武美燕
(長(zhǎng)江大學(xué) 農(nóng)學(xué)院/濕地生態(tài)與農(nóng)業(yè)利用教育部工程中心,湖北 荊州 434025)
葉面噴施有機(jī)氮和無(wú)機(jī)氮對(duì)旱作水稻生理特性的影響
武美燕
(長(zhǎng)江大學(xué) 農(nóng)學(xué)院/濕地生態(tài)與農(nóng)業(yè)利用教育部工程中心,湖北 荊州 434025)
主要探討了干旱脅迫下有機(jī)氮和無(wú)機(jī)氮對(duì)旱作水稻生理特性的影響,為有機(jī)氮應(yīng)用于旱作水稻生產(chǎn)及有機(jī)營(yíng)養(yǎng)肥料的研發(fā)提供理論依據(jù)。以雜交中稻兩優(yōu)培九為試驗(yàn)材料,通過(guò)盆栽方法模擬水稻孕穗期遭遇干旱脅迫,以常規(guī)旱作管理(WSM)和噴施清水(DW)為對(duì)照,研究了葉面噴施硫酸銨(AS)、甘氨酸(Gly)和谷氨酸(Glu)對(duì)水稻葉片葉綠素含量、保護(hù)酶活性、滲透調(diào)節(jié)物質(zhì)含量、產(chǎn)量和蛋白質(zhì)含量的影響。結(jié)果表明,與常規(guī)旱作管理相比,干旱脅迫導(dǎo)致水稻葉片葉綠素含量下降,丙二醛(MDA)含量顯著上升,最終使得水稻減產(chǎn)。噴施硫酸銨、甘氨酸和谷氨酸后,不同程度地提高了水稻葉片葉綠素含量、超氧化物歧化酶(SOD)、過(guò)氧化物酶(POD)和過(guò)氧化氫酶(CAT)活性,降低了MDA含量,并使水稻葉片中脯氨酸(Pro)含量、游離氨基酸總量(TFA)和可溶性蛋白(SP)含量顯著增加,從而提高了水稻產(chǎn)量和蛋白質(zhì)含量,產(chǎn)量的提高主要是由于穗粒數(shù)、千粒重和結(jié)實(shí)率明顯增加。硫酸銨和甘氨酸處理效果較好,2個(gè)處理間沒(méi)有顯著差異,與清水對(duì)照相比,噴施硫酸銨使水稻產(chǎn)量和蛋白質(zhì)含量分別提高了56.3%和20.5%,噴施甘氨酸分別比對(duì)照提高了44.2%和22.0%。無(wú)論有機(jī)氮還是無(wú)機(jī)氮,均可通過(guò)提高抗氧化酶活性和滲透調(diào)節(jié)物質(zhì)含量,降低干旱脅迫下旱作水稻植株的過(guò)氧化物質(zhì)含量,增強(qiáng)旱作水稻抵抗干旱的能力。
有機(jī)氮;保護(hù)酶;滲透調(diào)節(jié);旱作水稻
水稻是中國(guó)主要的糧食作物之一,中國(guó)有60%以上的人以稻米為主食,稻米總產(chǎn)量占糧食總產(chǎn)量的40%左右[1]。在傳統(tǒng)的水稻生產(chǎn)中,每年灌溉水量達(dá)到了1.5×104m3·hm-2,而水分利用效率僅為30%~40%,約1 100億t的水白白浪費(fèi)了[2]。水稻是生態(tài)適應(yīng)性較強(qiáng)、水分生態(tài)幅度較寬的作物,只要保證一定的水分供應(yīng),水稻就可以進(jìn)行旱作,并表現(xiàn)出旱作作物的一般生理特性,有較大的節(jié)水潛力[3-4]。近年來(lái),水稻旱作技術(shù)受到了廣泛關(guān)注。然而,在水稻旱作過(guò)程中,一些地區(qū)由于季節(jié)性干旱頻現(xiàn),造成旱作水稻嚴(yán)重減產(chǎn)[5],尤其是在旱作水稻生長(zhǎng)的關(guān)鍵生育期(返青分蘗期、孕穗期、灌漿期)。干旱脅迫時(shí)作物不僅表現(xiàn)出特有的形態(tài)特征,如根系發(fā)達(dá)、根冠比增大、葉片細(xì)胞變小等,還表現(xiàn)出較為明顯的生理反應(yīng)[6]。氮素作為植物生長(zhǎng)必需的營(yíng)養(yǎng)元素之一,在調(diào)節(jié)植物適應(yīng)干旱逆境方面起重要作用。干旱脅迫條件下氮素營(yíng)養(yǎng)可以促進(jìn)滲透調(diào)節(jié),提高植物細(xì)胞酶促防御系統(tǒng)的活性,進(jìn)而增強(qiáng)作物抗旱性,且氮素營(yíng)養(yǎng)對(duì)作物抗旱性的影響與氮素形態(tài)有關(guān)[7-16]。目前,關(guān)于氮素形態(tài)與植物抗旱性關(guān)系的研究?jī)H限于銨態(tài)氮、硝態(tài)氮或兩者不同比例的混合物,單一氨基酸氮營(yíng)養(yǎng)在作物適應(yīng)干旱逆境脅迫中的作用報(bào)道較少。本試驗(yàn)通過(guò)盆栽土培方法,模擬旱作水稻孕穗期遭遇干旱脅迫后,噴施不同形態(tài)氮素營(yíng)養(yǎng)(氨基酸態(tài)氮和無(wú)機(jī)氮)對(duì)水稻葉片滲透調(diào)節(jié)物質(zhì)含量、保護(hù)酶活性、產(chǎn)量和蛋白質(zhì)含量的影響,為旱作水稻生產(chǎn)及有機(jī)營(yíng)養(yǎng)肥料的研發(fā)提供理論依據(jù)。
