徐聰,夏鵬,楊紅莉,唐文強(qiáng),潘麗,王蘭花,陳雙峰,張穎新,王樂信,2,陳海英(聊城市人民醫(yī)院,山東聊城252000;2 查爾斯特大學(xué)生物醫(yī)學(xué)院)
rBMSCs/F92A-Cav1對(duì)PAH大鼠的治療作用及其機(jī)制
徐聰1,夏鵬1,楊紅莉1,唐文強(qiáng)1,潘麗1,王蘭花1,陳雙峰1,張穎新1,王樂信1,2,陳海英1
(1聊城市人民醫(yī)院,山東聊城252000;2 查爾斯特大學(xué)生物醫(yī)學(xué)院)
目的 探討過表達(dá)F92A-丙氨酸替代窖蛋白-1(Cav1)的大鼠骨髓間充質(zhì)干細(xì)胞(rBMSCs/ F92A-Cav1)對(duì)肺動(dòng)脈高壓(PAH)大鼠的治療作用及其機(jī)制。方法 予成年雄性Wistar大鼠腹腔注射1%野百合堿(MCT,60 mg/kg)建立PAH模型,建模后2周隨機(jī)分為3組(10只/組):PAH 組 (僅給予MCT)、Cav1 組 (轉(zhuǎn)導(dǎo)LV-Cav1的rBMSCs)、F92A-Cav1 組(轉(zhuǎn)導(dǎo)LV-F92A-Cav1的rBMSCs),同時(shí)設(shè)置正常組?;蛐揎椀膔BMSCs(1×106/mL)于尾靜脈移植入各組PAH大鼠,移植后3周,采用Image-Pro Plus 6 software評(píng)估肺動(dòng)脈中膜厚度指數(shù)(MT%)、右心肥大指數(shù)(RVHI),采用Griess法檢測(cè)血清NO水平,采用Western blotting法檢測(cè)肺組織PI3K、AKT蛋白的相對(duì)表達(dá)量。結(jié)果 PAH組MT%、RVHI及肺組織PI3K、AKT蛋白相對(duì)表達(dá)量均較正常組升高,但血清NO水平降低(P<0.05或<0.01);與PAH組相比,Cav1組、F92A-Cav1組中MT%、RVHI及肺組織PI3K、AKT蛋白相對(duì)表達(dá)量均降低,而血清NO水平增加,以F92A-Cav1組為著(P<0.05或<0.01)。結(jié)論 rBMSCs/F92A-Cav1可通過解除野生型Cav1對(duì)eNOS的抑制,促進(jìn)NO釋放,從而抑制PAH大鼠肺組織PI3K/AKT通路激活,進(jìn)而發(fā)揮對(duì)PAH大鼠的治療作用。
肺動(dòng)脈高壓;窖蛋白-1;骨髓間充質(zhì)干細(xì)胞;大鼠
肺動(dòng)脈高壓(PAH)是一種多因素參與的進(jìn)展性疾病, 肺動(dòng)脈平滑肌細(xì)胞在PAH的發(fā)展中起至關(guān)重要作用[1]。一氧化氮合酶(eNOS)催化生成的NO具有舒血管、抗炎、抗凝、抗細(xì)胞增殖及轉(zhuǎn)移作用,對(duì)心血管系統(tǒng)具有保護(hù)作用[2]。既往Bernatchez等報(bào)道及本課題組前期研究均顯示,采用丙氨酸替代窖蛋白-1(Cav1)的92位苯丙氨酸獲得的突變型Cav1(F92A-Cav1)不具有抑制eNOS的活性,體外可促進(jìn)NO產(chǎn)生[3]、血管生成,并降低肺動(dòng)脈壓力[4, 5]。Cav1與蛋白激酶B(AKT)的表達(dá)相關(guān)[6],而激活的磷脂酰肌醇-3激酶(PI3K)/AKT可活化eNOS,Cav1結(jié)構(gòu)域中的92位苯丙氨酸可調(diào)控AKT信號(hào)[7]。此外,間充質(zhì)干細(xì)胞(MSCs) 以其自我更新和多向分化潛能的特性凸顯其在受損組織再生治療方面的優(yōu)勢(shì)。2015年5月~2016年10月,本課題組采用F92A-Cav1基因修飾大鼠骨髓間充質(zhì)干細(xì)胞(rBMSCs)獲得rBMSCs/F92A-Cav1,移植入PAH大鼠,探討其治療作用及機(jī)制,為相關(guān)血管性疾病的研究及治療奠定理論基礎(chǔ)。
