薛應珍
(西安外事學院商學院,陜西西安 710077)
一類交叉耦合拋物型方程組解的漸近性態(tài)
薛應珍
(西安外事學院商學院,陜西西安 710077)
為了更好地描述3種混合物質燃燒的熱傳導過程,即3種化學反應中反應物的反應情況,研究了一類具有3個變量交叉耦合且?guī)в蟹蔷植吭醇胺蔷植窟吔缌鲯佄镄头匠探M解的整體存在和有限時刻爆破問題,打破常用的第一特征值的構造上下解的方法,采用常微分方程方法構造了該方程組的上下解,引用比較定理,證明得到了由冪函數局部源和指數函數非局部源交叉耦合的退化拋物型方程組解的整體存在及解在有限時刻爆破的充分條件,為熱傳導和化學反應問題提供了理論支持。
拋物型偏微分方程;比較原理;整體存在;爆破;熱傳導
針對交叉耦合拋物方程組解的漸近性態(tài)問題,文獻[1]研究了如下具有3個變量交叉耦合的局部源和非局部邊界拋物型方程組解的漸近性態(tài),得到了解整體存在及有限時刻爆破的充分條件。
u(x,0)=u0(x),v(x,0)=v0(x),x∈Ω。
文獻[2]研究了具有2個冪函數作為局部源耦合拋物型方程組解的性質,得到了方程組解局部存在,整體存在和全局爆破的充分條件。文獻[3]將文獻[2]的結論推廣到了3個變量的情形。文獻[4—6]研究了具有冪函數耦合非局部源和邊界流拋物型方程組解的整體存在及有限時刻爆破的充分條件。文獻[7]研究了如下具有冪函數和指數函數交叉耦合的非局部源擬線性拋物型方程組的一致爆破模式,得到了解在有限時刻爆破的充分條件及同時爆破的一個必要條件。
u(x,0)=u0(x),v(x,0)=v0(x),x∈Ω。
對具有非局部吸收源等交叉耦合拋物型方程組解的漸近性態(tài)研究,參見文獻[8—19]。
基于以上工作,本文研究了如下由冪函數局部源和指數函數非局部源交叉耦合,且具有3個變量交叉耦合退化拋物型方程組解的整體存在及解在有限時刻爆破的充分條件。
(1)
具有邊界流:
(2)
及初值:
u(x,0)=u0(x),v(x,0)=v0(x),w(x,0)=w0(x),x∈Ω,
(3)
首先給出2種情況下上、下解的定義。
(4)
具有如下邊界流:
(5)
及初值:
(6)
定義2 若定義1中式(4)變?yōu)?/p>
(7)
可得m,n,h>1,αi>0,βi<0(i=1,2,3),情形下,方程組(1)-方程組(3)的上解,若改變不等號方向,可定義其下解。
由文獻[20],有如下比較引理。
(8)
討論方程組(1)-方程組(3)解的整體存在問題時,設αi>0,βi<0(i=1,2,3),引用定義2來證明方程組(1)-方程組(3)解整體存在的充分條件。
定理1 若mnh>α1α2α3,當初值u0(x),v0(x),w0(x)充分小時,方程組(1)-方程組(3)的解整體存在。
證明 設φ(x)滿足:
(9)
聯(lián)立式(7)-式(9),得到:
類似地有:
在邊界上:
類似地有:
在初值上:
綜上,只要證明存在a,b,c,使得:
(10)
(11)
成立,由引理1知,方程組(1)—方程組(3)的解整體存在。
(12)
由定理1條件mnh>α1α2α3可知,當a充分大時式(12)成立。另當a,b,c充分大,存在小初值u0(x),v0(x),w0(x),使得式(11)成立,定理1證畢。
討論解的有限時刻問題時,設αi,βi>0,i=1,2,3,引用定義1來證明方程組(1)—方程組(3)解有限時刻爆破的充分條件。首先引入以下引理。
引理3 設θ>λ>1,k,l>0,h(t)是問題
(13)
的正解,則當h0充分大時,h(t)在有限時刻爆破。
引理4 設λ2>λ1>1,θ2>θ1>1,則存在如引理3的h(t)是滿足:
引理3及引理4證明見文獻[5]。
定理2 如果mnh<α1α2α3,則當初值u0(x),v0(x),w0(x)充分大時,方程組(1)—方程組(3)的解在有限時刻爆破。
證明 設φ(x)是滿足方程:
(14)
的解,則存在C>0,使得0≤φ(x)≤C。令
其中,l1,l2,l3>1,h(t)待定,由式(13)及式(14)可知,h(t)φ(x)>1,顯然,hli(t)φli(x)>1,i=1,2,3,則對于任意正實數η,利用拉格朗日中值定理證明可知,
eη hli(t)φli(x)>ηehli(t)φli(x)>ηelnli[1+h(t)φ(x)]。
記k=max{m(l1m-1)Cl1(m-1)-2,n(l2n-1)Cl2(n-1)-2,h(l3h-1)Cl3(h-1)-2},
則
l1hl1-1(t)φl1(x)h′(t)-l1m(l1m-1)hl1m(t)φl1m-2(x)Δφ(x)-hl2α1(t)φl2α1(x)∫Ωeβ1hl3(t)φl3(t)dx≤
l1hl1-1(t)φl1(x)h′(t)+l1m(l1m-1)hl1m(t)φl1m-2(x)-hl2α1(t)φl2α1(x)∫Ωeβ1hl3(t)φl3(t)dx=
l1hl1-1(t)φl1(x)[h′(t)+khl1(m-1)+1(t)-lhl2α1+l3-l1+1(t)]。
同理,
綜上由引理3的條件可知,只要存在l1,l2,l3使得:
(15)
成立,則由引理4知,存在滿足引理3的h(t)使得:
h′(t)≤-khl1(m-1)+1(t)+lhl2α1+l3-l1+1(t),
h′(t)≤-khl2(n-1)+1(t)+lhl3α2+l1-l2+1(t),
h′(t)≤-khl3(h-1)+1(t)+lhl1α3+l2-l3+1(t),
在邊界上:
由式(14)知,φ(x)=0,x∈?Ω,有:
在初值上:
/References:
