌酐清除率,其中尤其以糖尿病合并腎功能不全患者為重。文獻(xiàn)[9]報(bào)道糖尿病患者造影劑腎病的風(fēng)險(xiǎn)為非糖尿病患者的兩倍。Morabito等[10]對(duì)行擇期或急診行冠狀動(dòng)脈介入診療術(shù)的患者進(jìn)行為期11個(gè)月的觀察研究發(fā)現(xiàn),CIN的發(fā)病率為5.1%,其中腎臟替代治療率為10.0%,糖尿病患者合并腎功能不全的發(fā)病率尤為升高。同時(shí)Barrett等[11]的研究表明無論是等滲性非離子型造影劑或高滲性非離子型造影劑,均能增加造影劑腎病的發(fā)病率。
隨著研究的深入,有研究認(rèn)為高尿酸血癥與冠脈介入診療后CIN明顯相關(guān),這可能與尿酸的生成阻礙一氧化氮物的釋放,以致血管舒縮功能異常,降低腎灌注,從而導(dǎo)致腎功能異常[12]。因此對(duì)于冠心病患者合并多種基礎(chǔ)疾病時(shí)行冠狀動(dòng)脈介入診療術(shù),其CIN風(fēng)險(xiǎn)將相應(yīng)升高,識(shí)別CIN危險(xiǎn)因素顯得尤為重要。
2 病理生理機(jī)制
造影劑腎病合并慢性腎功能不全的病理生理機(jī)制復(fù)雜,目前認(rèn)為主要機(jī)制為血流動(dòng)力學(xué)改變、氧化應(yīng)激及直接的細(xì)胞毒性相關(guān)。
2.1 血流動(dòng)力學(xué)改變 目前CIN相關(guān)的血流動(dòng)力學(xué)改變的機(jī)制為球-管反饋(tubulo glomerular Feedback,TGF)以及血管活性介質(zhì)的激活。TGF主要感受器為致密斑,致密斑位于髓襻升支粗段及遠(yuǎn)曲小管之間,由密集的內(nèi)皮細(xì)胞組成,主要感知小管液中Na+、Cl-、K+濃度。當(dāng)Na+、Cl-、K+濃度升高時(shí),致密斑內(nèi)皮細(xì)胞上的Na+-K+-2Cl-協(xié)同轉(zhuǎn)運(yùn)蛋白將被激活,促使ATP水解成AMP從而增加腺苷分泌[13-14]。腺苷作為強(qiáng)烈的血管活性物質(zhì),激活腎小球系膜上的A1受體,使鄰近入球小動(dòng)脈的平滑肌細(xì)胞收縮及顆粒細(xì)胞釋放腎素,從而使血管收縮及腎小球?yàn)V過率(glomerular filtration rate,GFR)下降[15]。
當(dāng)使用造影劑后,造影劑在腎小管內(nèi)可自由濾過,可迅速增加細(xì)胞外液滲透壓,致密斑內(nèi)的內(nèi)皮細(xì)胞感知滲透壓變化,而促進(jìn)鈉離子及氯離子排泄起到利尿排鈉作用,而增加腎血管阻力,降低GFR,同時(shí)也引起全身血流動(dòng)力學(xué)的變化[16]。研究表明,在鼠模型中可發(fā)現(xiàn)在注射造影劑后可見腎皮質(zhì)血流升高20%,腎髓質(zhì)血流下降40%,同時(shí)在高滲性造影劑中腎髓質(zhì)血流下降效果及利尿均增強(qiáng)。因此目前認(rèn)為球-管反饋為滲透壓依賴性反饋[17]。有研究報(bào)道,關(guān)于慢性腎功能不全及高血糖大鼠造影劑腎病血流動(dòng)力學(xué)的研究表明,碘造影劑明顯增加尿中性粒細(xì)胞明膠酶蛋白(urinary neutrophil gelatinase-associated lipocalin,NGAL)和降低菊粉清除率,研究表明而在慢性腎功能不全組和慢性高血糖組血流動(dòng)力學(xué)參數(shù)即動(dòng)脈血壓、腎血流量和腎血管阻力方面表現(xiàn)出明顯變化[18]。
2.2 氧化應(yīng)激 線粒體作為供能的主要細(xì)胞器,提供的能量除維持細(xì)胞的正?;顒?dòng)外,還參與細(xì)胞損傷及細(xì)胞凋亡過程。而在腎臟中,近端小管上皮細(xì)胞為富線粒體細(xì)胞,其80%的能量用于Na+在小管細(xì)胞中的重吸收[19]。
