舍 玲,唐 勇,曲顏麗
胃癌BGC-823細胞中HIF-1α、HIF-2α對PKM2的調(diào)控作用
舍 玲,唐 勇*,曲顏麗
目的 研究siRNA特異性沉默人胃癌BGC-823細胞中缺氧誘導(dǎo)因子(HIF-1α、HIF-2α)后PKM2的表達情況,探索HIF-1α、HIF-2α對胃癌細胞內(nèi)PKM2的調(diào)控作用。方法 用Realtime RT-PCR及Western blot法檢測轉(zhuǎn)染HIF-1α、HIF-2α及Control siRNA后細胞內(nèi)PKM2表達情況。結(jié)果 RNA干擾技術(shù)能有效沉默BGC-823細胞中的HIF-1α、HIF-2α。轉(zhuǎn)染HIF-1α、HIF-2α siRNA后,PKM2在mRNA及蛋白表達水平均下降(P<0.05),其中siRNA抑制HIF-1α后,PKM2下調(diào)最明顯;轉(zhuǎn)染Control siRNA后,PKM2在mRNA及蛋白表達水平均無明顯變化(P>0.05)。結(jié)論 HIF-1α和HIF-2α均參與調(diào)控PKM2的表達,其中HIF-1α起主要調(diào)控作用,HIF-1α、HIF-2α與PKM2共同促進腫瘤的Warburg效應(yīng)。
BGC-823細胞;缺氧誘導(dǎo)因子;M2型丙酮酸激酶;Warburg效應(yīng)
實體腫瘤內(nèi)普遍缺氧,其缺氧水平主要由缺氧誘導(dǎo)因子(Hypoxia inducible factors,HIFs)調(diào)節(jié)[1]。為了能夠在缺氧狀態(tài)下繼續(xù)產(chǎn)生足夠的能量,維持一系列生命活動,腫瘤細胞主要采取糖酵解代謝形式,快速大量地產(chǎn)生ATP供能,這一現(xiàn)象稱為Warburg效應(yīng)(Warburg effect)[2]。HIFs、M2型丙酮酸激酶(Pyruvate kinase M2)已被多項研究證實是腫瘤細胞Warburg效應(yīng)的重要調(diào)控因子。HIFs是腫瘤細胞適應(yīng)缺氧表達的一種核轉(zhuǎn)錄因子,缺氧狀態(tài)下可轉(zhuǎn)錄激活多種下游靶基因,使缺氧的腫瘤細胞能保持氧穩(wěn)態(tài),以耐受缺氧狀態(tài)[1]。PKM2是糖酵解途徑中重要的限速酶,PKM2在腫瘤細胞核中與HIF-1α相互作用充當(dāng)HIF-1α的輔助轉(zhuǎn)錄因子[3]。有大量研究證實,HIF-1α與PKM2之間存在相互作用,可相互促進表達,鮮有研究探索HIF-1α、HIF-2α對PKM2調(diào)控的對比。本研究中,我們檢測了siRNA抑制HIFs后,胃癌BGC-823細胞內(nèi)PKM2的表達情況,探索HIFs對胃癌BGC-823細胞內(nèi)PKM2的調(diào)控差異。
1.1 試劑 GAPDH抗體、HIF-1α、HIF-2α、Control siRNA購自美國Santa Cruz公司;兔抗人HIF-1α、HIF-2α多克隆抗體、兔抗人PKM2多克隆抗體、羊抗兔IgG二抗、BGC-823細胞株、氯化鈷購自武漢博士德公司;蛋白提取試劑盒、蛋白檢測試劑盒購自凱基生物公司;組織細胞RNA微量提取試劑盒、SDS-PAGE凝膠制備試劑盒購自索萊寶公司;轉(zhuǎn)染試劑Lipofectamine2000購自Thermo公司;Opti-MEM培養(yǎng)液購自Gibco公司;RT-PCR 試劑盒購自Takara公司;SYBR Green熒光實時定量PCR試劑盒購自Life Technologies;RPMI 1640培養(yǎng)液購自Hyclone公司;胎牛血清購自杭州四季青生物有限公司;引物由生工生物工程公司合成。
1.2 方法
1.2.1 培養(yǎng)細胞 用含10%胎牛血清的RPMI1640培養(yǎng)液,于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)胃癌BGC-823細胞,至對數(shù)期時,接種于六孔板進行轉(zhuǎn)染。