1.1 試驗(yàn)設(shè)計(jì)
試驗(yàn)于2014年和2015年在長(zhǎng)江大學(xué)試驗(yàn)基地進(jìn)行。供試水稻品種為雜交中稻兩優(yōu)培九,供試土壤為水稻土,土壤有機(jī)質(zhì)18.21 g·kg-1,堿解氮119.29 mg·kg-1,速效磷73.72 mg·kg-1,速效鉀123.36 mg·kg-1。
試驗(yàn)采用盆栽土培法,每盆裝土7.5 kg,5月20日播種,半旱育秧,6月5日移栽至盆缽,每盆2穴,每穴2株,移栽時(shí)秧齡為15 d,2~3葉,小苗帶土移栽。水稻移栽前底施尿素6.5 g,過(guò)磷酸鈣1.8 g,氯化鉀1.8 g;移栽后盆內(nèi)保持2 cm水層緩苗5 d,之后安裝土壤水分張力計(jì)并進(jìn)行旱作管理,具體管理方法參考王熹等[17]的方法,使土壤水勢(shì)控制在-5~-10 kPa(定期澆水,保持濕潤(rùn))。待水稻進(jìn)入拔節(jié)后期(7月25日)開(kāi)始控水,當(dāng)土壤水勢(shì)控制在-60~-75 kPa(7月30日),即脅迫處理開(kāi)始(此時(shí)水稻進(jìn)入孕穗期),處理5 d。然后進(jìn)行葉面噴施(8月5日),共4個(gè)處理,分別為清水(DW)、硫酸銨(AS)、甘氨酸(Gly)、谷氨酸(Glu),每個(gè)處理噴施30 mL,其中N濃度為70 mg·L-1(氮素濃度根據(jù)前期預(yù)實(shí)驗(yàn)結(jié)果確定),連噴2 d,對(duì)照噴等量清水。同時(shí)設(shè)置常規(guī)旱作管理處理(WSM,定期澆水使土壤水勢(shì)維持在-5~-10 kPa)。完全隨機(jī)排列,6次重復(fù),共30盆。用塑料膜拱棚遮雨,其余管理措施同大田。在噴施后第3天(8月8日),采集植株劍葉進(jìn)行抗旱生理指標(biāo)和葉綠素含量測(cè)定,3次重復(fù)。待水稻成熟(10月10日收獲)后拷種,并測(cè)定產(chǎn)量和籽粒蛋白質(zhì)含量。
1.2 測(cè)定方法
葉綠素含量采用95%乙醇提取比色法測(cè)定;超氧化物歧化酶(SOD)活性采用氮藍(lán)四唑(NBT)光還原法;過(guò)氧化物酶(POD)活性采用愈創(chuàng)木酚法測(cè)定,以每分鐘內(nèi)D470變化0.01為1個(gè)酶活單位(U),單位為U·g-1min-1,以鮮質(zhì)量計(jì);過(guò)氧化氫酶(CAT)活性采用高錳酸鉀滴定法,以每g鮮質(zhì)量樣品1 min內(nèi)分解H2O2的毫克數(shù)表示,單位為mgH2O2·g-1min-1;丙二醛(MDA)含量采用硫代巴比妥酸(TBA)比色法測(cè)定,以μmol·g-1為單位,以鮮質(zhì)量計(jì);可溶性蛋白含量采用考馬斯亮藍(lán)G-250染色法,以mg·g-1為單位;脯氨酸含量采用磺基水楊酸法測(cè)定,單位為μg·g-1,以鮮質(zhì)量計(jì)[18];游離氨基酸采用茚三酮溶液顯色法測(cè)定,以mg·g-1為單位,以鮮質(zhì)量計(jì)[19];籽粒蛋白質(zhì)含量用美國(guó)馬里薩斯州生產(chǎn)的NIR Systems 5000型近紅外分析儀測(cè)定,每個(gè)處理取2.5 g粉碎的籽粒樣品,置于內(nèi)徑為3.6 cm的圓形杯中,掃描并收集其光譜,每個(gè)樣品掃描32次,取平均值,利用標(biāo)準(zhǔn)方程計(jì)算籽粒蛋白質(zhì)含量[20]。
1.3 數(shù)據(jù)分析
文中數(shù)據(jù)為2年試驗(yàn)數(shù)據(jù)的平均值,用DPS 7.05統(tǒng)計(jì)分析軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。