在使用造影劑后,小管液中的滲透壓升高,加強(qiáng)了Na+重吸收,使線粒體供能增加,引起細(xì)胞內(nèi)線粒體生成與自噬失衡,造成線粒體功能障礙,從而線粒體膜的通透性增加,加速細(xì)胞凋亡,并增加活性氧(reactive oxygen species,ROS)釋放,引起小管及毛細(xì)血管內(nèi)皮的直接損傷[20]。同時(shí),ROS與一氧化氮(nitric oxide,NO)的相互作用在氧化應(yīng)激及CIN的發(fā)生起著至關(guān)重要的作用。ROS能清除血管內(nèi)NO而起到增強(qiáng)血管收縮作用,加重組織缺氧,影響腎髓質(zhì)微循環(huán),惡化內(nèi)皮功能,同時(shí)ROS直接損害腎實(shí)質(zhì),直接攻擊腎小管及脈管系統(tǒng),加重內(nèi)皮細(xì)胞功能不良所致的組織缺氧,及影響球管平衡。反過來,當(dāng)NO可清除組織內(nèi)ROS,防止活性氧介導(dǎo)的內(nèi)皮細(xì)胞損傷和減少髓襻升支粗段轉(zhuǎn)運(yùn)ROS[21]。一項(xiàng)關(guān)于糖尿病大鼠使用造影劑后出現(xiàn)造影劑腎病的研究表明,糖尿病大鼠已存在NO代謝障礙,當(dāng)時(shí)用造影劑后的更加重了NO合成障礙及消耗加速,因此實(shí)驗(yàn)認(rèn)為造影劑腎病的發(fā)生可能與氧化應(yīng)激后NO的代謝障礙相關(guān)[22]。同時(shí),低pH值,腎小管上皮離子主動(dòng)轉(zhuǎn)運(yùn)需氧量的增加以及由于造影劑所致的縮血管作用增加了腎髓質(zhì)對(duì)造影劑損害的敏感。因此,腎組織中pH和碳酸氫根陰離子水平升高可能有降低腎內(nèi)ROS的釋放[23]。
2.3 細(xì)胞毒性 目前認(rèn)為,造影劑的直接細(xì)胞毒性表現(xiàn)在細(xì)胞凋亡、壞死及非致死性細(xì)胞損傷。有學(xué)者報(bào)道,關(guān)于造影劑對(duì)腎小管的直接毒性的研究表明,相同時(shí)間下接觸不同劑量造影劑后,腎小管細(xì)胞即可出線空泡化表現(xiàn),且這一表現(xiàn)呈劑量依賴性,但這空泡化表現(xiàn)與腎功能損傷程度無關(guān)[24-25]。
有研究表明,由于腎小管的轉(zhuǎn)運(yùn)功能功能取決于腎上皮細(xì)胞的極性,因而使用造影劑后,造影劑的細(xì)胞毒性可能是通過改變細(xì)胞表面標(biāo)記蛋白分布,解除細(xì)胞橋接關(guān)系,影響細(xì)胞兩極極性,同時(shí)影響腎小管上皮細(xì)胞的離子轉(zhuǎn)運(yùn),尤其為鈣離子(Ca2+)的轉(zhuǎn)運(yùn),引起細(xì)胞內(nèi)鈣超載,從而誘發(fā)細(xì)胞凋亡通路的啟動(dòng),同時(shí)高滲性造影劑引起的細(xì)胞毒性較等滲性造影劑大[26-27]。因此上述機(jī)制既互相獨(dú)立又相輔相成,共同作用引起GFR下降。
3 預(yù)防手段
由于CIN無特異性治療方法,因而預(yù)防手段成了降低CIN發(fā)病率的重要手段。根據(jù)Mehran評(píng)分識(shí)別CIN的高危人群,采取手段預(yù)防CIN的發(fā)生,可降低心血管及腎不良事件的發(fā)生率。而根據(jù)以上的病理生理機(jī)制,目前的防治手段包括:造影劑的選擇、水化治療、抗氧化治療、遠(yuǎn)程缺血預(yù)處理等。
3.1 造影劑的選擇 由于腎小管對(duì)造影劑存在球-管反饋,當(dāng)造影劑滲透壓升高時(shí),利尿排鈉作用增強(qiáng),從而損害腎功能情況。因而適合的造影劑滲透壓一定程度上保護(hù)了腎功能。目前臨床上較多使用的造影劑為非離子型等滲性造影劑。而對(duì)于腎功能不全患者高滲性或等滲性造影劑均能引起SCr升高[28]。因而應(yīng)注意造影劑劑量的應(yīng)用,根據(jù)Mehran造影劑腎病危險(xiǎn)分層評(píng)分,每增加100 mL造影劑用量,分值隨之增加,危險(xiǎn)度亦相應(yīng)增加[8]。