[1] 吳春晨.一類非局部邊值條件拋物型方程組解的性質[J].江南大學學報(自然科學版),2015,14(2):222-225. WU Chunchen. A nonlinear parabolic system with nonlocal boundary conditions[J]. Journal of Jiangnan University(Natural Science Edition) ,2015,14(2):222-225.
[2] 宋慧,曾有棟.具有非局部邊界和局部化源拋物方程組解的全局存在與爆破性[J].生物數學學報,2014,29(4):711-717. SONG Hui, ZENG Youdong. Global blow-up for a localized nonlinear parabolic system with a nonlocal boundary condition[J]. Journal of Biomathematics, 2014,29(4):711-717.
[3] 吳春晨.一類非局部邊值條件拋物型方程組解的性質研究[J].鄭州大學學報(理學版),2014,46(4):18-22. WU Chunchen.The properties of solutions for a nonlinear parabolic system with nonlocal boundary conditions[J]. Journal of Zhengzhou University(Natural Science Edition) ,2014,46(4):18-22.
[4] 樊彩虹,容躍堂, 房春梅,等.退化反應擴散方程組解的整體存在和有限爆破[J].紡織高?;A科學學報,2016,29(1): 35-38. FAN Caihong,RONG Yuetang, FANG Chunmei, et al. Global existence and finite time blow-up for a degenerate reaction-diffusion system [J]. Basic Sciences Journal of Textile Universities, 2016,29(1):35-38.
[5] 王文海.具非局部源和非局部邊界條件拋物方程組解的性質[J].中北大學學報(自然科學版),2012,33(4): 372-375. WANG Wenhai. Properties of solution to a parabolic system with nonlocal sources and nonlocal boundary conditions[J]. Journal of North University of China(Natural Science Edition) ,2012,33(4):372-375.
[6] 樊彩虹,李平,郭曉霞,等.半線性反應擴散耦合系統(tǒng)解的整體存在與爆破[J].內蒙古師范大學學報(自然科學漢文版),2015,44(6):735-737. FAN Caihong,LI Ping,GUO Xiaoxia,et al. The global existence and blow-up of solutions of the systems of semilinear reaction diffusion coupling[J].Journal of Inner Mongolia Normal University(Natural Science Edition),2015,44(6): 735-737.
[7] 王玉蘭,穆春來.一類具有非局部源的擬線性拋物型方程組的一致爆破模式[J].四川大學學報(自然科學版),2008,45(5):1007-1013. WANG Yulan, MU Chunlai. Uniform blow-up profiles for a quasilinear parabolic system with nonlocal sources[J]. Journal of Sichuan University(Natural Science Edition), 2008,45(5):1007-1013.
[8] 周澤文, 凌征球.源項耦合的退化拋物型方程組解的爆破和整體存在[J].應用數學,2015, 28(3): 540-548. ZHOU Zewen, LING Zhengqiu. Blow-up and global existence of solutions to a degenerate parabolic equations coupled via nonlinear sources[J]. Mathematica Applicata, 2015, 28(3): 540-548.
[9] 薛應珍.一類具有非線性吸收項和邊界流的拋物型方程組解的整體存在及爆破問題[J].紡織高?;A科學學報,2013,26(2):214-219. XUE Yingzhen. Global existence and blow up problem for a parabolic equations with nonlinear absorption term and boundary flux[J]. Basic Sciences Journal of Textile Universities, 2013,26(2):214-219.
