国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

雷帕霉素作用位點(diǎn)信號通路在抗抑郁作用方面的研究進(jìn)展

2017-04-04 14:35:18綜述蘭志勛審校
實(shí)用醫(yī)院臨床雜志 2017年2期
關(guān)鍵詞:氯胺酮拮抗劑谷氨酸

文 雯 綜述,蘭志勛,2 審校

(1.西南醫(yī)科大學(xué)臨床醫(yī)學(xué)院,四川 瀘州 646000;2.四川省醫(yī)學(xué)科學(xué)院·四川省人民醫(yī)院口腔科,四川 成都 610072)

雷帕霉素作用位點(diǎn)信號通路在抗抑郁作用方面的研究進(jìn)展

文 雯1綜述,蘭志勛1,2審校

(1.西南醫(yī)科大學(xué)臨床醫(yī)學(xué)院,四川 瀘州 646000;2.四川省醫(yī)學(xué)科學(xué)院·四川省人民醫(yī)院口腔科,四川 成都 610072)

重度抑郁癥 (major depressive disorder,MDD)是一種對生活質(zhì)量起破壞性作用的精神疾病,且具有較高的發(fā)病率和死亡率,給家庭和社會帶來巨大的負(fù)擔(dān)。但傳統(tǒng)的抗抑郁藥物起效緩慢且僅對部分患者有效,是目前治療抑郁癥的一大挑戰(zhàn)。糖尿病、肥胖、抑郁及確診的癌癥患者中,mTOR信號通路是失調(diào)的[1]。研究中顯示mTOR具有快速起效的抗抑郁作用,對于研發(fā)新作用靶點(diǎn)的抗抑郁藥具有很大的指導(dǎo)意義,可能為情感障礙的神經(jīng)生物學(xué)治療找到了一個新的方向,本文將從mTOR信號通路與N-甲基-D-天冬氨酸受體(NMDA)、α-氨基-3-羥基-5-甲基-4-異惡唑丙酸受體(AMPA)、腦源性神經(jīng)營養(yǎng)因子(brain derived neurotrophic factor,BDNF)、血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)的相互關(guān)系等方面進(jìn)行總結(jié)綜述。

雷帕霉素作用位點(diǎn)信號通路;N-甲基-D-天冬氨酸受體;α-氨基-3-羥基-5-甲基-4-異惡唑丙酸受體;腦源性神經(jīng)營養(yǎng)因子;血管內(nèi)皮生長因子

活化的哺乳動物雷帕霉素作用位點(diǎn)(mammalian target of rapamycin,mTOR)信號通路可能是N-甲基-D-天冬氨酸受體(NMDA)受體拮抗劑和其他經(jīng)典的抗抑郁藥物起作用的基礎(chǔ),但與NMDA受體拮抗劑如氯氨酮的抗抑郁作用關(guān)系更加密切。雷帕霉素作用位點(diǎn)(target of rapamycin,TOR)是一種高度保守的絲/蘇氨酸激酶,包含兩種不同形式的蛋白復(fù)合物:雷帕霉素作用位點(diǎn)復(fù)合物1(TOR complex 1,TORC1)與雷帕霉素作用位點(diǎn)復(fù)合物2(TOR complex 2,TORC2[2],通過直接活化α-氨基-3-羥基-5-甲基-4-異惡唑丙酸受體(AMPA)和神經(jīng)營養(yǎng)因子受體傳遞信息。mTOR信號通路的上游激動子是蛋白激酶B(protein kinase B,PKB/AKt)及細(xì)胞外信號相關(guān)激酶(ERK),ERK抑制結(jié)節(jié)硬化癥復(fù)合物(TSC1/TSC2),后者是mTOR的抑制劑[3]。激活糖原合成酶激酶-3(GSK-3)導(dǎo)致TSC1/2活性增加,這樣可抑制mTOR信號通路。mTOR的下游靶點(diǎn)是核糖體S6蛋白激酶(S6Ks)及真核生物起始因子4E(eIF4E)的結(jié)合蛋白(4E-BP),調(diào)節(jié)蛋白質(zhì)的合成[4]。磷酸化真核生物延長因子2(eEF2)則抑制蛋白質(zhì)的翻譯[5],刺激eEF2去磷酸化使蛋白翻譯增加,TOR阻滯效應(yīng)是去磷酸化,暗示這是mTOR介導(dǎo)的效應(yīng)。