1.2.2 siRNA轉(zhuǎn)染細胞 取對數(shù)期生長的細胞接種于六孔板,待細胞生長至60%~70%的融合面積時,選用LipofectamineTM2000,按其說明書進行轉(zhuǎn)染操作,每孔加入轉(zhuǎn)染混合液500 mL,分別轉(zhuǎn)入HIF-1α、HIF-2α及Control siRNA。培養(yǎng)6 h后,換為RPMI1640培養(yǎng)基,繼續(xù)培養(yǎng)48 h后,可提取細胞。
1.2.3 實時熒光定量PCR檢測mRNA表達 細胞經(jīng)處理后,提取RNA,應(yīng)用Takara逆轉(zhuǎn)錄試劑盒說明書進行反轉(zhuǎn)錄合成cDNA,配置20 μL的反應(yīng)液,每個樣本重復(fù)3個孔,于實時熒光定量PCR儀(型號:7500fast)進行反應(yīng),反應(yīng)條件:50 ℃ 2 min、95 ℃ 2 min預(yù)變性,95 ℃ 15 s、60 ℃ 15 s、72 ℃ 1 min,40個循環(huán)后測得各組Ct值,繪制標(biāo)準(zhǔn)曲線,以GAPDH為內(nèi)參照,實驗重復(fù)3次,用2-ΔΔCt方法進行相對定量分析。PCR引物見表1。
表1 PCR引物
1.2.4 Western blot法檢測蛋白表達 收集、提取并檢測各組蛋白濃度后,取25 μg總蛋白,經(jīng)用10%的SDS-PAGE膠進行電泳,電轉(zhuǎn)移至PVDF膜,以5%的脫脂奶粉封閉90 min,放入一抗(HIF-1α、HIF-2α、PKM2以1∶200稀釋,GAPDH以1∶1 000稀釋)中,4 ℃冰箱孵育過夜。用TBST清洗3遍后,加入HPR標(biāo)記的羊抗兔二抗(以1∶2 000稀釋),室溫孵育1 h,TBST清洗3遍后,用ECL發(fā)光法顯色。應(yīng)用Bio-red Chemi DOC MP全能型成像分析系統(tǒng)攝取圖像,并分析圖形灰度值。
2.1 siRNA沉默HIF-1α、HIF-2α的效果 與未轉(zhuǎn)染組比較,轉(zhuǎn)染HIF-1α、HIF-2α組mRNA、蛋白的表達量均下調(diào)(P<0.05)。未轉(zhuǎn)染組與轉(zhuǎn)染Control siRNA組之間差異無統(tǒng)計學(xué)意義 (P>0.05),見圖1~圖3、表2。
圖1 RT-qPCR法檢測RNAi對BGC-823細胞中HIF-1α、 HIF-2α mRNA表達的影響
圖2 Western blot法檢測RNAi對BGC-823細胞中 HIF-1α、HIF-2α蛋白表達的影響
圖3 Western blot法檢測RNAi對BGC-823細胞中 HIF-1α、HIF-2α蛋白表達的影響 注:A.未轉(zhuǎn)染組,B.轉(zhuǎn)染相應(yīng)HIF siRNA組,C.轉(zhuǎn)染Control siRNA組表2 不同處理組間HIF mRNA及蛋白表達數(shù)據(jù)
項目未轉(zhuǎn)染組mRNA蛋白轉(zhuǎn)染相應(yīng)HIFsiRNA組mRNA蛋白轉(zhuǎn)染ControlsiRNA組mRNA蛋白HIF-1α10.61±0.040.41±0.060.46±0.070.98±0.120.58±0.08HIF-2α10.52±0.070.49±0.080.35±0.041.04±0.200.48±0.08
2.2 siRNA沉默HIF-1α、HIF-2α后對PKM2 mRNA及蛋白表達水平的影響 與未轉(zhuǎn)染組比較,轉(zhuǎn)染各組(分別為轉(zhuǎn)染HIF-1α、HIF-2α、Control siRNA組)PKM2的mRNA表達量分別為0.74±0.04、0.77±0.06、1.05±0.21。除未轉(zhuǎn)染組與轉(zhuǎn)染Control siRNA組差異無統(tǒng)計學(xué)意義(P>0.05),其余各組與未轉(zhuǎn)染組比較,差異均有統(tǒng)計學(xué)意義(P<0.05),見圖4。