2.1 有機(jī)氮和無(wú)機(jī)氮對(duì)干旱脅迫下旱作水稻葉綠素含量的影響
孕穗期干旱會(huì)導(dǎo)致水稻葉片葉綠素含量降低。噴施有機(jī)氮和無(wú)機(jī)氮后,葉綠素含量顯著升高(P<0.05),其中,噴施硫酸銨處理的葉綠素含量最高,但3種處理間差異不顯著(圖1)。
2.2 有機(jī)氮和無(wú)機(jī)氮對(duì)干旱脅迫下旱作水稻SOD、POD和CAT活性的影響
在干旱脅迫下,水稻劍葉中SOD、POD和CAT活性均有不同程度的提高(圖2)。與常規(guī)旱作管理相比,分別提高了20.5%、15.9%和24.8%(P<0.05)。在干旱脅迫5 d后噴施有機(jī)氮和無(wú)機(jī)氮,與清水對(duì)照相比,硫酸銨和甘氨酸處理顯著提高了水稻劍葉中SOD、POD、CAT活性(P<0.05),其中,SOD活性分別增加了31.1%和24.6%,POD活性分別增加了16.4%和66.5%,CAT活性分別增加了28.0%和24.3%。與清水對(duì)照相比,噴施谷氨酸后,葉片中SOD活性升高,但差異不顯著;POD和CAT活性顯著升高,分別增加了50.5%和20.7%。
圖中數(shù)據(jù)以鮮質(zhì)量計(jì)。下同Data in the figure were detected based on fresh weight. The same as below
2.3 有機(jī)氮和無(wú)機(jī)氮對(duì)干旱脅迫下旱作水稻MDA和脯氨酸含量的影響
由圖3可知:與常規(guī)旱作管理相比,干旱處理后水稻葉片MDA和脯氨酸含量顯著增加,增加幅度分別為126.6%和12.7%(P<0.05);與清水對(duì)照相比,干旱脅迫后噴施硫酸銨、甘氨酸和谷氨酸,MDA含量明顯降低,脯氨酸含量顯著升高(P<0.05),MDA含量降低幅度分別為30.7%、26.0%和19.7%,脯氨酸含量增加幅度分別為33.8%、38.8%和23.8%。硫酸銨和甘氨酸處理間差異不顯著。
2.4 有機(jī)氮和無(wú)機(jī)氮對(duì)干旱脅迫下水稻游離氨基酸總量和可溶性蛋白含量的影響
由圖4可知,與常規(guī)旱作管理相比,干旱脅迫下水稻葉片游離氨基酸總量和可溶性蛋白含量均顯著增加,增加幅度分別為39.9%和23.5%(P<0.05)。與清水對(duì)照相比,噴施硫酸銨、甘氨酸和谷氨酸均顯著增加了葉片中游離氨基酸總量
圖2 噴施有機(jī)氮和無(wú)機(jī)氮對(duì)干旱脅迫下旱作水稻劍葉SOD、POD和CAT活性的影響Fig.2 Effects of spraying organic and inorganic nitrogen on SOD, POD and CAT activities of flag leaves of rice in dry cultivation under drought stress
和可溶性蛋白含量,其中,噴施硫酸銨處理分別增加了66.8%和25.6%,噴施甘氨酸處理分別加了51.9%和24.1%,噴施谷氨酸處理分別加了27.7%和20.9%。硫酸銨和甘氨酸處理間沒(méi)有顯著差異。
2.5 有機(jī)氮和無(wú)機(jī)氮對(duì)干旱脅迫下旱作水稻產(chǎn)量和蛋白質(zhì)含量的影響
氮營(yíng)養(yǎng)不僅能改變水稻抗氧化酶活性和滲透調(diào)節(jié)物質(zhì)含量,還會(huì)顯著影響水稻的產(chǎn)量和蛋白質(zhì)含量。表1表明,與常規(guī)旱作管理相比,干旱處理使水稻產(chǎn)量降低了44.3%,主要是穗粒數(shù)、千粒重和結(jié)實(shí)率降低幅度較大所致(P<0.05),但是蛋白質(zhì)含量變化不明顯。與清水對(duì)照相比,噴施硫酸銨、甘氨酸和谷氨酸后,水稻產(chǎn)量和蛋白質(zhì)含量均有不同程度的提高,硫酸銨和甘氨酸處理效果較好,產(chǎn)量分別增加了56.3%和44.4%,主要是由于穗粒數(shù)、千粒重和結(jié)實(shí)率提高高的原因,蛋白質(zhì)含量增加幅度分別為19.1%和20.9%。
圖3 噴施有機(jī)氮和無(wú)機(jī)氮對(duì)干旱脅迫下旱作水稻劍葉MDA和脯氨酸含量的影響Fig.3 Effects of spraying organic and inorganic nitrogen on MDA and proline content of flag leaves of rice in dry cultivation under drought stress