1 mTOR與NMDA受體

NMDA受體是谷氨酸鹽離子通道型受體,使Ca2+、Na+進(jìn)入細(xì)胞內(nèi),K+流出細(xì)胞外,其激活需要谷氨酸和甘氨酸受體的共同活化,使細(xì)胞膜去極化以使Mg2+從受體通道移除。每個NMDA受體由四個亞單位組成,目前已發(fā)現(xiàn)共有七個亞型:GluN1、GluN2 A、GluN2B、GluN2C、GluN2D、GluN3 A、GluN3B。NMDA受體的功能根據(jù)組成亞單位和在細(xì)胞內(nèi)位置不同而異[6],對軸突、樹突分枝的延伸及急性應(yīng)激時海馬突觸可塑性的改變起著重要的作用[7],提示NMDA受體拮抗劑氯胺酮可能通過調(diào)節(jié)突觸形態(tài)來產(chǎn)生抗抑郁作用。研究表明,人[8]和動物模型[9]注射氯胺酮后能夠發(fā)揮快速、長效的抗抑郁作用,包括激活ERK、AKt依賴的mTOR信號通路以及逆轉(zhuǎn)前額葉皮質(zhì)中由應(yīng)激導(dǎo)致的突觸蛋白的下降[10],但僅在激活后通道處于開放狀態(tài)時才能產(chǎn)生阻滯作用。阻滯NMDA受體,使下游p70蛋白的核糖體S6蛋白激酶(P70 S6K)抑制下游真核生物延長因子2激酶(eEF2K),從而減少eEF2蛋白的磷酸化,解除對蛋白翻譯的抑制,導(dǎo)致BDNF在海馬中的表達(dá)增加[11]。經(jīng)典的抗抑郁藥物有:依地普倫、帕羅西汀等,在大鼠海馬培養(yǎng)中,它們增加mTOR磷酸化的水平和上游調(diào)節(jié)因子AKt、ERK的磷酸化形式[12],同時也增加突觸蛋白的水平和海馬樹突的生長。

Miller等[13]證明拮抗GluN2B促進(jìn)mTOR依賴的抗抑郁作用,并增加皮質(zhì)神經(jīng)元蛋白翻譯和突觸可塑性,GluN2B能更有效的抑制mTOR功能和蛋白生成,因此可能是氯胺酮快速起效的一個靶點(diǎn)。另有研究用氯胺酮和一種谷氨酸NMDA2B受體拮抗劑R0(25)-6981治療慢性應(yīng)激模型老鼠,均可通過mTOR持續(xù)逆轉(zhuǎn)抑郁行為及減少前額葉皮質(zhì)中突觸后興奮性電流[10],且與非特異性NMDA受體拮抗劑有相似的抗抑郁作用[14]。其它谷氨酸NMDA2B受體拮抗劑CP-101,606(traxoprodil)對難治性重度抑郁癥患者也具有快速抗抑郁作用[15]。

2 mTOR與AMPA受體

氯胺酮激活mTOR信號通路及產(chǎn)生抗抑郁作用依賴于谷氨酸鹽-AMPA受體的激活[16],因此提高谷氨酸鹽遞質(zhì)傳遞或活化AMPA受體均能產(chǎn)生快速有效的抗抑郁作用。氯胺酮的突觸發(fā)生作用是通過AMPA受體“去抑制”谷氨酸傳遞產(chǎn)生的,阻斷AMPA受體可抑制氯胺酮的抗抑郁作用[17]。注射氯胺酮后,將減少大鼠前額皮層γ-氨基丁酸能中間神經(jīng)元的自發(fā)活動,因而使谷氨酸能椎體神經(jīng)元的代謝率增加[18],這一點(diǎn)值得關(guān)注。椎體神經(jīng)元的活動能增加皮質(zhì)的興奮性和谷氨酸水平,因而可活化AMPA受體。同樣具有抗抑郁作用的抗驚厥藥,如拉莫三嗪和利魯唑,可使AMPA受體在海馬神經(jīng)元細(xì)胞膜的傳輸和利用率增加[19]。此外,AMPA受體激動劑也能產(chǎn)生抗抑郁作用并興奮mTOR信號通路[20]。研究表明mTOR信號通路活化AMPA是離子型谷氨酸能神經(jīng)傳遞藥物調(diào)節(jié)突觸可塑性和產(chǎn)生抗抑郁作用的基本機(jī)制[21]。mTOR信號通路的激活可被AMPA受體拮抗劑(NBQX)完全阻滯。細(xì)胞和行為學(xué)研究證明,對mTOR信號通路的興奮和蛋白質(zhì)合成的促進(jìn)取決于對AMPA受體的活化[22]。