未轉(zhuǎn)染組、轉(zhuǎn)染HIF-1α siRNA組、轉(zhuǎn)染HIF-2α siRNA組、轉(zhuǎn)染Control siRNA組PKM2的蛋白表達量分別為0.55±0.06、0.36±0.06、0.42±0.07、0.58±0.11。轉(zhuǎn)染HIF-1α、HIF-2α后,PKM2表達水平均下降(P<0.05),其中siRNA抑制HIF-1α后,PKM2下調(diào)最明顯;轉(zhuǎn)染Control siRNA后,PKM2蛋白表達無明顯改變(P>0.05),見圖4、圖5。
圖4 RNAi對BGC-823細胞中PKM2 mRNA及蛋白表達的影響
圖5 Western blot法檢測各處理組蛋白的表達 注:A.未轉(zhuǎn)染組,B.轉(zhuǎn)染HIF-1α siRNA組,C.轉(zhuǎn)染HIF-2α siRNA組,D.轉(zhuǎn)染Control siRNA組
胃癌是中國發(fā)病率極高的惡性腫瘤之一,2015年其死亡率僅次于肺癌,位居第二[4]。在胃癌中HIFs及PKM2高表達,共同促進胃癌細胞Warburg效應(yīng),在胃癌的增殖、轉(zhuǎn)移、凋亡、預(yù)后等過程中起重要作用。HIFs包括3種,其中,HIF-1和HIF-2是參與缺氧調(diào)節(jié)最重要的2種缺氧誘導(dǎo)因子,HIF-1、HIF-2的區(qū)別是α亞基不同,β亞基是HIFs的結(jié)構(gòu)性亞基,在細胞內(nèi)的表達水平相對穩(wěn)定,兩者的HIF-1β亞基相同。在常氧狀態(tài)下,α亞基迅速降解,在低氧狀態(tài)下,α亞基降解受阻,HIF-α?xí)掷m(xù)穩(wěn)定表達,不斷積聚,之后移至細胞核,與核內(nèi)HIF-1β結(jié)合形成二聚體HIF[5]。研究表明,HIF-1α[6-7]、HIF-2α[8-10]的高表達不僅是反映胃癌組織缺氧的重要指標(biāo),其在胃癌增殖、轉(zhuǎn)移、預(yù)后等過程中起到極其重要的作用。研究表明,胃癌中PKM2高表達與腫瘤TNM分期、淋巴轉(zhuǎn)移、預(yù)后差顯著相關(guān)[11-13]。此外,PKM2在胃腸道惡性腫瘤患者血清、糞便樣品中呈高表達,在胃癌的診斷方面有重要的價值[14]。
本研究發(fā)現(xiàn),HIF-1α、HIF-2α、PKM2蛋白及mRNA在常氧下均表達。用RNA干擾技術(shù)特異性沉默HIF-1α、HIF-2α后,二者的蛋白及mRNA均受到明顯抑制,提示RNA干擾技術(shù)成功抑制了細胞內(nèi)HIFs的轉(zhuǎn)錄及翻譯。同時,其下游調(diào)控因子PKM2的蛋白及mRNA隨HIF-1α、HIF-2α表達的下降亦降低,其中HIF-1α抑制后,PKM2的表達下降更明顯。而轉(zhuǎn)染Control siRNA組與未轉(zhuǎn)染組間比較,HIFs、PKM2表達無明顯變化。提示HIF-1α、HIF-2α均可調(diào)控PKM2的表達。而目前研究發(fā)現(xiàn),HIF-1α與PKM2通過PHD3[3]、雙加氧酶JMJD5[15]、EGFR[16]、STAT3[17]、mTOR[18]等介導(dǎo)相互作用。目前研究顯示,在脂類代謝中,HIF-2α是起到主要調(diào)控作用的因子[19],而在糖代謝途徑中,HIF-1α是發(fā)揮主導(dǎo)功能的調(diào)控因子。關(guān)于HIF-2α對糖代謝調(diào)控的研究甚少,早期Song等[20]研究發(fā)現(xiàn),在胃癌HIFs中,僅HIF-1α調(diào)控糖代謝。Shah等[21]研究發(fā)現(xiàn),HIF-2α在乳腺癌細胞代謝途徑方面起主要作用。Xu等[22]研究發(fā)現(xiàn),在人紅白血病細胞中,HIF-2α通過調(diào)控pmt1調(diào)節(jié)細胞糖代謝。越來越多的研究發(fā)現(xiàn),HIF-2α在調(diào)節(jié)糖代謝方面亦起到重要調(diào)節(jié)作用,本研究發(fā)現(xiàn),HIF-2α對PKM2有調(diào)控作用,但具體的調(diào)控機制尚待進一步研究發(fā)現(xiàn)。
綜上所述,HIF-1α、HIF-2α調(diào)控PKM2的表達,三者在促進腫瘤代謝方面起重要作用,本研究為以HIF-1α、HIF-2α、PKM2為靶點的基因治療提供了一定的依據(jù),旨在通過抑制信號通路和能量限制聯(lián)合治療腫瘤,進而有望通過圍繞HIFs的綜合治療使惡性腫瘤成為一種普通的慢性病。