3.2 水化治療 水化治療是通過增加血容量從而增加腎灌注,降低球-管反饋所引起的縮血管物質(zhì)的釋放,緩解腎功能不良情況。同時(shí)可以稀釋造影劑在腎血管內(nèi)的粘稠度以及濃度,從而減少造影劑對(duì)腎臟的直接細(xì)胞毒性[29]。水化治療為目前較為推薦使用的預(yù)防CIN的手段。ESUR推薦使用的水化治療方案仍為:在心功能允許的情況下,至少在接觸造影劑前后6 h內(nèi)靜脈使用等滲鹽水1.0~1.5 mL/(kg·h)[2]。同時(shí)口服水化治療操作性較靜脈水化治療強(qiáng),因而Cheungpasitporn等[30]關(guān)于口服水化治療的薈萃分析表明,口服水化治療與靜脈水化治療均能有效預(yù)防CIN發(fā)生,或能推薦成為預(yù)防手段之一。
目前新型水化治療方案還有Renal Guard治療方案,即于術(shù)前、術(shù)中、術(shù)后使用呋塞米+水化治療,使患者尿流量保證>300 mL/h,從而保護(hù)腎功能?,F(xiàn)主要應(yīng)用于合并高危因素的患者,能在一定程度上降低CIN發(fā)病率,但其存在一定圍手術(shù)期肺水腫風(fēng)險(xiǎn)[31]。關(guān)于RenalGuard治療方案的薈萃分析表明此方案可降低CIN風(fēng)險(xiǎn),顯著降低血液透析治療需要[32]。但此RenalGuard治療方案的機(jī)制尚不明確,仍需進(jìn)一步研究證實(shí)。
3.3 抗氧化治療 抗氧化治療的目的主要是減少由造影劑的直接毒性或因血流動(dòng)力學(xué)改變以及缺氧改變而誘導(dǎo)釋放的ROS。目前主要的抗氧化劑有他汀類藥物,碳酸氫鈉,以及N-乙酰半胱氨酸(N-Acetylcysteine,NAC)等[33-35]。其中以NAC的作用尤為突出。有研究表明,NAC的使用能降低CIN的風(fēng)險(xiǎn)及SCr水平,減少血液透析治療的需要,但對(duì)于糖尿病患者來說,CIN風(fēng)險(xiǎn)未見明顯降低[36]。
而他汀類藥物在CIN預(yù)防應(yīng)用上亦備受關(guān)注,多個(gè)研究表明在行冠狀動(dòng)脈造影術(shù),左心室造影術(shù)或冠狀動(dòng)脈支架植入術(shù)前2 d及術(shù)后3 d夜間服用10 mg瑞舒伐他汀鈣能降低糖尿病患者及慢性腎功能不全CIN風(fēng)險(xiǎn),女性患者獲益更大[37-38]。
3.4 遠(yuǎn)程缺血預(yù)處理 遠(yuǎn)程缺血預(yù)處理(remote ischemic preconditioning,RIP),即對(duì)某一血管床、組織或器官的短暫的,可逆的缺血再灌注操作而保護(hù)遠(yuǎn)端組織或器官耐受缺血再灌注損傷[39]。RIP最早應(yīng)用于心肌梗死患者行冠狀動(dòng)脈介入診療上。RIP的機(jī)制尚不明確,目前認(rèn)為主要機(jī)制與信號(hào)傳導(dǎo)通路,神經(jīng)體液因素以及抗炎反應(yīng)相關(guān)。目前RIP能使線粒體ATP敏感性鉀通道的開放激活下游PKG/PKC,限制線粒體通透性轉(zhuǎn)換孔開放,從而提高細(xì)胞存活率。同時(shí)RIP能抑制白細(xì)胞促進(jìn)炎癥介質(zhì)的表達(dá),減少白細(xì)胞的細(xì)胞因子合成,減弱白細(xì)胞的趨化、黏附、遷移以及凋亡作用,從而減輕心肌組織缺血再灌注的損傷。其中還涉及了兒茶酚胺、緩激肽、腺苷等神經(jīng)體液因素的參與[40]。