谷氨酸鹽在氯胺酮抗抑郁作用中起作用的另一個證據(jù)是:阻滯谷氨酸鹽受體2/3亞型(mGluR2/3)突觸前自身抑制受體,也可產(chǎn)生依賴于mTOR信號通路的快速抗抑郁作用[23]。mGluR2/3拮抗劑(LY341495),快速激活mTOR和下游通路組成成分P70 S6K、真核生物起始因子4E結(jié)合蛋白1(4E-BP1)及持續(xù)增加突觸后蛋白水平[23]。東莨菪堿是一種毒蕈堿膽堿能受體(mAChR)拮抗劑,在臨床試驗(yàn)中表現(xiàn)為快速抗抑郁作用[24]與老鼠前額皮質(zhì)的突觸發(fā)生和mTORC1信號的快速激活相關(guān)[25]。這些作用可以被AMPA阻滯劑拮抗,這表明谷氨酸能神經(jīng)傳遞共有的作用與氯胺酮NMDA受體拮抗作用相似。

3 mTOR與腦源性神經(jīng)營養(yǎng)因子(brain derived neurotrophic factor,BDNF)

BDNF是mTOR信號通路和突觸可塑性、樹突蛋白合成、棘成熟、突觸遞質(zhì)傳遞的重要調(diào)節(jié)因子[25]。在神經(jīng)元中,BDNF通過磷酸化修飾調(diào)節(jié)mTORC1的活性,進(jìn)而活化G蛋白偶聯(lián)受體(GPCRS)或者離子通道受體[26]。Hoeffer等研究表明,刺激AMPA受體導(dǎo)致功能依賴性的BDNF釋放,BDNF又反過來活化AKt、ERK,興奮mTOR信號通路和誘導(dǎo)突觸蛋白的合成[22]。Lepack等認(rèn)為,氯胺酮引起B(yǎng)DNF的增加是通過激活突觸后AMPA受體,使細(xì)胞去極化,激活L型電壓依賴性鈣通道,使Ca2+內(nèi)流增加,進(jìn)而使釋放BDNF的胞吐作用增強(qiáng)[27],并進(jìn)一步導(dǎo)致海馬中突觸可塑性的巨大改變(增加表面AMPA受體的表達(dá))[28]。但也有研究表明,經(jīng)典的抗抑郁治療確實(shí)可增加腦邊緣系統(tǒng)中BDNF的表達(dá),但沒有證據(jù)證明BDNF的釋放也增加,以此說明BDNF的釋放是依賴于活化的AMPA受體[25],后者可能是氯胺酮快速抗抑郁作用的關(guān)鍵之處,還有待進(jìn)一步的研究[16]。BDNF的釋放還可興奮原肌球蛋白激酶B(TrKB)受體及磷酸肌酸激酶和ERK信號通路,它們均是氯胺酮興奮mTOR信號通路所需要的[17],也能通過真核生物起始因子4E結(jié)合蛋白激酶(4E-BPS)、S6KS蛋白激活mTOR信號通路,并增加在海馬、皮質(zhì)初級神經(jīng)元中去磷酸化的eEF2的水平,提高蛋白合成的速率,從而增加神經(jīng)元樹突中蛋白的合成。

