徐威震,鄧一平
(重慶市水利電力建筑勘測(cè)設(shè)計(jì)研究院 規(guī)劃所, 重慶 401120)
寬窄相間河道上游流速特性分析
徐威震,鄧一平
(重慶市水利電力建筑勘測(cè)設(shè)計(jì)研究院 規(guī)劃所, 重慶 401120)
山區(qū)河道受地質(zhì)和河床演變的影響,平面形態(tài)呈寬窄相間的形態(tài)特征。采用水槽模型試驗(yàn),建立不同比例的寬窄相間河道模型,對(duì)上游斷面進(jìn)行流速測(cè)量,對(duì)比均勻流分析其流速變化規(guī)律,并反算其摩阻流速。結(jié)果表明:寬窄相間河道上游較遠(yuǎn)處流速分布基本符合對(duì)數(shù)流速分布規(guī)律,接近收縮段處不符合對(duì)數(shù)流速分布規(guī)律;寬窄相間河道橫向流速分布符合指數(shù)分布規(guī)律,其橫向流速分布參數(shù)與摩阻流速呈規(guī)律性變化,與寬窄比及距收縮段的距離有關(guān)。研究成果可為寬窄相間河道工程整治提供理論參考。
寬窄相間河道上游;寬窄比;流速特性;摩阻流速;對(duì)數(shù)流速分布;橫向流速分布
山區(qū)河流在峽谷地區(qū)受地質(zhì)條件約束,經(jīng)過(guò)極長(zhǎng)時(shí)間調(diào)整常形成寬窄相間形態(tài),如長(zhǎng)江銅鑼?shí){最寬處為1 010 m,而其它地方河寬多在300 ~600 m之間。寬窄相間的平面形態(tài)顯著影響河道水沙運(yùn)動(dòng)及其演化特性。Lucy 等(2010)[1]基于野外調(diào)查認(rèn)為河道寬度變化是影響河床演化的關(guān)鍵因素之一。Singha 等(2011)[2]基于試驗(yàn)指出,河道形態(tài)變化將重新調(diào)整水流紊動(dòng)能的分布特性。Armellini 等(2009)[3]基于數(shù)值計(jì)算得出,受岸灘形態(tài)的影響,水流結(jié)構(gòu)出現(xiàn)極為明顯的分離區(qū)。Paiement-Paradis等(2011)[4]通過(guò)試驗(yàn)表明河道寬窄變化引起的水流減速或加速運(yùn)動(dòng)對(duì)泥沙推移質(zhì)輸移有重要的影響。閆旭峰等(2011)[5]基于室內(nèi)試驗(yàn)指出漸變河道形態(tài)顯著影響寬窄相間區(qū)域的局部水頭損失。
對(duì)于天然河道的水流的研究,多數(shù)是在均勻流的基礎(chǔ)上進(jìn)行分析。均勻流較為經(jīng)典的垂向流速分布為對(duì)數(shù)型流速分布,實(shí)際明渠中沿垂線流速分布大部分與其基本符合,而橫向流速分布應(yīng)用較為廣泛的為指數(shù)流速分布。實(shí)際上各個(gè)流態(tài)中對(duì)數(shù)流速公式的參數(shù)k,c的變化不大,橫向流速分布參數(shù)變化也不明顯,摩阻流速u*難以確定。通常均勻流摩阻流速的計(jì)算依據(jù)是阻力平衡,如劉春晶等[6]根據(jù)水槽試驗(yàn)得出不同寬深比情況下的摩阻流速計(jì)算方法;而非恒定流的摩阻流速難以確定,國(guó)內(nèi)外研究較多,Tu(1991)[7],Song等(1994)[8],Westphal等(1996)[9]都認(rèn)為非恒定流的計(jì)算方法不同于恒定流, 并提出可以用Saint-Venant方程計(jì)算,但是在參數(shù)的選擇上差異頗大。對(duì)于寬窄相間河道的流速特性研究較少,本文在前人研究的基礎(chǔ)上,以寬窄相間水流運(yùn)動(dòng)為研究對(duì)象,通過(guò)水槽試驗(yàn),研究水流運(yùn)動(dòng)特性。相關(guān)成果可為寬窄相間河道工程治理提供理論參考。
試驗(yàn)在高精度多功能邊坡試驗(yàn)水槽內(nèi)展開,水槽尺寸為28 m×0.56 m×0.7 m(長(zhǎng)×寬×高),水槽全長(zhǎng)平面起伏誤差<0.2 mm。
水槽采用超聲水位計(jì)進(jìn)行水深測(cè)量,共安裝了8個(gè)探頭,安裝高度距離水面均≥0.05 m。流速測(cè)量采用重慶西南水運(yùn)工程科學(xué)研究所自主研發(fā)的多孔螺旋槳流速儀。為保證進(jìn)入試驗(yàn)段水流平穩(wěn)達(dá)到均勻紊流的條件,進(jìn)口段長(zhǎng)度取8 m;出口段長(zhǎng)度取為6 m,試驗(yàn)斷面距進(jìn)口12 m。
