魏祥林,王衛(wèi)琪
(河北科技大學(xué)理學(xué)院,河北石家莊 050018)
關(guān)于[4.8.8]鋪砌中橢圓上D-點(diǎn)數(shù)的研究
魏祥林,王衛(wèi)琪
(河北科技大學(xué)理學(xué)院,河北石家莊 050018)
阿基米德平面鋪砌是指用一種或多種正多邊形鋪砌全平面,且要求鋪砌的每個(gè)頂點(diǎn)的頂點(diǎn)特征相同。阿基米德平面鋪砌共有11種,針對(duì)其中的[4.8.8]鋪砌,即每個(gè)鋪砌頂點(diǎn)連接邊長相同的一個(gè)正方形,兩個(gè)正八邊形,研究[4.8.8]鋪砌上的橢圓所包含鋪砌頂點(diǎn)數(shù)的特性,通過對(duì)橢圓內(nèi)半弦上頂點(diǎn)列的分析,采用數(shù)的幾何及數(shù)論中同余的方法給出頂點(diǎn)數(shù)的取值算法,并獲得頂點(diǎn)數(shù)與橢圓短半軸長平方的比值的極限公式,證明極限值與對(duì)應(yīng)鋪砌的中心多邊形的面積有關(guān)。所得算法及極限公式對(duì)其他阿基米德鋪砌中相關(guān)問題的研究有借鑒作用。
離散幾何;阿基米德鋪砌;橢圓;中心多邊形;凸包
從鋪砌的定義看出,整數(shù)格即可視為由單位正方形構(gòu)成的[4.4.4.4]阿基米德鋪砌的頂點(diǎn)集。從這個(gè)意義出發(fā),利用數(shù)的幾何中討論格點(diǎn)性質(zhì)的相關(guān)手法探討其他阿基米德鋪砌的頂點(diǎn)性質(zhì)成為一個(gè)有意義的研究課題。DING等[6]首次嘗試將數(shù)的幾何中關(guān)于整數(shù)格點(diǎn)的Pick定理推廣至[6.6.6]鋪砌的頂點(diǎn)集[6],之后在相關(guān)問題研究中獲得了一系列成果[7-13]。在以上研究的基礎(chǔ)上,KOLODZIEJCZYK等[8-9,14-19]從幾何的角度證明數(shù)論中一些計(jì)數(shù)問題和面積問題。本文主要研究的是由正方形和正八邊形生成的[4.8.8]鋪砌上的計(jì)數(shù)問題。
圖1 C-點(diǎn)和D-點(diǎn)的分布Fig.1 Distribution of C-points and D-points
[4.8.8]鋪砌是一種阿基米德鋪砌,如圖1所示。這里為了討論的方便,記[4.8.8]鋪砌的的頂點(diǎn)集為D,其中的點(diǎn)稱為D-點(diǎn),本文中[4.8.8]鋪砌中正八邊形與正方形鋪砌元的邊長均取為1。在[4.8.8]阿基米德鋪砌中以正八邊形中心為橢圓中心、以正整數(shù)n為短半軸長、2n為長半軸長的橢圓記為E(n),E(n)的內(nèi)部和邊界上所含的頂點(diǎn)數(shù)記為N(n)。
定義1 在En中,若一個(gè)集合中任意2點(diǎn)的直線段均含于該集合中,則稱該集合為凸集。稱包含一個(gè)集合的最小凸集為該集合的凸包。
定義2 在[4.8.8]阿基米德鋪砌中,與一個(gè)鋪砌頂點(diǎn)相關(guān)聯(lián)的每個(gè)鋪砌元的中心的凸包形成的圖形稱為該頂點(diǎn)對(duì)應(yīng)的中心多邊形。
本文研究[4.8.8]阿基米德鋪砌中,落在橢圓E(n)的內(nèi)部和邊界上的頂點(diǎn)數(shù)N(n)的取值,給出相應(yīng)的算法,并得出下述結(jié)論。
圖2 橢圓弦的分布Fig.2 Distribution of the chords of the ellipse
情形1i≡0(mod 4)
情形2i≡1(mod 4)
情形3i≡2(mod 4)
情形4i≡3(mod 4)
由上述討論過程可以給出下述算法來計(jì)算[4.8.8]鋪砌中橢圓E(n)的內(nèi)部和邊界上所含D-點(diǎn)的個(gè)數(shù)N(n):
7)如果i≤k,用i+1代替i,并進(jìn)行步驟2,否則,停止程序并輸出N×4。
表1 部分N(n)的值
根據(jù)上述算法,運(yùn)用VC++程序,對(duì)于任意給定n∈Z+可以確定N(n)的值,表1給出了部分N(n)的值。
圖3 [4.8.8]鋪砌的劃分Fig.3 Dividing of [4.8.8]-tiling
即
而
經(jīng)過對(duì)定理1的證明過程研究發(fā)現(xiàn),在[4.8.8]鋪砌中,當(dāng)其他條件不變,橢圓的長半軸長為mn、短半軸長為n時(shí),通過定理1的類似證明可以得到下述定理。
本文研究了在[4.8.8]阿基米德鋪砌中橢圓內(nèi)及其邊界上的鋪砌頂點(diǎn)數(shù)計(jì)數(shù)問題。證明了當(dāng)橢圓的短半軸長為正整數(shù)n,且長半軸長與短半軸長的比值一定時(shí),橢圓內(nèi)及其邊界上的總頂點(diǎn)數(shù)與短半軸長的平方的比值極限始終是一個(gè)常數(shù)。那么我們就不難發(fā)現(xiàn),當(dāng)橢圓的短半軸長為任意正數(shù),且長半軸長與短半軸長的比值給定時(shí),橢圓的內(nèi)部或邊界上的總頂點(diǎn)數(shù)與短半軸長的關(guān)系與定理2是相同的,相關(guān)證明可由數(shù)學(xué)分析兩邊夾定理推導(dǎo)證得。
/References:
[1] GRUBER P. Convex and Discrete Geometry [M]. New York:Springer,2007.