BDNF有幾個易突變片段[29]。甲硫氨酸等位基因出現(xiàn)于20%~30%的人群中,伴有功能缺失,并增加那些曾經(jīng)受過創(chuàng)傷或應(yīng)激的人患抑郁癥的風(fēng)險[30]。然而也有研究認(rèn)為含纈氨酸的BDNF更易導(dǎo)致抑郁癥的發(fā)生及降低抗抑郁治療的有效率[31],表明BDNF和其它基因的多態(tài)性與環(huán)境因素之間存在復(fù)雜關(guān)系。抑郁癥患者BDNF水平較正常人有所下降,可能是導(dǎo)致抑郁癥的結(jié)構(gòu)改變和行為癥狀的原因,而抗抑郁治療后BDNF將增加[32]??挂钟羲幬镏委熀碗娦菘酥委熆苫謴?fù)BDNF在前額葉皮質(zhì)和海馬中的mRNA水平,外源性給予BDNF到中腦和海馬[33]中,也可產(chǎn)生抗抑郁作用。促分裂原活化蛋白激酶磷酸酶-1(MKP-1)是BDNF-ERK級聯(lián)反應(yīng)的一個負(fù)性調(diào)節(jié)器,研究發(fā)現(xiàn)抑郁癥患者海馬中的MKP-1的水平顯著增高[34]。異常的、持續(xù)增高的MKP-1,使ERK的表達(dá)下降,導(dǎo)致BDNF-ERK信號通路減少,也引起功能依賴性的mTOR信號通路的活化減少[16]。

BDNF也可通過三磷酸肌醇蛋白激酶(PI3K)/AKt、GSK-3信號通路傳遞信號產(chǎn)生抑郁和焦慮的癥狀[35]。在運(yùn)動后,BDNF能活化原肌球蛋白激酶(Trk)受體下游的PI3K/AKt/mTORC1信號通路,mTORC1的激活又導(dǎo)致神經(jīng)樹突中蛋白合成增加,這也能解釋在腦內(nèi)mTORC1的激活是突觸可塑性和長程增強(qiáng)作用所必需的[36]。運(yùn)動后也可通過上調(diào)reelin活化mTORC1,但運(yùn)動后reelin的增加僅在仍處于發(fā)育狀態(tài)的大腦中,而在健康成年人大腦中不會增加[37],盡管mTORC1的活性和BDNF仍增加[38],表明BDNF是介導(dǎo)mTORC1活化的主要通路。

實(shí)際上BDNF-TrKB和mTOR信號通路涉及的是氯胺酮和mGlu2/3拮抗劑[39]作用的維持而不是即刻的起效。除外mTOR信號通路,BDNF改變突觸可塑性和抗抑郁的作用還包含其它機(jī)制,如:在成年老鼠海馬中,細(xì)胞外信號調(diào)節(jié)激酶(MAPK)的激活、及磷酸化環(huán)磷酸腺苷(cAMP)的增加[40]。研究表明,在NMDA受體拮抗劑的快速抗抑郁作用中,海馬中mTOR的增加不是必須的,而是依賴于BDNF蛋白的快速翻譯[11]。

4 mTOR與血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)

VEGF是一種神經(jīng)營養(yǎng)因子。在給予經(jīng)典抗抑郁藥物如:選擇性5-羥色胺再攝取抑制劑和非選擇性5-羥色胺再攝取抑制劑治療后,VEGF和它的受體Flk-1(VEGFR2)在海馬中表達(dá)增加,誘導(dǎo)抗抑郁作用的產(chǎn)生,同時運(yùn)動緩解抑郁樣癥狀也是通過激活VEGF/FIK-1信號通路來實(shí)現(xiàn)的[41]。在臨床研究中,自殺成功的患者體內(nèi)可檢測到低水平的血漿VEGF[42],與完全睡眠剝奪患者的抗抑郁作用相關(guān)的是血漿中VEGF水平升高[43]。在應(yīng)激抑郁癥模型中,應(yīng)激可減少海馬中VEGF的水平,如當(dāng)海馬齒狀回受輻照后,可降低VEGF的表達(dá)[44]。一些非藥理學(xué)的抗抑郁治療方法,如:電休克(electroconvulsive shock,ECS)治療,鍛煉或者情緒穩(wěn)定劑(拉莫三嗪等)[45],可使VEGF的表達(dá)上調(diào)。研究證明,VEGF通過活化mTORC1信號通路實(shí)現(xiàn)細(xì)胞增殖[46]。盡管在抑郁障礙治療中,VEGF的作用越來越重要,但是與前體VEGF之間沒有明確的關(guān)聯(lián),否則可以將其作為抑郁癥和(或)抗抑郁治療效果的生物標(biāo)記[47]。