[1] Weljie AM,Jirik FR.Hypoxia-induced metabolic shifts in cancer cells:moving beyond the Warburg effect[J].Int J Biochem Cell Biol,2011,43(7):981-989.
[2] Vander HMG,Cantley LC,Thompson CB.Understanding the Warburg effect:the metabolic requirements of cell proliferation[J].Science,2009,324(5930):1029-1033.
[3] Luo W,Hu H,Chang R,et al.Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1[J].Cell,2011,145(5):732-744.
[4] Chen W,Zheng R,Baade PD,et al.Cancer statistics in China,2015[J].Ca:A Cancer J Clinicians,2016,66(2):115-132.
[5] Majmundar AJ,Wong WJ,Simon MC.Hypoxia-inducible factors and the response to hypoxic stress[J].Mol Cell,2010,40(2):294-309.
[6] Zhang ZG,Zhang QN,Wang XH,et al.Hypoxia-inducible factor 1 alpha (HIF-1α) as a prognostic indicator in patients with gastric tumors:a meta-analysis[J].Asian Pac J Cancer Prev,2013,14(7):4195-4198.
[7] Wang Y,Li Z,Zhang H,et al.HIF-1α and HIF-2α correlate with migration and invasion in gastric cancer[J].Cancer Biol Ther,2010,10(4):376-382.
[8] Zheng F,Du F,Zhao J.Clinicopathological differences and prognostic value of hypoxia-inducible factor-2α expression for gastric cancer:evidence from Meta-analysis[J].Medicine (Baltimore),2016,95(7):e2871.
[9] Ren Y X,Li SL,Chen KS,et al.Clinical significance of hypoxia-inducible factor-2α expression in gastric carcinoma[J].World Chinese J Digestol,2010,18(18):1923-1927.
[10]Tong WW,Tong GH,Chen XX,et al.HIF2α is associated with poor prognosis and affects the expression levels of survivin and cyclin D1 in gastric carcinoma[J].Int J Oncol,2015,46(1):233-242.
[11]Gao Y,Xu D,Yu G,et al.Overexpression of metabolic markers HK1 and PKM2 contributes to lymphatic metastasis and adverse prognosis in Chinese gastric cancer[J].Int J Clin Exp Pathol,2015,8(8):9264-9271.