1.1 材料 動(dòng)物:3周齡雄性Wistar大鼠(100~120 g,證號(hào)SCXK山東20090001)購自山東大學(xué)實(shí)驗(yàn)動(dòng)物中心。嚴(yán)格飼養(yǎng)在無特異性病原菌(SPF)級(jí)、恒溫( 20~26 ℃)、恒濕(45%~50%)、空氣潔凈的層流架內(nèi);墊料、籠具、飼料及飲水均高壓滅菌。所有與動(dòng)物相關(guān)的研究按照美國(guó)國(guó)家衛(wèi)生研究院所描述的指南“Guide for the Care and Use of Laboratory Animals”執(zhí)行,并且實(shí)驗(yàn)方案通過聊城市人民醫(yī)院倫理委員會(huì)批準(zhǔn)。質(zhì)粒與細(xì)胞株:突變的Cav1克隆質(zhì)粒12AAPFVP-F92A-pMA-T、慢病毒包裝質(zhì)粒(psPax2、pRSV Rev、VSV-G)由澳大利亞查爾斯大學(xué)Dr. Padraig Strappe教授饋贈(zèng);慢病毒載體骨架pLVX-mCMV-zsgreen購自深圳市百恩維生物科技有限公司;慢病毒質(zhì)粒使用前期成功構(gòu)建的LV-F92A-Cav1及LV- Cav1[8],大鼠BMSCs由實(shí)驗(yàn)室分離、培養(yǎng),人胚腎293T細(xì)胞購自ATCC公司。主要試劑:Lipofectamin2000購自Life Technologies;Nitric Oxide Colorimetric Assay Kit 購自Biovision公司;Phospho-PI3K兔多克隆抗體及Phospho-AKT兔單克隆抗體購自cell signaling公司。儀器:PCR檢測(cè)儀ADI7500購自美國(guó)ABI公司;Western blotting 顯影儀購自美國(guó)Protein Simple公司;SpectraMax M5酶標(biāo)儀購自美國(guó)Molecular Devices 公司;NO比色分析試劑盒購自美國(guó)Biovision公司。
1.2 rBMSCs的分離、培養(yǎng)及鑒定 按照實(shí)驗(yàn)室分離rBMSCs的方法[5],F(xiàn)icoll-Paque密度梯度離心法分離大鼠骨髓單個(gè)核細(xì)胞,接種于含DMEM/F-12完全培養(yǎng)基的T25細(xì)胞培養(yǎng)瓶,置37 ℃、5% CO2培養(yǎng)箱中孵育,3 d后去除未貼壁細(xì)胞,以后每隔3 d更換新的培養(yǎng)基。流式細(xì)胞儀鑒定細(xì)胞表型,細(xì)胞成骨及成脂多向分化鑒定方法同文獻(xiàn)[4]。
1.3 PAH大鼠模型建立及實(shí)驗(yàn)分組 1% 野百合堿(MCT)60 mg/kg腹腔注射Wister大鼠建立PAH模型,建模后2周,將PAH大鼠隨機(jī)分為3組:PAH 組 (僅給予MCT)、Cav1 組(轉(zhuǎn)導(dǎo)LV-Cav1的rBMSCs)、F92A-Cav1 組 (轉(zhuǎn)導(dǎo)LV-F92A-Cav1的rBMSCs);同時(shí)設(shè)置正常組。每組10只大鼠,各組實(shí)驗(yàn)大鼠分別做好標(biāo)志分籠飼養(yǎng),自由攝食攝水,晝夜時(shí)間1∶1。病毒包裝及轉(zhuǎn)導(dǎo)rBMSCs方法同文獻(xiàn)[4],按照本實(shí)驗(yàn)室既往移植方法[5],基因修飾的rBMSCs (1×106/mL)于尾靜脈移植入各組PAH大鼠,正常組大鼠尾靜脈注射生理鹽水。rBMSCs移植后3周,取各組的血標(biāo)本及肺組織保存以備后續(xù)研究。
1.4 右心室(RV)質(zhì)量變化的觀察 移植后3周,各組大鼠以水合氯醛(400 mg/kg)腹腔內(nèi)注射麻醉,將2Fr微導(dǎo)管緩慢推送至右心室(RV),按文獻(xiàn)[5]實(shí)驗(yàn)方法采用BIOPAC Systems進(jìn)行壓力測(cè)定并記錄壓力曲線。壓力測(cè)量完成后,注射10倍全麻劑量的水合氯醛處死動(dòng)物,取心臟,剪除心房,沿室間溝邊緣分別游離RV及左心室和室間隔(LV+S)。濾紙吸水后分別稱重,以右室肥大指數(shù)(RVHI)[RV/(LV+S)]反映RV質(zhì)量變化。
1.5 肺小動(dòng)脈血管結(jié)構(gòu)及中膜厚度的觀察 取左下部分肺組織置入10%甲醛液固定24 h,常規(guī)脫水、石蠟包埋、制片及HE染色,觀察肺小動(dòng)脈病變及結(jié)構(gòu)。采用Image-Pro Plus 6分析測(cè)量與終末細(xì)支氣管伴行的肺小動(dòng)脈管壁中膜厚度(MT)及外徑(ED),分析并計(jì)算MT占ED的百分比即肺動(dòng)脈厚度指數(shù)(MT%)。