結(jié)合試驗(yàn)條件寬窄比,取3種典型的寬窄比2∶1,3∶2,4∶3,收縮角度取30°。本文試驗(yàn)均取水深10 cm,比降為0.1%,試驗(yàn)組數(shù)為3組。
對(duì)各個(gè)試驗(yàn)方案收縮段前2,0.5,0 m各測(cè)點(diǎn)分別距離左邊邊壁0.03,0.08,…,0.53 m處進(jìn)行測(cè)量,試驗(yàn)布置如圖1所示。
圖1 寬窄相間河段水槽試驗(yàn)布置示意圖Fig.1 Layout of wide and narrow alternated channels in flume experiment
3.1 試驗(yàn)結(jié)果
收縮角度30°不變水深10 cm情況下,寬窄比為4∶3,3∶2,2∶1,沿程水深如表1所示。
表1 試驗(yàn)沿程水深Table 1 Water depths along the channel in the test
注:uij為第i條垂線第j個(gè)點(diǎn)的流速;vi為第i條垂線平均流速; h為測(cè)點(diǎn)水深;H為水深。以下同。圖2 無(wú)量綱垂向流速分布對(duì)比Fig.2 Comparison of dimensionless vertical velocity distribution
寬窄比4∶3,3∶2,2∶1收縮段前2,0.5,0 m垂向流速無(wú)量綱分布計(jì)算公式為
(1)
其中:
u+=u/u*;y+=yu*/υ。式中:y為距離底部的距離;u*為摩阻流速;κ為卡門常數(shù);υ為水流黏性系數(shù);u為流速;c為橫向流速分布參數(shù)。關(guān)于公式參數(shù)的確定,根據(jù)前人的研究成果,本文取κ=0.41,c=5.02。
無(wú)量綱垂向流速分布對(duì)比如圖2所示,中垂線流速無(wú)量綱對(duì)比如圖3所示。
圖3 無(wú)量綱中垂線垂向流速分布對(duì)比Fig.3 Comparison of dimensionless mid-perpendicular velocity
橫向流速分布遵循指數(shù)分布,計(jì)算公式為
(2)
式中:ui為過(guò)水?dāng)嗝嫔系趇水平層上的測(cè)點(diǎn)流速;uz為過(guò)水?dāng)嗝嫔系趇水平層中垂線處流速;Bi為過(guò)水?dāng)嗝嫔系趇水平層寬度;x為過(guò)水?dāng)嗝嫔系趇水平層上測(cè)點(diǎn)距離渠道左岸的距離,均勻流c=0.14。
無(wú)量綱橫向流速分布對(duì)比見圖4,c值統(tǒng)計(jì)如表2所示。同時(shí)對(duì)各個(gè)方案斷面進(jìn)行流速反算,其摩阻流速如表3所示(均勻流摩阻流速為0.027 m/s)。
圖4 無(wú)量綱橫向流速分布對(duì)比Fig.4 Comparison of dimensionless transverse velocity distribution表2 斷面橫向流速分布參數(shù)cTable 2 Values of transverse velocity distribution coefficient c
水深/cm寬窄比收縮段前各位置處的c值2m0.5m0m4∶30.140.140.21103∶20.140.140.282∶10.140.210.30
表3 摩阻流速Table 3 Values of frictional velocity
3.2 收縮段前2 m處流速特性分析
由圖2至圖4可看出,垂向流速計(jì)算值與實(shí)測(cè)值無(wú)量綱數(shù)值較為吻合,橫向流速計(jì)算值與實(shí)測(cè)值無(wú)量綱數(shù)值較為吻合,從表2得到橫向流速分布參數(shù)與均勻流相同。由表3可知,寬窄比4∶3時(shí)摩阻流速與均勻流摩阻流速相同,為0.027 m/s,寬窄比分別為3∶2和2∶1時(shí)摩阻流速分別為0.021 m/s和0.014 m/s,比計(jì)算值分別小0.007 m/s和0.013 m/s。
3.3 收縮段前0.5 m處流速特性分析