圖4 噴施有機(jī)氮和無(wú)機(jī)氮對(duì)干旱脅迫下旱作水稻劍葉游離氨基酸和可溶性蛋白含量的影響Fig.4 Effects of spraying organic and inorganic nitrogen on free amino acid and soluble protein content of flag leaves of rice in dry cultivation under drought stress
表1 噴施有機(jī)氮和無(wú)機(jī)氮對(duì)干旱脅迫下旱作水稻產(chǎn)量和蛋白質(zhì)含量的影響
同列數(shù)據(jù)后無(wú)相同小寫(xiě)字母表示差異顯著(P<0.05)。WSM,常規(guī)旱管;DW,清水;AS,硫酸銨。
Values (mean±SD) without the same lower letters within a column are significantly different at the 5% level. WSM, water-saving management; DW, distilled water; AS, ammonium sulphate.
曹翠玲等[21]研究認(rèn)為,在小麥中后期同時(shí)供給銨態(tài)氮和硝態(tài)氮,根系SOD活性最高,MDA含量較低,膜脂過(guò)氧化程度輕;單供硝態(tài)氮時(shí),根系SOD、POD和CAT活性均較低,MDA含量最高,膜脂過(guò)氧化程度較嚴(yán)重;單供銨態(tài)氮時(shí),根系的SOD、POD和CAT活性均較高,但是MDA含量也較高,推測(cè)單供銨態(tài)氮時(shí)細(xì)胞產(chǎn)生的活性氧太多,保護(hù)酶系統(tǒng)不能將其有效清除,加劇了膜脂過(guò)氧化程度。朱維琴等[22]研究認(rèn)為,水培條件下采用聚乙二醇(PEG)模擬干旱脅迫,與缺氮及NH4NO3-N處理相比,根施Gly-N處理的水稻幼苗葉片SOD、POD、CAT可維持較高活性或受抑制程度較低,同時(shí),水稻幼苗葉片膜脂氧化傷害程度較缺氮及NH4NO3-N處理低,表明Gly-N處理可在一定程度上緩解干旱脅迫對(duì)水稻幼苗的膜脂過(guò)氧化傷害。本試驗(yàn)結(jié)果表明,常規(guī)旱作管理水稻葉片MDA含量顯著低于干旱處理,說(shuō)明葉片膜脂過(guò)氧化程度較輕,但SOD、POD和CAT活性也較低,其原因可能是此種管理方式適合該品種水稻生產(chǎn),盡管用水量減少,但是水稻沒(méi)有受到水分脅迫,因此,葉片內(nèi)3種酶活性相對(duì)較低,這與張軍等[23]在小麥上的研究結(jié)果一致。但在孕穗期遭遇干旱脅迫后,葉面噴施硫酸銨和甘氨酸均顯著增加了水稻劍葉中SOD、POD和CAT的活性,顯著降低了MDA含量,且二者之間無(wú)顯著性差異,說(shuō)明硫酸銨和甘氨酸均可以提高旱作水稻抗旱性,這與朱維琴等[22]的研究結(jié)果一致,但與曹翠玲等[21]的研究結(jié)果有差異,這是否與試驗(yàn)條件如處理方式或所用無(wú)機(jī)氮種類(lèi)不同有關(guān),還有待進(jìn)一步研究證明。
水分虧缺時(shí),植物在各種損傷出現(xiàn)之前,就對(duì)脅迫作出包括基因表達(dá)在內(nèi)的適應(yīng)性調(diào)節(jié)反應(yīng)。干旱誘導(dǎo)蛋白的形成是植物抵御干旱脅迫的主動(dòng)保護(hù)機(jī)制,可溶性蛋白的多少,在一定程度上能夠反映植物內(nèi)部代謝的活躍程度[24]。本試驗(yàn)研究證明,葉面噴施3種不同形態(tài)氮營(yíng)養(yǎng)明顯增加了干旱脅迫下旱作水稻劍葉中的可溶性蛋白含量,提高了旱作水稻適應(yīng)干旱的能力,這與前人的研究結(jié)果一致,但蛋白質(zhì)組成是否發(fā)生變化尚待研究。栗海俊等[25]研究認(rèn)為,水分脅迫條件下,供應(yīng)銨態(tài)氮營(yíng)養(yǎng)的秈稻和粳稻植株體內(nèi)游離氨基酸和K+可以更有效地積累、轉(zhuǎn)運(yùn)和穿梭,以致傷流液和韌皮部汁液擁有更強(qiáng)的滲透調(diào)節(jié)能力。本研究中,干旱脅迫后,噴施硫酸銨和甘氨酸處理的水稻劍葉中脯氨酸和游離氨基酸含量積累明顯,這與栗??〉萚25]的研究結(jié)果一致。