1.6 大鼠血清NO水平測(cè)定 采用Griess法。采用NO比色分析試劑盒測(cè)定NO的穩(wěn)定終末產(chǎn)物亞硝酸鹽含量,StakmaxTM酶標(biāo)儀測(cè)定540 nm處吸光度,亞硝酸鹽含量通過系列稀釋的亞硝酸鹽標(biāo)準(zhǔn)溶液制備的標(biāo)準(zhǔn)曲線按試劑盒說明書公式計(jì)算獲得。每樣品3個(gè)復(fù)孔,實(shí)驗(yàn)重復(fù)3次。
1.7 肺組織中PI3K和AKT蛋白表達(dá)的檢測(cè) 采用Western blotting法。各組大鼠肺組織勻漿,加預(yù)冷的蛋白裂解液及蛋白酶抑制劑PMSF,冰上裂解30 min,12 000 r/min離心10 min,收集上清;每孔上樣15 μg蛋白質(zhì),10% SDS-PAGE電泳,轉(zhuǎn)膜;封閉液室溫封閉1 h;分別加入anti-Phospho-PI3K(Tyr458/Tyr199, 1∶1 000)兔多克隆抗體和anti-Phospho-AKT(Thr308, 1∶1 000)的兔單多克隆抗體4 ℃過夜;加入相應(yīng)二抗室溫孵育1 h;ECL試劑顯色,AlphaView(ProteinSimple, USA)圖像分析系統(tǒng)分析蛋白條帶,并將β-actin作為內(nèi)參。
2.1 rBMSCs的表型及功能鑒定結(jié)果 分離培養(yǎng)的rBMSCs具有間質(zhì)細(xì)胞的特性,其上皮細(xì)胞特異性標(biāo)志CD31(6.7%)及造血細(xì)胞特異性標(biāo)志CD34(6.1%) 與CD45(8.9%)呈低表達(dá),而間充質(zhì)干細(xì)胞的特異表型CD44(92.2%)與CD90(91.5%)表達(dá)顯著增高,并可向成骨及成脂分化。說明成功獲得具有多向分化潛能的rBMSCs。
2.2 各組RVMI、MT%比較 正常組、PAH組、Cav1組、F92A-Cav1組RVMI分別為0.201±0.082、0.784±0.208、0.506±0.151、0.355±0.097,MT%分別為13.835%±2.016%、29.157%±3.960%、22.887%±3.130%、20.863%±4.367%;與正常組比較,其余組RVMI、MT%均升高(P<0.05或<0.01);與PAH組比較,Cav1組、F92A-Cav1組RVMI、MT%降低。尤以F92A-Cav1組為著(P<0.05或0.01)。
2.3 各組血清NO水平及肺組織PI3K、AKT蛋白表達(dá)比較 正常組、PAH組、Cav1、F92A-Cav1組血清NO分別為(10.249±0.401)、(5.530±0.413)、(10.756±1.178)、(19.131±1.540)μmol/L,肺組織PI3K蛋白相對(duì)表達(dá)量分別為0.298±0.045、0.769±0.083、0.650±0.093、0.578±0.041,肺組織AKT蛋白相對(duì)表達(dá)量分別為0.378±0.060、1.090±0.087、0.919±0.052、0.433±0.051。與對(duì)照組相比,PAH組血清NO水平降低,肺組織PI3K、AKT蛋白相對(duì)表達(dá)量升高(P<0.05或<0.01)。與PAH組比較,Cav1、F92A-Cav1組血清NO水平升高,肺組織PI3K、AKT蛋白相對(duì)表達(dá)量降低,均以F92A-Cav1組為著(P<0.05或<0.01)。
PAH是以漸進(jìn)性的肺血管阻力增加和肺血管收縮為特征,肺動(dòng)脈血管內(nèi)皮細(xì)胞最先受到攻擊并發(fā)生病理變化[9],內(nèi)皮功能障礙導(dǎo)致eNOS生成擴(kuò)血管物質(zhì)NO減少[10],然而,血管內(nèi)皮生成的NO具有良好的抗炎、抗血小板和血管舒張作用[11]。此外,MSCs以其自我更新和多向分化潛能的特性在受損組織再生治療方面具有顯著優(yōu)勢(shì),因此,本課題采用F92A-Cav1基因修飾移植的rBMSCs治療PAH大鼠。本研究結(jié)果證實(shí),rBMSCs/F92A-Cav1可促進(jìn)NO釋放,緩解肺血管平滑肌增殖所致的動(dòng)脈管腔狹窄及RV肥大,抑制PI3K/Akt激活,有效治療PAH。