從圖2、圖3可看出,垂向流速計(jì)算值和實(shí)測(cè)無(wú)量綱數(shù)值較為吻合;圖4、表2表明橫向流速計(jì)算值與實(shí)測(cè)無(wú)量綱數(shù)值較為吻合,寬窄比為4∶3與3∶2時(shí),橫向流速分布參數(shù)與均勻流相同,當(dāng)寬窄比變大到2∶1時(shí),橫向流速分布參數(shù)變大為0.21;表3顯示,整體摩阻流速都有變小趨勢(shì),寬窄比為4∶3,3∶2和2∶1處摩阻流速分別為0.022,0.020,0.015 m/s,比計(jì)算值0.027 m/s分別小0.005,0.007和0.012 m/s。
3.4 收縮段前0 m處流速特性分析
從圖2、圖3可看出,垂向流速分布在同一個(gè)寬窄比的情況下,0.2H和0.4H實(shí)測(cè)流速值比理論計(jì)算值偏大,0.8H和0.95H實(shí)測(cè)流速值比理論計(jì)算值偏小,并且隨著位置向收縮段的靠近,差值逐漸增大;在同一個(gè)位置的情況下,0.2H和0.4H實(shí)測(cè)流速值比理論計(jì)算值偏大,0.8H和0.95H實(shí)測(cè)流速值比理論計(jì)算值偏小,并且隨著寬窄比的增大,差值逐漸增大;由圖4、表2可知,橫向流速分布基本遵循指數(shù)分布規(guī)律,橫向流速分布參數(shù)隨著寬窄比的增大有增大的趨勢(shì),寬窄比4∶3,3∶2,2∶1處橫向流速分布參數(shù)分別為0.21,0.28,0.30,比均勻流橫向流速分布參數(shù)值0.14分別大0.07, 0.14和0.16。表3顯示,整體摩阻流速都有變小趨勢(shì),寬窄比4∶3,3∶2,2∶1處摩阻流速分別為0.024,0.023,0.016 m/s,比計(jì)算值0.027 m/s分別小0.003,0.004,0.011 m/s。
總體來(lái)說(shuō),流速分布的變化規(guī)律為:所有方案2 m處和0.5 m處垂向無(wú)量綱流速分布與理論計(jì)算差值在合理范圍內(nèi),符合對(duì)數(shù)流速分布公式;橫向流速分布遵循指數(shù)分布規(guī)律,橫向流速分布參數(shù)除了寬窄比2∶1處跟均勻流不同外,其他全部相同;0 m處垂向流速值相對(duì)理論計(jì)算值發(fā)生變化,橫向流速分布遵循指數(shù)分布規(guī)律,橫向流速分布參數(shù)隨著寬窄比的變大而增大。摩阻流速的變化規(guī)律為:在相同的位置摩阻流速隨著寬窄比的增大而減??;同一個(gè)寬窄比例當(dāng)寬窄比為4∶3和3∶2時(shí),摩阻流速隨著距離的靠近先減小后增大,而寬窄比為2∶1時(shí)隨著距離的靠近逐漸增大。同時(shí)從中垂線流速分布對(duì)比圖(圖3)可以看出,各個(gè)斷面位置的垂向流速分布遵循對(duì)數(shù)流速分布規(guī)律。同時(shí)結(jié)合0 m處的流速分布圖形,可以得到隨著寬窄比的擴(kuò)大,此斷面處遵循對(duì)數(shù)流速分布的區(qū)域越來(lái)越小。
(1) 寬窄相間河道收縮段上游的流速分布規(guī)律為:垂向流速基本遵循對(duì)數(shù)分布規(guī)律,橫向流速分布遵循指數(shù)分布規(guī)律,橫向流速分布參數(shù)與均勻流對(duì)比基本沒有變化。摩阻流速變化規(guī)律為:在同一位置情況下,摩阻流速隨著寬窄比的變大而減??;另外當(dāng)寬窄比較小時(shí),隨著向收縮段的靠近,摩阻流速減??;而當(dāng)寬窄比較大時(shí),隨著向收縮段的靠近,摩阻流速逐漸增大。
(2) 寬窄交界處的流速分布規(guī)律為:斷面的垂向流速分布遵循對(duì)數(shù)流速分布規(guī)律的區(qū)域比較小,已經(jīng)基本不符合此規(guī)律;橫向流速分布遵循指數(shù)分布規(guī)律,橫向流速分布參數(shù)隨著寬窄比的變大而增大;摩阻流速隨著寬窄比的增大而減小。
[1] LUCY C,QUINE T A,NICHOLAS A.An Experimental Investigation of Autogenic Behavior During Alluvial Fan Evolution[J].Geomorphology,2010,115(3/4) : 278-285.