RIP在CIN上的應(yīng)用于近年得到推廣。RIP的具體操作為在行冠狀動(dòng)脈介入診療前1 h利用血壓計(jì)止血帶捆綁于上臂加壓超過收縮壓50 mm Hg或直接加壓至200 mm Hg維持5 min,后放氣松開5 min,重復(fù)上述步驟4次[41]。多項(xiàng)研究表明,RIP能降低CIN的發(fā)病率,在中重度腎功能不全及糖尿病患的應(yīng)用上尤為突出[42-43]。但RIP在臨床上的應(yīng)用仍存在爭議,需要更多的研究進(jìn)一步證實(shí)其療效。
4 展望
目前CIN的診斷標(biāo)準(zhǔn)尚未完全統(tǒng)一,發(fā)病機(jī)制不明確,隨著生活水平提高,合并多種危險(xiǎn)因素的人群日益升高,在一定程度上增加了CIN的危險(xiǎn)程度,尤其對(duì)于合并慢性腎功能不全的患者,其CIN發(fā)病率、血液透析的需要及死亡率明顯升高。而目前CIN未有特異性治療措施,預(yù)防措施的應(yīng)用顯得尤為重要,水化治療對(duì)CIN的預(yù)防效果較明確,各種新型預(yù)防措施的應(yīng)用,仍需進(jìn)一步研究。因此CIN作為醫(yī)源性急性腎功能損傷的主要病因之一,仍值得關(guān)注。
參考文獻(xiàn)
[1] Weisbord S D,Palevsky P M.Contrast-induced acute kidney injury:short-and long-term implications[J].Semin Nephrol,2011,31(3):300-309.
[2] Thomsen H S.Guidelines for contrast media from the European Society of Urogenital Radiology[J].Am J Roentgenol,2003,181(6):1463-1471.
[3] Hou S H,Bushinsky D A,Wish J B,et al.Hospital-acquired renal insufficiency:a prospective study[J].Am J Med,1983,74(2):243-248.
[4] Nazar M A Mohammed,Ahmed Mahfouz,Katafan Achkar,et al.Contrast-induced Nephropathy[J].Heart Views,2013,14(3):106-116.
[5] Lee J,Cho J Y,Lee H J,et al.Contrast-induced nephropathy in patients undergoing intravenous contrast-enhanced computed tomography in Korea:a multi-institutional study in 101 487 patients[J].Korean J Radiol,2014,15(4):456-463.
[6] Calvin A D,Misra S,Pflueger A.Contrast-induced acute kidney injury and diabetic nephropathy[J].Nat Rev Nephrol,2010,6(11):679-688.
[7] Solomon R J,Mehran R,Natarajan M K,et al.Contrast-induced nephropathy and long-term adverse events:cause and effect[J].Clin J Am Soc Nephrol,2009,4(7):1162-1169.
[8] Mehran R,Aymong E D,Nikolsky E,et al.A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention development and initial validation[J].J Am Coll Cardiol,2004,44(7):1393-1399.