高煥曄等[26]和盧紅芳等[27]發(fā)現(xiàn),水稻和小麥在灌漿結(jié)實(shí)期遭遇干旱脅迫后,籽粒蛋白質(zhì)含量均增加。本試驗(yàn)結(jié)果表明,孕穗期水稻遭遇干旱脅迫,籽粒蛋白質(zhì)含量沒(méi)有明顯變化,這可能是因?yàn)橛绊憼I(yíng)養(yǎng)品質(zhì)的關(guān)鍵時(shí)期是灌漿結(jié)實(shí)期而不是孕穗期,這與陳亮等[28]研究結(jié)果一致。植物根細(xì)胞能夠通過(guò)細(xì)胞質(zhì)膜上氨基酸的特異性載體蛋白主動(dòng)吸收氨基酸,吸收動(dòng)力學(xué)符合米氏方程[29],而且吸收的氨基酸態(tài)氮可能有很大一部分在根內(nèi)發(fā)生轉(zhuǎn)氨基作用而被同化,少部分轉(zhuǎn)移到葉片脫氨基后同化[30]。干旱脅迫下葉片對(duì)有機(jī)氮的吸收轉(zhuǎn)化機(jī)制還有待進(jìn)一步研究。
綜上,葉面噴施硫酸銨、甘氨酸和谷氨酸不同程度地提高了干旱脅迫下旱作水稻葉片葉綠素含量,提高了SOD、POD和CAT活性,降低了MDA含量,增加了脯氨酸、游離氨基酸和可溶性蛋白含量,其中以硫酸銨和甘氨酸處理效果較好,均能顯著提高水稻產(chǎn)量和蛋白質(zhì)含量,增強(qiáng)旱作水稻抵抗干旱脅迫的能力。
[1] 陳貴, 郭世偉, 趙國(guó)華, 等. 旱作對(duì)水稻生長(zhǎng)及氮、磷利用效率的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2015, 33(1): 182-186, 251. CHEN G, GUO S W, ZHAO G H, et al. Effects of upland cultivation on rice grain yield and N & P use efficiency[J].AgriculturalResearchintheAridAreas, 2015, 33(1): 182-186, 251. (in Chinese with English abstract)
[2] HUANG J P, WANG B F, YANG X L, et al. Advance of rice drought resistance, water saving cultivation and genetic breeding[J].Agricultural&Technology, 2016, 17(5): 1115-1119.
[3] 柏彥超, 倪梅娟, 王娟娟, 等. 水分脅迫對(duì)旱作水稻產(chǎn)量與養(yǎng)分吸收的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2007, 23(6): 101-104. BO Y C, NI M J, WANG J J, et al. Effects of water stress on rice yields and nutrients absorption under aerobic condition[J].TransactionsoftheChineseSocietyofAgriculturalEngineering, 2007, 23(6): 101-104. (in Chinese with English abstract)
[4] 路興花, 吳良?xì)g, 龐林江. 覆膜后土壤水分對(duì)水稻生物學(xué)特性和產(chǎn)量的影響[J]. 浙江農(nóng)業(yè)學(xué)報(bào), 2009, 21(5): 463-467. LU X H, WU L H, PANG L J. Effects of soil moisture under plastic film mulching on the biological and yield characteristics of rice (OryzasativaL.)[J].ActaAgricuhuraeZhejiangensis, 2009, 21(5): 463-467.