今后的研究應(yīng)該進(jìn)一步闡明mTOR信號通路的調(diào)節(jié)功能和參與抗抑郁作用時錯綜復(fù)雜的信號通路的各個環(huán)節(jié)。影響谷氨酸鹽傳遞、BDNF-mTOR信號通路、突觸發(fā)生的新的藥物作用靶點(diǎn),是研發(fā)安全、快速、有效的抗抑郁藥的方向。若能研發(fā)一種藥物,它能夠調(diào)節(jié)PI3K-AKt-mTOR信號通路中的一個或者多個蛋白激酶的活性,并只具有NMDA受體拮抗劑如氯胺酮的抗抑郁作用而不產(chǎn)生其相關(guān)的副作用,將會使抗抑郁治療進(jìn)入一個新的階段。

[1] Cornu M,Albert V,Hall MN.mTOR in aging,metabolism,and cancer[J].Current Opinion in Genetics & Development,2013,23(1):53-62.

[2] Wullschleger S.TOR signaling in growth and metabolism[J].Cell,2006,124(3):471-484.

[3] Inoki K,Ouyang H,Zhu T,et al.TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth[J].Cell,2006,126(5):955-968.

[4] Laplante M,Sabatini D.mTOR Signaling in Growth Control and Disease[J].Cell,2012,149(2):274-293.

[5] Dreyer HC,Drummond MJ,Pennings B,et al.Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle[J].2008,294(2):392-400.

[6] Abdallah CG,Sanacora G,Duman RS,et al.Ketamine and Rapid-Acting Antidepressants:A window into a new neurobiology for Mood Disorder Therapeutics[J].Annual Review of Medicine,2015,66(66):509-523.

[7] Wang M,Yang Y,Dong Z,et al.NR2B-containing N-methyl-D-aspartate subtype glutamate receptors regulate the acute stress effect on hippocampal long-term potentiation/long-term depression in vivo[J].Neuroreport,2006,17(12):1343-1346.

[8] Ibrahim L,Diazgranados N,Luckenbaugh DA,et al.Rapid decrease in depressive symptoms with an N-methyl-d-aspartate antagonist in ECT-resistant major depression[J].Progress in neuro-psychopharmacology & biological psychiatry,2011,35(4):1155-1159.

[9] Akinfiresoye L,Tizabi Y.Antidepressant effects of AMPA and ketamine combination:role of hippocampal BDNF,synapsin,and mTOR[J].Psychopharmacology,2013,230(2):291-298.

[10]Li N,Liu RJ,Dwyer JM,et al.Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure[J].Biological Psychiatry,2011,69(8):754-761.

[11]Autry AE,Adachi M,Nosyreva E,et al.NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses[J].Nature,2011,475(7354):91-95.

[12]Park SW.Differential effects of antidepressant drugs on mTOR signalling in rat hippocampal neurons[J].International Journal of Neuropsychopharmacology,2014,17(11):1831-1846.

[13]Miller OH,Yang L,Wang CC,et al.GluN2B-Containing NMDA Receptors Regulate Depression-Like Behavior and are Critical for the Rapid Antidepressant Actions of Ketamine[J].Elife Sciences,2014,3(3):3581-3602

[14]Niciu MJ,Henter ID,Luckenbaugh DA,et al.Glutamate receptor antagonists as fast-acting therapeutic alternatives for the treatment of depression:ketamine and other compounds[J].Annual Review of Pharmacology & Toxicology,2014,54(1):119-139.

[15]Preskorn SH,Baker B,Kolluri S,et al.An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist,CP-101,606,in patients with treatment-refractory major depressive disorder[J].Journal of Clinical Psychopharmacology,2008,28(6):631-637.