[9] Khamaisi M,Raz I,Shilo V,et al.Diabetes and radiocontrast media increase endothelin converting enzyme-1 in the kidney[J].Kidney Int,2008,74(1):91-100.
[10] Morabito S,Pistolesi V,Benedetti G,et al.Incidence of contrast-induced acute kidney injury associated with diagnostic or interventional coronary angiography[J].J Nephrol,2012,25(6):1098-1107.
[11] Barrett B J,Katzberg R W,Thomsen H S,et al.Contrast-induced nephropathy in patients with chronic kidney disease undergoing computed tomography:a double-blind comparison of iodixanol and iopamidol[J].Invest Radiol,2006,41(11):815-821.
[12] Yong Liu,Ning Tan,Jiyan Chen,et al.The relationship between hyperuricemia and the risk of contrast-induced acute kidney injury after percutaneous coronary intervention in patients with relatively normal serum creatinine[j].Clinics(Sao Paulo),2013,68(1):19-25.
[13] Philip Ching Yat Wong,Zicheng Li,Jun Guo,et al.Pathophysiology of contrast-induced nephropathy[J].Int J Cardiol,2012,158(2):186-192.
[14] Vallon V.Tubuloglomerular feedback and the control of glomerular filtration rate[J].News Physiol Sci,2003,18:169-174.
[15] Pflueger A,Larson T S,Nath K A,et al.Role of Adenosine in Contrast Media-Induced Acute Renal Failure in Diabetes Mellitus[J].Mayo Clin Proc,2000,75(12):1275-1283.
[16] Paolo Calzavacca,Ken Ishikawa,Michael Bailey,et al.Systemic and renal hemodynamic effects of intra-arterial radiocontrast[J].Intensive Care Med Exp,2014,2:32.
[17] Tumlin J,Stacul F,Adam A,et al.Pathophysiology of contrast-induced nephropathy[J].Am J Cardiol,2006,98(6A):14K-20K.
[18] Sheila Marques Fernandes,Daniel Malisani Martins,Cassiane Dezoti da Fonseca,et al.Impact of iodinated contrast on renal function and hemodynamics in rats with chronic hyperglycemia and chronic kidney disease[J].Biomed Res Int,2016,2016:3 019 410.
[19] Pedraza-Chaverri,Sánchez-Lozada,Osorio-Alonso,et al.New Pathogenic Concepts and Therapeutic Approaches to Oxidative Stress in Chronic Kidney Disease[J].Oxid Med Cell Longev,2016,2016:6 043 601.
[20] Heyman S N,Rosenberger C,Rosen S,et al.Why is diabetes mellitus a risk factor for contrast-induced nephropathy[J].Biomed Res Int,2013,2013:123 589.
[21] Heyman S N,Rosen S,Khamaisi M,et al.Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy[J].Invest Radiol,2010,45(4):188-195.
[22] Deng J,Wu G,Yang C,et al.Rosuvastatin attenuates contrast-induced nephropathy through modulation of nitric oxide,inflammatory responses, oxidative stress and apoptosis in diabetic male rats[J].J Transl Med,2015,13:53.
[23] Burgess W P,Walker P J.Mechanisms of contrast-induced nephropathy reduction for saline(NaCl) and sodium bicarbonate(NaHCO3)[J].Biomed Res Int,2014,2014:510 385.
[24] Andersen K J,Christensen E I,Vik H.Effects of Iodinated X-ray Contrast Media on Renal Epithelial Cells in Culture[J].Visipaque Supplement Meeting,1994,29(11):955-962.
[25] Persson P B,Hansell P,Liss P.Pathophysiology of contrast medium-induced nephropathy[J].Kidney Int,2005,68(1):14-22.
[26] Haller C,Schick C S,Zorn M,et al.Cytotoxicity of radiocontrast agents on polarized renal epithelial cell monolayers[J].Cardiovasc Res,1997,33(3):655-665.
[27] Yang D,Yang D.Role of intracellular Ca2+and Na+/Ca2+ exchanger in the pathogenesis of contrast-induced acute kidney injury[J].Biomed Res Int,2013,2013:678 456.