[5] 鄭麗, 樊劍波, 何園球, 等. 不同供磷水平對(duì)旱作條件下水稻水稻生長(zhǎng)、根系形態(tài)和養(yǎng)分吸收的影響[J]. 土壤, 2015, 47(4): 664-669. ZHENG L, FAN J B, HE Y Q, et al. Effects of phosphorus on growth, phosphorus uptake and utilization efficiency of rice seedlings[J].Soils, 2015, 47(4): 664-669. (in Chinese with English abstract)
[6] GRIFFITHS H, PARRY M A J. Plant responses to water stress[J].PlantBiology, 1973, 89(24): 801-802.
[7] GARCIA A L, FUENTES V, GALLEGO J. Influence of nitrogen supply on osmoregulation in tomato (LycopersiconesculentumMill.) plants under moderate water stress[J].PlantScience, 1996, 115(1): 33-38.
[8] 李憲利, 高東升, 顧曼如, 等. 銨態(tài)氮和硝態(tài)氮對(duì)蘋(píng)果植株SOD和POD活性的影響(簡(jiǎn)報(bào))[J]. 植物生理學(xué)通訊, 1997, 33(4): 245-255. LI X L, GAO D S, GU M R, et al. Effects of ammonium and nitrate nitrogen on the activities of superoxidase dismutase (SOD) and peroxidase (POD) of apple trees[J].PlantPhysiologyCommunication, 1997, 33(4): 245-255. (in Chinese)
[9] GAO Y X, LI Y, YANG X X, et al. Ammonium nutrition increases water absorption in rice seedlings (OryzasativaL.) under water stress[J].PlantandSoil, 2010, 331(1): 193-201.
[10] LI H J, LI Y, YANG X X, et al. Effects of different nitrogen forms and water stress on the growth and osmotic adjustment of rice seedlings[J].ChineseJournalofRiceScience, 2010, 24(4): 403-409.
[11] CHANG Z H, LIU Y, DONG H, et al. Effects of cytokinin and nitrogen on drought tolerance of creeping bentgrass[J].PLoSOne, 2016, 11(4): 1-19.
[12] VALLIERE J M, ALLEN E B. Interactive effects of nitrogen deposition and drought-stress on plant-soil feedbacks ofArtemisiacalifornicaseedlings[J].PlantandSoil, 2016, 403(1): 277-290.
[13] 高迎旭, 周毅, 郭世偉, 等. 不同形態(tài)氮素營(yíng)養(yǎng)對(duì)水稻抗旱性影響的研究[J]. 干旱區(qū)研究, 2006, 23(4): 598-603. GAO Y X, ZHOU Y, GUO S W, et al. Effects of different nitrogen supply forms on drought resistance of paddy plants[J].AridZoneResearch, 2006, 23(4): 598-603. (in Chinese with English abstract)
[14] 周秀杰, 王海紅, 束良佐, 等. 局部根區(qū)水分脅迫下氮形態(tài)與供給部位對(duì)玉米幼苗生長(zhǎng)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2010, 21(8): 2017-2024. ZHOU X J, WANG H H, SU L Z, et al. Effects of nitrogen form and its supply position on maize seedling growth under partial root-zone water stress[J].ChineseJournalofAppliedEcology, 2010, 21(8): 2017-2024. (in Chinese with English abstract)
[15] 周秀杰, 王海紅, 束良佐, 等. 供氮形態(tài)與部位對(duì)局部根區(qū)水分脅迫下玉米水分吸收與利用的影響[J]. 西北植物學(xué)報(bào), 2010, 30(7): 1426-1434. ZHOU X J, WANG H H, SU L Z, et al. Water uptake and utilization of maize under partial root-zone water stress with different nitrogen forms and application position[J].ActaBotanicaBoreali-OccidentaliaSinica, 2010, 30(7): 1426-1434. (in Chinese with English abstract)
[16] 王海紅, 束良佐, 周秀杰, 等. 固定根區(qū)水分脅迫下氮形態(tài)對(duì)玉米幼苗水分利用的調(diào)節(jié)與作用機(jī)制[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2009, 25(18):155-160. WANG H H, SU L Z, ZHOU X J, et al. Regulation and the mechanisms of nitrogen form on water utilization of maize seedlings under fixed partial root-zone water stress[J].ChineseAgriculturalScienceBulletin, 2009, 25(18): 155-160. (in Chinese with English abstract)
[17] 王熹, 陶龍興, 黃效林, 等. 灌溉稻田水稻旱作技術(shù)要素及產(chǎn)量形成[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2004, 37(4): 502-509. WANG J, TAO L X, HUANG X L, et al. Study on non-blooding farming technique in paddy field: technique specification and formation of yield components[J].ScientiaAgriculturaSinica, 2004, 37(4): 502-509. (in Chinese with English abstract)
[18] 蒼晶, 趙會(huì)杰. 植物生理學(xué)實(shí)驗(yàn)教程[M]. 北京: 高等教育出版社, 2013.