[2] SINGHA A,BALACHANDAR R.Structure of Wake of a Sharp-edged Bluff Body in a Shallow Channel Flow[J].Journal of Fluids and Structures,2011,27(2):233-249.
[3] ARMELLINI A, CASARSA L, GIANNATTASIO P.Separated Flow Structures Around a Cylindrical Obstacle in a Narrow Channel[J].Experimental Thermal and Fluid Science,2009,33(4) :604-619.
[4] PAIEMENT-PARADIS G,MARQUIS G.Effects of Turbulence on the Transport of Individual Particles as Bedload in a Gravel-bed River[J].Earth Surface Processes and Landforms,2011,36(1) : 107-116.
[5] 閆旭鋒,易子靖,劉同宦,等.漸變河道水流結(jié)構(gòu)及局部水頭損失特性分析[J].長(zhǎng)江科學(xué)院院報(bào),2011,28(9): 1-5.
[6] 劉春晶, 李丹勛, 王興奎. 明渠均勻流的摩阻流速及流速分布[J]. 水利學(xué)報(bào), 2005, 36(8):950-955.
[7] TU H. Velocity Distribution in Unsteady Flow over Gravel Beds[D]. Lausanne, Switzerland: EPFL,1991.
[8]SONG T, LEMMIN U, GRAF W H. Uniform-Flow in Open Channels with Movable Gravel-Bed[J]. Journal of Hydraulic Research,1994, 32(6): 861-876.
[9] WESTPHAL J A,THOMPSON D B,STEVENS G T,etal. Stage-discharge Relations on the Middle Mississippi River[J]. Journal of Water Resources Planning and Management, 1996, 125(1): 48-53.
(編輯:劉運(yùn)飛)
Characteristics of Flow Rate in the Upstream of Wideand Narrow Alternated Channels
XU Wei-zhen, DENG Yi-ping
(Department of Planning, Chongqing Design and Research Institute of Water and Power Architecture, Chongqing 401120,China)
Affected by geology and fluvial process, rivers in mountain area are featured with alternated wide and narrow channels. In this research, river model with wide and narrow alternated channels with varying width ratio was established through flume model test. The flow velocity in the upstream section was measured, and the rule of velocity variation was analyzed in comparison with uniform flow, hence obtaining the frictional velocity. Results reveal that velocity distribution in the upstream far from the wide and narrow alternated channel is in line with logarithmic distribution in general, but does not follow logarithmic distribution near the contraction segment; whereas in the wide and narrow alternated channel, the transverse flow velocity distribution conforms with exponential distribution. Moreover, the coefficient of transverse velocity distribution and the frictional velocity change regularly, and are related with the ratio of width and the distance from contraction segment.
wide and narrow alternated channels; ratio of width; flow characteristics; frictional velocity; logarithmic distribution; transverse velocity distribution
2016-02-26 ;
2016-03-22
徐威震(1987-),男,河南安陽(yáng)人,工程師,碩士,主要從事水文規(guī)劃方面的研究,(電話)15215003132(電子信箱)290961938@qq.com。
10.11988/ckyyb.20160150
2017,34(5):40-43
TV131.3
A
1001-5485(2017)05-0040-04