MCT可選擇性損傷肺血管內(nèi)皮,引起慢性血管炎癥性病變,其誘導(dǎo)的PAH更接近于臨床發(fā)病機(jī)制。MCT誘導(dǎo)的PAH 不僅可激活細(xì)胞間質(zhì)標(biāo)志——平滑肌肌動(dòng)蛋白,還可激活A(yù)KT通路[1],促進(jìn)血管平滑肌細(xì)胞增殖。PAH的標(biāo)志性病理特征是肺外周小動(dòng)脈內(nèi)膜增厚、纖維化,中膜增厚及外膜變化[12]。本研究中,F(xiàn)92A-Cav1組大鼠肺動(dòng)脈血管壁的厚度及管腔狹窄程度均顯著低于PAH組。前期研究[5]也證實(shí),其可有效降低肺動(dòng)脈壓力,說明采用突變的Cav1修飾rBMSCs可有效改善PAH大鼠肺小動(dòng)脈內(nèi)膜增生及中膜平滑肌增殖。
Cav1作為細(xì)胞膜上小窩的主要結(jié)構(gòu)成分,是多種信號(hào)通路整合的支架蛋白,對(duì)許多信號(hào)具有調(diào)節(jié)作用,因此,F(xiàn)92A-Cav1可能也會(huì)對(duì)PAH中的信號(hào)通路具有調(diào)節(jié)作用。本研究發(fā)現(xiàn),rBMSCs/F92A-Cav1可抑制PAH大鼠肺組織中PI3K/AKT的激活。針對(duì)Cav1對(duì)PI3K/AKT通路的作用以及PI3K/AKT的激活在PAH中的作用,相關(guān)研究報(bào)道也不盡相同。但生物過程中各種信號(hào)的相互作用和優(yōu)劣對(duì)比,決定了最終的作用結(jié)果。Cav1參與了絲裂原活化的蛋白激酶信號(hào)通路、腫瘤、血管生成、神經(jīng)性疾病和衰老等過程,在不同的細(xì)胞類型和環(huán)境中表現(xiàn)出不同功能[13]。一部分研究顯示,過表達(dá)Cav1可激活A(yù)TP依賴的酪氨酸激酶AKT通路[14],PI3K/AKT通路的激活促進(jìn)肺血管平滑肌細(xì)胞增殖,抑制該通路則抑制血管平滑肌細(xì)胞增殖[15],緩解缺氧誘導(dǎo)的PAH[16]。另有研究顯示,過表達(dá)Cav1可提高Fas表達(dá)水平和Caspase-3/7活性,促進(jìn)特發(fā)性肺纖維化(IPF)成纖維細(xì)胞的凋亡,而AKT可使轉(zhuǎn)錄因子叉頭框O3a失活下調(diào)Cav1和Fas的表達(dá),賦予IPF成纖維細(xì)胞的凋亡抗性表型,并促進(jìn)IPF進(jìn)展[17];還有研究顯示,激活PI3K/AKT/eNOS信號(hào)通路可減輕MCT誘導(dǎo)的PAH[18],PI3K/AKT的激活通過促進(jìn)eNOS的磷酸化引起NO依賴的血管舒張,而Cav1也可通過PI3K/AKT負(fù)性調(diào)控eNOS的活化[19]。Trane等[7]研究認(rèn)為,Cav1結(jié)構(gòu)域中的92位的苯丙氨酸可調(diào)控AKT 信號(hào),突變型Cav1可降低野生型Cav1介導(dǎo)的AKT活性,而不會(huì)降低NO的產(chǎn)生。本課題研究與其研究結(jié)果一致,由于Cav1可激活PI3K/AKT通路引起eNOS活性降低,通過突變Cav1獲得的F92A-Cav1不僅抑制PI3K/AKT通路,且可解除Cav1對(duì)eNOS的抑制,從而促進(jìn)NO釋放。
綜上所述,rBMSCs/F92A-Cav1抑制PAH大鼠肺組織PI3K/AKT通路激活,同時(shí)可解除野生型Cav1對(duì)eNOS的抑制,促進(jìn)NO釋放,有效發(fā)揮NO的抗炎、擴(kuò)血管等多種生物學(xué)功能,改善PAH大鼠肺血管病變。該研究為類似血管性疾病治療奠定了科學(xué)的理論基礎(chǔ)。
[1] Nikitopoulou I, Orfanos SE, Kotanidou A, et al. Vascular endothelial-cadherin downregulation as a feature of endothelial transdifferentiation in monocrotaline-induced pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2016,311(2):L352-L363.
[2] Su JB. Vascular endothelial dysfunction and pharmacological treatment[J]. World J Cardiol, 2015,7(11):719-741.
[3] Bernatchez P, Sharma A, Bauer PM, et al. A noninhibitory mutant of the caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice[J]. J Clin Invest, 2011,121(9):3747-3755.