[19] 李合生. 植物生理生化實(shí)驗(yàn)原理和技術(shù)[M]. 北京: 高等教育出版社, 2000.
[20] 吳建國(guó), 石春海, 張小明, 等. 用近紅外反射光譜法分析稻米3種必需氨基酸含量的研究[J]. 作物學(xué)報(bào), 2003, 29(5): 688-692. WU J G, SHI C H, ZHANG X M, et al. Analysis of three types of essential amino acids content in milled rice by near infrared reflectance spectroscopy[J].ActaAgronomicaSinica, 2003, 29(5): 688-692. (in Chinese with English abstract)
[21] 曹翠玲, 李生秀, 張占平. 氮素形態(tài)對(duì)小麥生長(zhǎng)中后期保護(hù)酶等生理特性的影響[J]. 土壤通報(bào), 2003, 34(4): 295-298. CAO C L, LI S X, ZHANG Z P. Effects of N form on the activity of protectiase and wheat yield at the vegetative and reproductive growth stage[J].ChineseJournalofSoilScience, 2003, 34(4): 295-298. (in Chinese with English abstract)
[22] 朱維琴, 吳良?xì)g, 陶勤南. 不同氮營(yíng)養(yǎng)對(duì)干旱逆境下水稻生長(zhǎng)及抗氧化性能的影響研究[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2006, 12(4): 506-510. ZHU W Q, WU L H, TAO Q N. Effects of different nitrogen nutrition on the growth and antioxidant characteristics of rice (OryzasativaL) stressed by drought[J].PlantNutritionandFertilityScience, 2006, 12(4): 506-510. (in Chinese with English abstract)
[23] 張軍, 劉紅, 李曉萍, 等. 干旱對(duì)小麥孕穗期葉片生理特性及產(chǎn)量的影響[J].干旱地區(qū)農(nóng)業(yè)研究, 2014, 32(3): 1-8. ZHANG J, LIU H, LI X P, et al. Effects of drought on leaf physiological parameters and yield of wheat at booting stage[J].AgriculturalResearchintheAridAreas, 2014, 32(3): 1-8. (in Chinese with English abstract)
[24] 姜慧芳, 任小平. 干旱脅迫對(duì)花生葉片SOD活性和蛋白質(zhì)的影響[J].作物學(xué)報(bào), 2004, 30(2): 169-174. JIANG H F, REN X P. The effect on SOD activity and protein content in groundnut leaves by drought stress[J].ActaAgronomicaSinica, 2004, 30(2): 169-174. (in Chinese with English abstract)
[25] 栗???, 李勇, 楊秀霞, 等. 不同形態(tài)氮素營(yíng)養(yǎng)和水分條件對(duì)苗期水稻生長(zhǎng)及滲透調(diào)節(jié)能力的影響[J]. 中國(guó)水稻科學(xué), 2010, 24(4): 403-409. LI H J, LI Y, YANG X X, et al. Effects of different nitrogen forms and water stress on the growth and osmotic adjustment of rice seedlings[J].ChineseJournalofRiceResearch, 2010, 24(4): 403-409. (in Chinese with English abstract)
[26] 高煥曄, 王三根, 宗學(xué)鳳, 等. 灌漿結(jié)實(shí)期高溫干旱復(fù)合脅迫對(duì)稻米直鏈淀粉及蛋白質(zhì)含量的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2012, 20(1): 40-47. GAO H Y, WANG S G, ZONG X F, et al. Effects of combined high temperature and drought stress on amylose and protein contents at rice grain-filling stage[J].ChineseJournalofEco-Agriculture, 2012, 20(1): 40-47. (in Chinese with English abstract)
[27] 盧紅芳, 王晨, 郭天財(cái), 等. 灌漿前期高溫和干旱脅迫對(duì)小麥籽粒蛋白質(zhì)含量和氮代謝關(guān)鍵酶活性的影響[J]. 生態(tài)學(xué)報(bào), 2014, 34(13): 3612-3619. LU H F, WANG C, GUO T C, et al. Effects of high-temperature and drought stress on protein concentration and key enzyme activities in relation to nitrogen metabolism in wheat grains during the early stage of grain filling[J].ActaEcologicaSinica, 2014, 34(13): 3612-3619. (in Chinese with English abstract)
[28] 陳亮. 干旱脅迫對(duì)水稻葉片光合作用和產(chǎn)量及稻米品質(zhì)的影響研究[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2015. CHEN L. The effect of drought stress on rice leaf’s photosynthesis, rice grain yield and rice quality [D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese with English abstract)