[16]Duman RS,Li N,Liu RJ,et al.Signaling pathways underlying the rapid antidepressant actions of ketamine[J].Neuropharmacology,2012,62(1):35-41.

[17]Li N,Lee B,Liu RJ,et al.mTOR-dependent synapse formation underlies the rapid antidepressant effects of nmda antagonists[J].Science,2010,329(5994):959-964.

[18]Homayoun H,Moghaddam B.NMDA Receptor Hypofunction Produces Opposite Effects on Prefrontal Cortex Interneurons and Pyramidal Neurons[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2007,27(43):11496-11500.

[19]Du J,Suzuki K,Wei Y,et al.The anticonvulsants lamotrigine,riluzole,and valproate differentially regulate ampa receptor membrane localization:relationship to clinical effects in mood disorders[J].Neuropsychopharmacology,2007,32(4):793-802.

[20]Jourdi H,Hsu YT,Zhou M,et al.positive ampa receptor modulation rapidly stimulates bdnf release and increases dendritic mrna translation[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2009,29(27):8688-8697.

[21]Chen KT,Tsai MH,Wu CH,et al.AMPA Receptor-mTOR activation is required for the antidepressant-like effects of sarcosine during the forced swim test in rats:insertion of AMPA receptor may play a role[J].Frontiers in Behavioral Neuroscience,2015,9(1):162-172.

[22]Hoeffer CA,Klann E.mTOR signaling:At the crossroads of plasticity,memory and disease[J].Trends in Neurosciences,2009,33(2):67-75.

[23]Dwyer JM.mTOR activation is required for the antidepressant effects of mGluR2/3 blockade[J].International Journal of Neuropsychopharmacology,2012,15(4):429-434.

[24]Drevets WC,Zarate CA,F(xiàn)urey ML.Antidepressant effects of the muscarinic cholinergic receptor antagonist scopolamine:a review[J].Biological Psychiatry,2012,73(12):1156-1163.

[25]Voleti B,Navarria A,Liu RJ,et al.Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling,synaptogenesis,and antidepressant behavioral responses[J].Biological Psychiatry,2013,74(10):742-749.

[26]Pilar-Cúellar F,Vidal R,Díaz A,et al.Signaling pathways involved in antidepressant-induced cell proliferation and synaptic plasticity[J].Current Pharmaceutical Design,2013,20(23):3776-3794.

[27]Lepack AE,F(xiàn)uchikami M,Dwyer JM,et al.BDNF Release is Required for the Behavioral Actions of Ketamine[J].International Journal of Neuropsychopharmacology,2015,18(1):33-38.

[28]Nosyreva E,Szabla K,Autry AE,et al.Acute suppression of spontaneous neurotransmission drives synaptic potentiation[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2013,33(16):6990-7002.

[29]Casey BJ,Glatt CE,Tottenham N,et al.Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development[J].Neuroscience,2009,164(1):108-120.

[30]Gatt JM,Nemeroff CB,Dobsonstone C,et al.Interactions between BDNF Val66 Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety.[J].Molecular Psychiatry,2009,14(7):681-695.

[31]Tsai SJ,Hong CJ,Liou YJ.Effects of BDNF polymorphisms on antidepressant action[J].Psychiatry Investigation,2010,7(4):236-242.

[32]Deuschle M,Gilles M,Scharnholz B,et al.Changes of serum concentrations of brain-derived neurotrophic factor (bdnf) during treatment with venlafaxine and mirtazapine:role of medication and response to treatment[J].Pharmacopsychiatry,2012,46(2):54-58.

[33]Shirayama Y,Chen AC,Nakagawa S,et al.Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2002,22(8):3251-3261.

[34]Vanja D,Mounira B,Pawel L,et al.Negative regulator of MAP Kinase is increased in depression and is necessary and sufficient for expression of depressive behavior[J].Nature Medicine,2010,16(11):1328-1332.

[35]Lang UE,Borgwardt S.Molecular mechanisms of depression:perspectives on new treatment strategies[J].Cellular Physiology & Biochemistry International Journal of Experimental Cellular Physiology Biochemistry & Pharmacology,2013,31(6):761-777.

