李倩,夏鐵成
(1.上海大學(xué)理學(xué)院,上海 200444;
2.鄭州航空工業(yè)管理學(xué)院理學(xué)院,鄭州 450005)
Dirac孤子族的三可積耦合及其雙Hamiltonian結(jié)構(gòu)
李倩1,2,夏鐵成1
(1.上海大學(xué)理學(xué)院,上海 200444;
2.鄭州航空工業(yè)管理學(xué)院理學(xué)院,鄭州 450005)
基于擴(kuò)大的零曲率方程和矩陣?yán)畲鷶?shù)的半直和,得到了Dirac孤子族的三可積耦合,并借助變分恒等式得到了三可積耦合的雙Hamiltonian結(jié)構(gòu).
Dirac孤子族;三可積耦合;雙Hamiltonian結(jié)構(gòu)
眾所周知,可積耦合是孤子理論中有趣而重要的課題[1-3].研究可積耦合不僅可以概括對(duì)稱問題,而且為可積系統(tǒng)的完全分類提供了線索,甚至可以顯現(xiàn)出可積方程所擁有的數(shù)學(xué)結(jié)構(gòu).自從可積耦合的定義[4]被提出后,方程族可積耦合得到廣泛關(guān)注,并出現(xiàn)了很多建立方程組可積耦合的方法,如擴(kuò)大譜問題、李代數(shù)的半直和、新的李代數(shù)等[5-20].關(guān)于可積耦合的研究甚至推廣到了超可積系統(tǒng)[18-20].2012年,Ma[21]用塊型矩陣?yán)畲鷶?shù)建立了方程族的雙可積耦合,之后又進(jìn)一步將雙可積耦合推廣到三可積耦合[22].
對(duì)于給定的可積系統(tǒng)
式中,u為獨(dú)立變量構(gòu)成的列向量.可積系統(tǒng)(1)的三可積耦合指的是擴(kuò)大的三角形可積系統(tǒng):
如果S1(u,u1),S2(u,u1,u2)和S3(u,u1,u2,u3)中至少有一個(gè)關(guān)于任何新的獨(dú)立變量u1,u2,u3是非線性的,則稱這個(gè)系統(tǒng)是非線性可積耦合的.
為了建立三可積耦合,需要一系列三角形4×4的分塊矩陣M(A1,A2,A3,A4),其中Ai(1≤i≤4)是同階的方陣.引入一系列具有半直和分解的矩陣?yán)畲鷶?shù):
其中Ai(λ)(i=1,2,3,4)為λ的羅朗級(jí)數(shù),則其必為非半單的.顯然,gc是的一個(gè)非平凡理想.
上述所提出的李代數(shù)為產(chǎn)生非線性三可積耦合提供了一組基,因?yàn)榻粨Q算子[A2,B2] 和[A3,B3]在對(duì)應(yīng)的三可積耦合中能夠產(chǎn)生非線性項(xiàng),而其余現(xiàn)有的李代數(shù)產(chǎn)生線性可積耦合,其中子塊A1對(duì)應(yīng)原始的可積系統(tǒng),子塊A2,A3和A4用來生成輔助向量域S1,S2和S3.
本工作的主要目的是基于文獻(xiàn)[23]中的方法建立Dirac族的三可積耦合.選取其中一個(gè)分塊矩陣:
式中,α,β和μ是3個(gè)任意給定的常數(shù).進(jìn)一步地,希望獲得對(duì)應(yīng)三可積耦合的雙Hamiltonian結(jié)構(gòu).
基于特殊的非半單李代數(shù),選取如下擴(kuò)大的譜矩陣:
其中si,vi是新的獨(dú)立變量.為了求解擴(kuò)大的零曲率方程
當(dāng)m≥2時(shí),由式(31)可以得出Dirac方程族的非線性三可積耦合.
應(yīng)用變分恒等式(23)建立對(duì)應(yīng)三可積耦合的Hamiltonian結(jié)構(gòu):
要求FT=F.在對(duì)稱條件下,不變性質(zhì)〈a,[b,c]〉=〈[a,b],c〉等價(jià)于要求F(R(b))T=?R(b)F, b∈R12.具有任意常數(shù)b的矩陣方程產(chǎn)生矩陣F的線性系統(tǒng),求解對(duì)應(yīng)的系統(tǒng)可以得到
[1]ABLOWITZ M,LADIK J F.Nonlinear differential-difference equation[J].Journal of Mathematical Physics,1975,16(3):598-603.
[2]TU G Z.A trace identity and its applications to the theory of discrete integrable systems[J]. Journal of Physics A:Mathematical and General,1990,23(17):3903-3922.
[3]OHTA Y,HIROTA R.A discrete KdV equation and its Casorati determinant solution[J].Journal of the Physical Society of Japan,1991,60(6):2095.