[28] Barrett B J,Katzberg R W,Thomsen H S,et al.Contrast-induced nephropathy in patients with chronic kidney disease undergoing computed tomography a double-blind comparison of iodixanol and iopamidol[J].Invest Radiol,2006,41(11):815-821.
[29] Andreucci M,F(xiàn)aga T,Pisani A,et al.Prevention of contrast-induced nephropathy through a knowledge of its pathogenesis and risk factors[J].Scientific World Journal,2014,2014:823 169.
[30] Cheungpasitporn W,Thongprayoon C,Brabec B A,et al.Oral Hydration for prevention of contrast-induced acute kidney injury in elective radiological procedures:a systematic review and meta-analysis of randomized controlled trials[J].N Am J Med Sci,2014,6(12):618-624.
[31] Briguori C,Visconti G,Donahue M,et al.Renalguard system in high-risk patients for contrast-induced acute kidney injury[J].Am Heart J,2016,173:67-76.
[32] Putzu A,Boscolo Berto M,Belletti A,et al.Prevention of Contrast-Induced Acute Kidney Injury by Furosemide With Matched Hydration in Patients Undergoing Interventional Procedures:A Systematic Review and Meta-Analysis of Randomized Trials[J].JACC Cardiovasc Interv,2017,10(4):355-363.
[33] Deng J,Wu G,Yang C,et al.Rosuvastatin attenuates contrast-induced nephropathy through modulation of nitric oxide,inflammatory responses, oxidative stress and apoptosis in diabetic male rats[J].J Transl Med,2015,13:53.
[34] Zapata-Chica C A,Bello Marquez D,Serna-Higuita L M,et al.
Sodium bicarbonate versus isotonic saline solution to prevent contrast-induced nephropathy: a systematic review and meta-analysis[J].Colomb Med(Cali),2015,46(3):90-103.
[35] Carbonell N,Blasco M,Sanjuán R,et al.Intravenous N-acetylcysteine for preventing contrast-induced nephropathy:a randomised trial[J].Int J Cardiol,2007,115(1):57-62.
[36] Xu R,Tao A,Bai Y,et al.Effectiveness of N-Acetylcysteine for the Prevention of Contrast-Induced Nephropathy:A Systematic Review and Meta-Analysis of Randomized Controlled Trials[J].J Am Heart Assoc,2016,5(9):e 003 968.
[37] Han Y,Zhu G,Han L J,et al.Short-term rosuvastatin therapy for prevention of contrast-tnduced acute kidney injury in patients with diabetes and chronic kidney disease[J].Am Coll Cardiol,2014,66(3):387.
[38] Li J,Li Y,Xu B J,et al.Short-term rosuvastatin therapy prevents contrast-induced acute kidney injury in female patients with diabetes and chronic kidney disease: a subgroup analysis of the TRACK-D study[J].Thorac Dis,2016,8(5):1000-1006.
[39] Heusch G,B?tker H E,Przyklenk K,et al.Remote ischemic conditioning[J].J Am Coll Cardiol,2015,65(2):177-195.
[40] Lim S Y,Hausenloy D J.Remote ischemic conditioning:from bench to bedside[J].Front Physiol,2012,3:27.
[41] Gholoobi A,Sajjadi S M,Shabestari M M,et al.The Impact of Remote Ischemic Pre-Conditioning on Contrast-Induced Nephropathy in Patients Undergoing Coronary Angiography and Angioplasty:A Double-Blind Randomized Clinical Tria[J].Electron Physician,2015,7(8):1557-1565.
[42] Igarashi G,Iino K,Watanabe H,et al.Remote ischemic pre-conditioning alleviates contrast-induced acute kidney injury in patients with moderate chronic kidney disease[J].Circ J,2013,77(12):3037-3044.
[43] Savaj S,Savoj J,Jebraili I,et al.Remote ischemic preconditioning for prevention of contrast-induced acute kidney injury in diabetic patients[J].Iran J Kidney Dis,2014,8(6):457-460.
(收稿日期:2017-03-13) (本文編輯:程旭然)