[4] Xia P, Chen HY, Chen SF, et al. The stimulatory effects of eNOS/F92A-Cav1 on NO production and angiogenesis in BMSCs[J]. Biomed Pharmacother, 2016,77(1):7-13.
[5] Chen H, Yang H, Xu C, et al. Gene expression profiling of common signal transduction pathways affected by rBMSCs/F92A-Cav1 in the lungs of rat with pulmonary arterial hypertension[J]. Biomed Pharmacother, 2016,83(7):100-106.
[6] Wang YP, Lin CF, Tsai SC, et al. Upregulation of Caveolin-1 correlate with Akt expression and poor prognosis in NPC patients[J]. Laryngoscope, 2015,125(7):E231-E238.
[7] Trane AE, Hiob MA, Uy T, et al. Caveolin-1 scaffolding domain residue phenylalanine 92 modulates Akt signaling[J]. Eur J Pharmacol, 2015,766(21):46-55.
[8] 陳海英,汪磊,王蘭花,等.感染突變Cav1基因的人胚腎293T細(xì)胞eNOS蛋白、NO表達(dá)變化[J].山東醫(yī)藥,2014,54(35):5-7.
[9] Vaillancourt M, Ruffenach G, Meloche J, et al. Adaptation and remodelling of the pulmonary circulation in pulmonary hypertension[J]. Can J Cardiol, 2015,31(4):407-415.
[10] Li Q, Youn JY, Cai H. Mechanisms and consequences of endothelial nitric oxide synthase dysfunction in hypertension[J]. J Hypertens, 2015,33(6):1128-1136.
[11] Balakumar P, Kathuria S, Taneja G, et al. Is targeting eNOS a key mechanistic insight of cardiovascular defensive potentials of statins[J]. J Mol Cell Cardiol, 2012,52(1):83-92.
[12] Dickinson MG, Bartelds B, Borgdorff MA, et al. The role of disturbed blood flow in the development of pulmonary arterial hypertension: lessons from preclinical animal models[J]. Am J Physiol Lung Cell Mol Physiol, 2013,305(1):L1-L14.
[13] Pancotti F, Roncuzzi L, Maggiolini M, et al. Caveolin-1 silencing arrests the proliferation of metastatic lung cancer cells through the inhibition of STAT3 signaling[J]. Cell Signal, 2012,24(7):1390-1397.
[14] Sanuphan A, Chunhacha P, Pongrakhananon V, et al. Long-term nitric oxide exposure enhances lung cancer cell migration[J]. Biomed Res Int, 2013,2013(1):186972.