[36]Stoica L,Zhu PJ,Huang W,et al.Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) blocks long-term synaptic plasticity and memory storage[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(9):3791-3796.

[37]Hesari F,Sale E.Reelin and regular exercise in the brain cortex of healthy adult rats[J].Journal of Animal Science Advances,2013,3(11):569-574.

[38]Zheng HF,Chan HL,Mi KS,et al.Effect of treadmill exercise on the BDNF-mediated pathway in the hippocampus of stressed rats[J].Neuroscience Research,2013,76(4):187-194.

[39]Koike H,F(xiàn)ukumoto K,Iijima M,et al.Role of BDNF/TrkB signaling in antidepressant-like effects of a group II metabotropic glutamate receptor antagonist in animal models of depression[J].Behavioural Brain Research,2013,238(2):48-52.

[40]Schmidt HD,Duman RS.Peripheral BDNF Produces antidepressant-like effects in cellular and behavioral models[J].Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology,2010,35(12):2378-2391.

[41]Elfving B,Wegener G.Electroconvulsive seizures stimulate the vegf pathway via mTORC1[J].Synapse,2012,66(4):340-345.

[42]Isung J,Mobarrez F,Nordstr?m P,et al.Low plasma vascular endothelial growth factor (VEGF) associated with completed suicide[J].World Journal of Biological Psychiatry,2012,13(6):468-473.

[43]Ibrahim L,Duncan W,Luckenbaugh DA,et al.Rapid antidepressant changes with sleep deprivation in major depressive disorder are associated with changes in vascular endothelial growth factor (VEGF):A pilot study [J].Brain Research Bulletin,2011,86(1-2):129-133.

[44]Warner-Schmidt JL,Duman RS.VEGF as a potential target for therapeutic intervention in depression[J].Current Opinion in Pharmacology,2008,8(1):14-19.

[45]Sun R,Li N,Li T.VEGF regulates antidepressant effects of lamotrigine[J].European Neuropsychopharmacology,2012,22(6):424-430.

[46]Takei N,Nawa H.mTOR signaling and its roles in normal and abnormal brain development[J].Frontiers in Molecular Neurosciemce,7(1):28.

[47]Halmai Z,Dome P,Dobos J,et al.Peripheral vascular endothelial growth factor level is associated with antidepressant treatment response:results of a preliminary study[J].Journal of Affective Disorders,2013,144(3):269-273.

Progress of researching target of rapamycin signaling pathway on antidepressant effects

WEN Weng,LAN Zhi-xun

R749.053

B

1672-6170(2017)02-0143-04

2016-11-19;

2017-01-10)

猜你喜歡
氯胺酮拮抗劑谷氨酸
氯胺酮及其異構(gòu)體和代謝物抗抑郁研究進(jìn)展☆
基于正交設(shè)計(jì)的谷氨酸發(fā)酵條件優(yōu)化
N-月桂?;劝彼猁}性能的pH依賴性
問:如何鑒定谷氨酸能神經(jīng)元
GPⅡb/Ⅲa受體拮抗劑在急性冠脈綜合征中的應(yīng)用
氯胺酮對學(xué)習(xí)記憶能力的影響
氯胺酮聯(lián)合丙泊酚在小兒麻醉中的應(yīng)用效果觀察
合理選擇降壓藥物對改善透析患者預(yù)后的意義
氧自由基和谷氨酸在致熱原性發(fā)熱機(jī)制中的作用與退熱展望
IVF-ET拮抗劑方案中促性腺激素釋放激素激動劑扳機(jī)后的黃體支持
逊克县| 德州市| 芦溪县| 徐汇区| 江阴市| 靖州| 德庆县| 普陀区| 鹤庆县| 锡林郭勒盟| 伊通| 巨野县| 长寿区| 改则县| 页游| 佛教| 霍林郭勒市| 西盟| 集安市| 遂平县| 海宁市| 牙克石市| 读书| 长顺县| 浦城县| 秀山| 仙居县| 资兴市| 阳城县| 黔西| 盱眙县| 玛沁县| 鄂托克前旗| 巴中市| 吐鲁番市| 安溪县| 富平县| 伽师县| 故城县| 呼图壁县| 高台县|