[12]Kwon OH,Kang TW,Kim JH,et al.Pyruvate kinase M2 promotes the growth of gastric cancer cells via regulation of Bcl-xL expression at transcriptional level[J].Biochem Biophys Res Commun,2012,423(1):38-44.
[13]Wu J,Hu L,Chen M,et al.Pyruvate kinase M2 overexpression and poor prognosis in solid tumors of digestive system:evidence from 16 cohort studies[J].Onco Targets Ther,2016,9:4277-4288.
[14]吳剛,閆文鋒,張建成,等.胃癌患者血清腫瘤型M2丙酮酸激酶水平變化及意義[J].醫(yī)藥論壇雜志,2015,8(1):14-15.
[15]Wang HJ,Hsieh YJ,Cheng WC,et al.JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1α-mediated glucose metabolism[J].Proc Natl Acad Sci U S A,2014,111(1):279-284.
[16]Yang W,Xia Y,Ji H,et al.Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation[J].Nature,2011,480(7375):118-122.
[17]Demaria M,Poli V.PKM2,STAT3 and HIF-1α:the Warburg′s vicious circle[J].JAKSTAT,2012,1(3):194-196.
[18]Anastasiou D,Poulogiannis G,Asara JM,et al.Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses[J].Science,2011,334(6060):1278-1283.
[19]Rankin EB,Rha J,Selak MA,et al.Hypoxia-inducible factor 2 regulates hepatic lipid metabolism[J].Mol Cell Biol,2009,29(16):4527-4538.
[20]Song IS,Wang AG,Yoon SY,et al.Regulation of glucose metabolism-related genes and VEGF by HIF-1alpha and HIF-1beta,but not HIF-2 alpha,in gastric cancer[J].Exp Mol Med,2009,41(1):51-58.
[21]Shah T,Krishnamachary B,Wildes F,et al.HIF isoforms have divergent effects on invasion,metastasis,metabolism and formation of lipid droplets[J].Oncotarget,2015,6(29):28104-28119.
[22]Xu QQ,Xiao FJ,Sun HY,et al.Ptpmt1 induced by HIF-2α regulates the proliferation and glucose metabolism in erythroleukemia cells[J].Biochem Biophys Res Commun,2016,471(4):459-465.
Regulation effect of HIF-1α and HIF-2α on PKM2 in BGC-823 cells of gastric cancer
SHE Ling,TANG Yong*,QU Yan-li
(Department of Gastroenterology,Affiliated Tumor Hospital of Urumqi Medical University,Urumqi 830011,China)
Objective To compare the expression of PKM2 in BGC-823 cells after transfection with small interfering RNA of hypoxia-inducible factors (HIF-1α and HIF-2α) and investigate the effect of HIF-1α and HIF-2α on the regulation of PKM2 in gastric cancer.Methods Small RNA interference (RNAi) was used to silence BGC-823 cells.The mRNA and protein expression levels of HIF-1α,HIF-2α and PKM2 were detected by quantitative real-time reverse transcription PCR and western blotting.Results Small RNA interference (RNAi) could effectively silence the expressions of HIF-1α and HIF-2α genes and down-regulate the expression of PKM2 (P<0.05),and the levels of PKM2 decreased most obviously when being transfected with HIF-1α siRNA.The expression of PKM2 levels did not change significantly (P>0.05) when being transfected with control siRNA.Conclusion The results suggest that HIF-1α and HIF-2α are both involved in regulating PKM2.Compared to HIF-2α pathway,HIF-1α pathway plays a major role in regulating PKM2,and thus they all contribute to the Warburg effect of tumor.
BGC-823 cell;Hypoxia-inducible factors;Pyruvate kinase M2;Warburg effect
2016-11-10
新疆醫(yī)科大學(xué)附屬腫瘤醫(yī)院消化內(nèi)科,烏魯木齊 830011
新疆維吾爾自治區(qū)自然科學(xué)基金(2015211C124)
10.14053/j.cnki.ppcr.201704004
*通信作者