[29] 曹小闖, 吳良?xì)g, 馬慶旭, 等. 高等植物對(duì)氨基酸氮的吸收與利用研究進(jìn)展[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2015, 26(3): 919-929. CAO X C, WU L H, MA Q X, et al. Advances in studies of absorption and utilization of animal acids by plants[J].ChineseJournalofAppliedEcology, 2015, 26(3): 919-929. (in Chinese with English abstract)
[30] 吳良?xì)g, 陶勤南. 水稻氨基酸氮營(yíng)養(yǎng)效應(yīng)及其機(jī)理研究[J]. 土壤學(xué)報(bào), 2000,37(4): 464-473. WU L H, RAO Q N. Effects of amino acid-N on rice nitrogen nutrition and its mechanism[J].ActaPedologicaSinica, 2000, 37(4): 464-473. (in Chinese with English abstract)
(責(zé)任編輯 侯春曉)
Effects of spraying organic and inorganic nitrogen on physiological characteristics of rice in dry cultivation
WU Meiyan
(CollegeofAgriculture,YangtzeUniversity/EngineeringResearchCenterofEcologyandAgriculturalUseofWetland,MinistryofEducation,Jingzhou434025,China)
A potted culture experiment was conducted to study the effects of organic and inorganic nitrogen on physiological characteristics of rice in dry cultivation, the results would provide a scientific basis for the application of organic nitrogen in rice production and the development of organic fertilizer. The effect of spraying ammonium sulphate (AS), glycine (Gly) and glutamine (Glu) on the leaf surface of rice (OryzasativaL., Liangyoupeijiu) in dry cultivation under drought stress at the booting stage was evaluated with water-saving management (WSM) and distilled water (DW) as the control, and the chlorophyll content, protective enzymes, osmotic regulation matters, yield and protein content of rice were measured. The results showed that chlorophyll content and yield were decreased, and content of malondialdehyde (MDA) was increased obviously compared to WSM (P<0.05). After spraying AS, Gly and Glu, the chlorophyll content, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) of flag leaves of rice in dry cultivation under drought stress were increased, and MDA content was decreased significantly. The osmotic regulators were enhanced, such as proline (Pro), total free amino acid (TFA) and the contents of soluble protein (SP). As a result, the yield and protein content of rice in dry cultivation were improved obviously (P<0.05). The increase of kernel numbers, 1000 grain yield and seed setting rate were the key point of harvesting higher yield for these treatments. Effects of AS and Gly were better than Glu, there was no significant difference between AS and Gly. Compared to DW, the yield and protein content of rice in dry cultivation were increased by 56.3% and 20.5% for AS and 44.2% and 22.0% for Gly. It suggested that spraying exogenous organic and inorganic nitrogen on rice in dry cultivation under drought stress could help rice keeping low peroxide contents and enhance rice resistance to drought by increasing activities of antioxidant enzymes and contents of osmotic regulators.
organic nitrogen; protective enzyme; osmotic regulation; rice in dry cultivation
10.3969/j.issn.1004-1524.2017.03.01
2016-08-22
湖北省教育廳青年基金項(xiàng)目(Q20121211);濕地生態(tài)與農(nóng)業(yè)利用教育部工程中心開(kāi)放基金(KF201506);河南商丘農(nóng)田生態(tài)系統(tǒng)國(guó)家野外科學(xué)觀測(cè)研究站開(kāi)放基金(SQZ2015-03)
武美燕(1977—),女,內(nèi)蒙古呼和浩特人,博士,副教授,主要從事植物營(yíng)養(yǎng)逆境生理方面的研究工作。E-mail: wumeiyan2002 @ 163.com
S511.6
A
1004-1524(2017)03-0353-07
浙江農(nóng)業(yè)學(xué)報(bào)ActaAgriculturaeZhejiangensis, 2017,29(3): 353-359
http://www.zjnyxb.cn
武美燕. 葉面噴施有機(jī)氮和無(wú)機(jī)氮對(duì)旱作水稻生理特性的影響[J]. 浙江農(nóng)業(yè)學(xué)報(bào), 2017, 29(3): 353-359.