[10]龐鳳琴,王玉蘭,李慧芳. 一類帶吸引項的拋物型方程在記憶邊界條件下解的性質[J]. 西華大學學報( 自然科學版),2016,35(2):82-87. PANG Fengqin,WANG Yulan,LI Huifang. The properties of a parabolic equation with absorb term and memory boundary condition[J].Journal of Xihua University(Natural Science),2016,35(2):82-87.
[11]ZHANG He,KONG Linghua, ZHANG Sining. Propagations of singularities in a parabolic system with coupling nonlocal sources[J].Science China Mathematics,2009,52(1):181-194.
[12]LI Yuxiang,DENG Weibing,XIE Chunhong.Global existence and nonexistence for degenerate parabolic systems [J].Proceedings of the American Mathematical Society,2003,55(3):233-244.
[13]DENG Weibing,LI Yuxiang,XIE Chunhong.Existence and nonexistence of global solution of some nonlocal degenerate parabolic system[J].Agglied Mathematics Letters,2003,16(5):803-808.
[14]張巖,宋小軍.一類帶非局源的退化拋物方程組解的整體存在與爆破[J].西南大學學報(自然科學版),2008,30(9):80-84. ZHANG Yan,SONG Xiaojun.Global existence and blow-up for a degenerate parabolic systems with nonlocal source [J].Journal of Southwest University: Natural Science Edition,2008,30(9):80-84.
[15]BUDDAL C J,DOLD J W,GALAKTIONOV V A.Global blow-up for a semilinear heat equation on a subspace [J].Proceedings of the Royal Society of Edinburgh,2015,145(5):893-923.
[16]黨蘇娟,容躍堂,張航國.非局部反應擴散方程組解的整體存在與爆破[J].紡織高校基礎科學學報,2013,26(4): 481-485. DANG Sujuan,RONG Yuetang,ZHANG Hangguo.Global existence and blow-up of solution for nonlocal reaction diffusion equtions[J].Basic Sciences Journal of Textile Universities,2013,26(4):481-485.
[17]樊彩虹,李平,郭曉霞,等.具非局部源退化拋物系統(tǒng)解的整體存在與爆破[J].內蒙古師范大學學報(自然科學漢文版),2014, 43(6):680-688. FAN Caihong,LI Ping,GUO Xiaoxia,et al.Global existence and blow-up for a degenerate parabolic system with nonlocal sources[J].Journal of Inner Mongolia Normal University(Natural Science Edition),2014,43(6): 680-688.
[18]樊彩虹,容躍堂.一類帶非局部源的反應擴散方程組解的整體存在[J].紡織高?;A科學學報,2009,22(2): 172-176. FAN Caihong,RONG Yuetang. Global existence for a degenerate reaction-diffusion system with nonlocal sources[J]. Basic Sciences Journal of Textile Universities,2009,22(2):172-176.
[19]KONG Linghua, WANG Mingxin.Global existence and blow-up of solutions to a parabolic system with nonlocal sources and boundaries[J].Science in China Series A:Mathematics,2007,50(9):1251-1266.
[20]PAO C V. Nonlinear Parabolic and Elliptic Equations[M].New York:Plenum Press,1992.
Asymptotic behavior for cross coupled parabolic equations
XUE Yingzhen
(Business School, Xi’an International University, Xi’an, Shaanxi 710077, China)
In order to better describe the heat transfer process of three kinds of mixed substances, namely the reaction of the reactants in the three chemical reactions, a class of three variable cross coupling with non parabolic equations of the whole existence of local source and non local boundary flow and the finite time blow up problem with breaking method for the solution of the first commonly used feature value structure are studied. The structure of the equations of the upper and lower solutions by using the method of ordinary differential equation reference is broken, with comparison theorem, the proof shows that obtained by local source power function and exponential function of parabolic equations is broken, with the sufficient conditions for global existence of clegerate purubolic equations solutions cross coupled by local source power function and non local sources exponential function are proved, as soon as the solution of blowing up in finite time degradation of non local sources of cross coupling, providing better support for the theory of heat transfer and chemical reaction problem.
the parabolic partial differential equations; comparison principle; global existence; blow-up question; conduction of heat
1008-1542(2017)02-0137-06
10.7535/hbkd.2017yx02006
2016-11-18;
2016-12-27;責任編輯:張 軍
陜西省自然科學基礎研究計劃項目(2016JM1036);陜西省教育廳科學研究計劃項目(15JK2134);西安外事學院高等教育教學改革研究項目(2015B04)
薛應珍(1980—),男,甘肅慶陽人,副教授,碩士,主要從事偏微分方程理論及應用方面的研究。
E-mail:xueyingzhen@126.com
O175.26 MSC(2010)主題分類:35K46
A
薛應珍.一類交叉耦合拋物型方程組解的漸近性態(tài)[J].河北科技大學學報,2017,38(2):137-142.
XUE Yingzhen.Asymptotic behavior for cross coupled parabolic equations[J].Journal of Hebei University of Science and Technology,2017,38(2):137-142.