[15] Wei C, Li HZ, Wang YH, et al. Exogenous spermine inhibits the proliferation of human pulmonary artery smooth muscle cells caused by chemically-induced hypoxia via the suppression of the ERK1/2- and PI3K/AKT-associated pathways[J]. Int J Mol Med, 2016,37(1):39-46.
[16] Xia XD, Lee J, Khan S, et al. Suppression of phosphatidylinositol 3-kinase/Akt signaling attenuates hypoxia-induced pulmonary hypertension through the downregulation of lysyl oxidase[J]. DNA Cell Biol, 2016,35(10):599-606.
[17] Nho RS, Peterson M, Hergert P, et al. FoxO3a (Forkhead Box O3a) deficiency protects Idiopathic Pulmonary Fibrosis (IPF) fibroblasts from type Ⅰ polymerized collagen matrix-induced apoptosis via caveolin-1 (cav-1) and Fas[J]. PLoS One, 2013,8(4): e61017.
[18] Zheng Z, Yu S, Zhang W, et al. Genistein attenuates monocrotaline-induced pulmonary arterial hypertension in rats by activating PI3K/Akt/eNOS signaling[J]. Histol Histopathol, 2017,32(1):35-41.
[19] Banquet S, Delannoy E, Agouni A, et al. Role of G(i/o)-Src kinase-PI3K/Akt pathway and caveolin-1 in beta(2)-adrenoceptor coupling to endothelial NO synthase in mouse pulmonary artery[J]. Cell Signal, 2011,23(7):1136-1143.
Therapeutic effect and mechanism of rBMSCs/F92A-Cav1 on PAH rats
XUCong1,XIAPeng,YANGHongli,TANGWenqiang,PANLi,WANGLanhua,CHENShuangfeng,ZHANGYingxin,WANGLexin,CHENHaiying
(1LiaochengPeople'sHospitalLiaocheng252000,China)
Objective To investigate the therapeutic effect and mechanism of Caveolin-1 (Cav1) mutant to F92A-Cav1 modified rat bone marrow mesenchymal stem cells (rBMSCs/F92A-Cav1) on rats with pulmonary hypertension (PAH). Methods PAH was induced by intraperitoneal injection of 1% monocrotaline (MCT, 60 mg/kg) in adult male Wistar rats. The PAH rats were randomly divided into four groups (10 rats/group) after 2 weeks of MCT injection: PAH group (only MCT), Cav1 group (transduced with LV-Cav1 modified rBMSCs), F92A-Cav1 group (transduced with LV-F92A-Cav1modified rBMSCs), and the control group. Gene modified rBMSCs (1×106/ml) were transplanted into PAH rats in each group by tail vein injection. After 3 weeks of transplantation, the percentage of media wall thickness (MT%) and right ventricular hypertrophy index (RVHI) were evaluated by Image-Pro Plus 6 software, serum NO concentration was checked by Griess method, and the expression of phosphoinositide 3-kinase(PI3K) and protein kinase B (AKT) was detected by Western blotting. Results MT%, RVHI, PI3K and AKT was all increased but NO was decreased in the PAH group as compared with that of the control group(P<0.05 orP<0.01). Compared with the PAH group, MT%, RVHI, PI3K and AKT was decreased but NO was increased in the Cav1 and F92A-Cav1 groups, especially in the F92A-Cav1 group (P<0.01).Conclusion F92A-Cav1 can abrogate the inhibitory effect of wild-type Cav1 on eNOS and promote the release of NO, then inhibit the activation of PI3K/Akt signaling pathway and thus exert its therapeutic effect on PAH rats.
pulmonary arterial hypertension; Caveolin-1; mesenchymal stem cells; rats
國(guó)家自然科學(xué)基金資助項(xiàng)目(81270104);山東省自然科學(xué)基金資助項(xiàng)目(ZR2016HP33)。
徐聰(1990-),女,技師,主要研究方向?yàn)楦杉?xì)胞對(duì)血管性疾病的治療。E-mail:xucong817@126.com
陳海英(1969-),女,副主任技師,主要研究方向?yàn)楦杉?xì)胞對(duì)血管性疾病的治療。E-mail:hychenmay5@126.com
10.3969/j.issn.1002-266X.2017.13.006
R563.9
A
1002-266X(2017)13-0020-04
2016-10-27)