[4]MA W X,FUCHSSTEINER B.Integrable theory of the perturbation equations[J].Chaos, Solitons&Fractals,1996,7(8):1227-1250.
[5]MA W X,XU X X,ZHANG Y F.Semi-direct sums of Lie algebras and continuous integrable couplings[J].Physics Letter A,2006,351(3):125-130.
[6]MA W X.Enlarging spectral problems to construct integrable couplings of soliton equations[J]. Physics Letters A,2003,316(2):72-76.
[7]ZHANG Y F.A generalized multi-component Glachette-Johnson(GJ)hierarchy and its integrable coupling system[J].Chaos,Solitons&Fractals,2004,21(2):305-310.
[8]GUO F K,ZHANG Y F.A new loop algebra and a corresponding integrable hierarchy,as well as its integrable coupling[J].Journal of Mathematical Physics,2003,44(12):5793-5803.
[9]XIA T C,YOU F C.Generalized multi-component TC hierarchy and its multi-component integrable coupling system[J].Communications in Theoretical Physics,2005,44(5):793-798.
[10]MA W X.Nonlinear continuous integrable Hamiltonian couplings[J].Applied Mathematics and Computation,2011,217(17):7238-7244.
[11]ZHANG Y F,TAM H.Four Lie algebras associated with R6and their applications[J].Journal of Mathematical Physics,2010,DOI:10.1063/1.3489126.
[12]MA W X,ZHU Z N.Constructing nonlinear discrete integrable Hamiltonian couplings[J].Computers&Mathematics with Applications,2010,60(19):2601-2608.
[13]YU F J.A real nonlinear integrable couplings of continuous soliton hierarchy and its Hamiltonian structure[J].Physics Letters A,2011,375(13):1504-1509.
[14]ZHANG Y F.Lie algebras for constructing nonlinear integrable couplings[J].Communications in Theoretical Physics,2011,56(5):805-812.
[15]ZHANG Y F,FAN E G.Coupling integrable couplings and bi-Hamiltonian structure associated with the Boiti-Pempinelli-Tu hierarchy[J].Journal of Mathematical Physics,2010,DOI: 10.1063/1.3462736.
[16]GUO F K,ZHANG Y F.The quadratic-form identity for constructing the Hamiltonian structure of integrable systems[J].Journal of Physics A:Mathematical and General,2005,38:8537-8548.
[17]ZHANG Y F,ZHANG H Q.A direct method for integrable couplings of TD hierarchy[J].Journal of Mathematical Physics,2002,43(1):466-472.
[18]YOU F C.Nonlinear super integrable couplings of super Dirac hierarchy and its super Hamiltonian structures[J].Communications in Theoretical Physics,2012,57(6):961-966.
[19]MA W X,HE J S,QIN Z Y.A super trace identity and its applications to super integrable systems[J].Journal of Mathematical Physics,2008,DOI:10.1063/1.2897036.
[20]YOU F C.Nonlinear super integrable Hamiltonian couplings[J].Journal of Mathematical Physics,2011,DOI:10.1063/1.3669484.
[21]MA W X.Loop algebras and bi-integrable couplings[J].Chinese Annals of Mathematics B, 2012,33(2):207-224.
[22]MENG J,MA W X.Hamiltonian tri-integrable couplings of the AKNS hierarchy[J].Communications in Theoretical Physics,2013,59(4):385-392.
[23]MA W X.Variational identities and applications to Hamiltonian structures of soliton equations[J].Nonlinear Analysis,2009,71(12):1716-1726.
[24]OLVER P J.Applications of Lie groups to differential equations[M].New York:Springer-Verlag, 1986.
Tri-integrable couplings of Dirac hierarchy and its bi-Hamiltonian structure
LI Qian1,2,XIA Tiecheng1
(1.College of Sciences,Shanghai University,Shanghai 200444,China; 2.College of Sciences,Zhengzhou University of Aeronautics,Zhengzhou 450005,China)
Tri-integrable couplings of Dirac hierarchy are obtained based on the enlarged zero curvature equation from semi-direct sums of Lie algebras.Its bi-Hamiltonian structures are then established with variational identity.
Dirac hierarchy;tri-integrable couplings;bi-Hamiltonian structure
O 175.2
A
1007-2861(2017)02-0257-10
10.3969/j.issn.1007-2861.2015.04.022
2015-10-26
國(guó)家自然科學(xué)基金資助項(xiàng)目(11271008,61640315);河南省高等學(xué)校重點(diǎn)科研資助項(xiàng)目(17A120006)
夏鐵成(1960—),男,教授,博士生導(dǎo)師,研究方向?yàn)楣伦优c可積系統(tǒng).E-mail:xiatc@shu.edu.cn