[2] GRUNBAUM B,SHEPHARD G C. Tilings and Patterns [M].New York:W H Freeman & Co,1986.
[3] CAO P,YUAN L. The number ofH-points in a circle [J]. Ars Combinatoria,2010,97A:311-318.
[4] WEI X,WANG J,GAO F. A note area of lattice polygons in an Archimedean tiling [J]. Journal of Applied Mathematics and Computing,2015,48(1):573-584.
[5] 張紅玉. 關(guān)于一類雙鋪砌頂點(diǎn)性質(zhì)的研究 [D]. 石家莊:河北師范大學(xué),2010. ZHANG Hongyu.Some Properties on the Vertics of a Dihedral Tiling[D].Shijiazhuang:Hebei Normal University,2010.
[6] DING R,REAY J R. The boundary characteristic and Pick’s theorem in the Archimedean planar tilings [J]. Journal of Combinatorial Theory,Series A,1987,44(1):110-119.
[7] WEI X,DING R. On the interior lattice points of convex lattice 11-gon [J]. Journal of Applied Mathematics and Computing,2009,30(1):193-199.
[8] DING R,KOLODZIEJCZYK K,MURPHY G,et al. A Pick-type approximation for areas ofH-polygons [J]. American Mathematical Monthly,1993,100(7):669-673.
[9] KOLODZIEJCZYK K,OLSZEWSKA D. On some conjectures by Rabinowitz [J]. Ars Combinatoria,2006,79:171-188.
[10]DING R,REAY J R,ZHANG J R. Areas of generalizedH-polygons [J]. Journal of Combinatorial Theory,Series A,1997,77(2):304-317.
[11]WEI X,DING R.H-triangles with 3 interiorH-points [J]. Journal of Applied Mathematics and Computing,2008,27(1/2):117-123.
[12]WEI X,DING R.H-triangles withkinteriorH-points [J]. Discrete Mathematics,2008,308(24):6015-6021.
[13]WEI X,DING R. Lattice polygons with two interior lattice points[J]. Mathematical Notes,2012,91(5):868-877.
[14] KOLODZIEJCZYK K,OLSZEWSKA D. A proof of Coleman’s conjecture [J]. Discrete Mathematics,2007,307(115):1865-1872.
[15]KOLODZIEJCZYK K. Areas of lattice figures in the planar tilings with congruent regular polygons [J]. Journal of Combinatorial Theory,Series A,1991,58(1):115-126.
[16]KOLODZIEJCZYK K. The boundary characteristic and the volume of lattice polyhedra[J]. Discrete Mathematics,1998,190(1/2/3):137-148.
[17]KOLODZIEJCZYK K,REAY J. Polynomials and spstial Pick-type theorems[J]. Expositiones Mathematicae,2008,26(1):41-53.
[18]KOLODZIEJCZYK K. Parity properties and terminal points for lattice walks with steps of equal length[J]. Journal of Mathematical Analysis and Applications,2009,355(1):363-368.
[19]KOLODZIEJCZYK K. Hex-triangles with one interiorH-points [J]. Ars Combinatoria,2004,70:33-45.
[20]OLDS C,LAX A,DAVIDOFF G. The Geometry of Numbers [M]. London:Springer London,2001.
Research about the number ofD-points of [4.8.8]-tiling in given ellipse
WEI Xianglin, WANG Weiqi
(School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China)
An Archimedean tiling is a tiling of the plane by one type of regular polygon or several types of regular polygons, and every vertex of the tiling has the same vertex characteristics. There are 11 Archimedean tiling, and this paper studies [4.8.8]-tiling, which is an Archimedean tiling generated by squares and regular octagons in the plane, and every vertex is associated with one square and two octagons. This paper studies the number of vertices contained in an ellipse in [4.8.8]-tiling. Through analysing the sequence of vertices lying on half chord in the ellipse, and using the method of the geometry of number and congruence in number theory, it presents an algorithm about the value of the number of vertices contained in the ellipse, and obtains a formula of limit about the number of vertices and the square of short semi-axis of the ellipse. It is proved that the value of limit is connected with the area of the corresponding central polygon. The algorithm and the formula of limit are very useful for the study of related problems in other Archimedean tilings.
discrete geometry; Archimedean tiling; ellipse; central polygon; convex hull
1008-1542(2017)02-0143-08
10.7535/hbkd.2017yx02007
2016-08-12;
2017-02-01;責(zé)任編輯:張 軍
河北省自然科學(xué)基金(A2014208095)
魏祥林(1974—),女,河北張家口人,教授,博士,主要從事離散與組合幾何方面的研究。
E-mail:sd_wxl@126.com
O157.3 MSC(2010)主題分類:52C15
A
魏祥林,王衛(wèi)琪. 關(guān)于[4.8.8]鋪砌中橢圓上D-點(diǎn)數(shù)的研究[J].河北科技大學(xué)學(xué)報(bào),2017,38(2):143-150.
WEI Xianglin , WANG Weiqi. Research about the number ofD-points of [4.8.8]-tiling in given ellipse[J].Journal of Hebei University of Science and Technology,2017,38(2):143-150.