黃劍峰,張立翔,楊 松,姚 激
?
水輪機(jī)槽道內(nèi)導(dǎo)葉動態(tài)繞流水力特性大渦模擬分析
黃劍峰1,張立翔2,楊 松1,姚 激2
(1. 云南農(nóng)業(yè)大學(xué)水利學(xué)院,昆明 650201;2.昆明理工大學(xué)工程力學(xué)系,昆明 650500)
為進(jìn)一步探索水輪機(jī)導(dǎo)葉在調(diào)節(jié)過程中產(chǎn)生強(qiáng)瞬變流時水流和導(dǎo)葉間的非線性流固耦合機(jī)理,該文基于大渦模擬和二維瞬態(tài)N-S方程,應(yīng)用ANSYS FLUENT軟件中的任意拉格朗日-歐拉動網(wǎng)格技術(shù)和非迭代時間推進(jìn)格式對槽道內(nèi)導(dǎo)葉的關(guān)閉運(yùn)動過程進(jìn)行數(shù)值模擬,研究導(dǎo)葉繞流后的流場動態(tài)變化水力特性及渦激振動特性。結(jié)果表明:導(dǎo)葉關(guān)閉過程中槽道內(nèi)的壓力場、速度場、渦量場呈現(xiàn)出明顯的非定常特征;卡門渦頻率約為水輪機(jī)轉(zhuǎn)輪轉(zhuǎn)頻的0.3倍,極易誘發(fā)低頻壓力脈動,隨著關(guān)閉時刻的結(jié)束導(dǎo)葉后尾跡渦形態(tài)呈現(xiàn)出明顯的卡門渦脫落過程;關(guān)閉過程中轉(zhuǎn)動導(dǎo)葉的升、阻力系數(shù)隨時間表現(xiàn)出非線性動力響應(yīng)特征。揭示了低頻壓力振蕩的產(chǎn)生與導(dǎo)葉調(diào)節(jié)關(guān)閉動作后導(dǎo)葉尾部的卡門渦列有關(guān),卡門渦列誘發(fā)的非線性流激振動是影響水輪機(jī)水力穩(wěn)定性和上游管道系統(tǒng)水力共振的主要因素。該方法可為有效模擬水力機(jī)械瞬態(tài)非線性流固耦合問題提供參考。
計算機(jī)模擬;模型;振動;水輪機(jī);導(dǎo)葉;水力特性;動網(wǎng)格;大渦模擬
流固耦合效應(yīng)是水輪機(jī)葉柵繞流流致動力響應(yīng)的一個重要特征,這里的流固耦合是指浸沒在流體中的固體與流體之間產(chǎn)生的“相互反饋”作用。翼型導(dǎo)葉繞流是強(qiáng)非線性瞬變湍流,難以用理論解析的方法獲得其流場分布,目前對這種動邊界下流固耦合效應(yīng)的數(shù)值研究有很多方法[1],主要包括基于任意拉格朗日-歐拉方法的動網(wǎng)格技術(shù)和基于固定網(wǎng)格技術(shù)的浸入邊界法。動網(wǎng)格技術(shù)是在保持網(wǎng)格數(shù)目不變情況下,通過網(wǎng)格結(jié)構(gòu)變形來適應(yīng)運(yùn)動邊界引起的物理空間變化。變形動網(wǎng)格可以在結(jié)構(gòu)網(wǎng)格上實(shí)現(xiàn),也可以在非結(jié)構(gòu)/混合網(wǎng)格基礎(chǔ)上進(jìn)行[2]。流固耦合問題的幾何外形通常較為復(fù)雜,數(shù)值模擬中大多采用基于非結(jié)構(gòu)/混合網(wǎng)格的動網(wǎng)格技術(shù)。非結(jié)構(gòu)動網(wǎng)格方法包括網(wǎng)格變形法、網(wǎng)格重構(gòu)法、以及網(wǎng)格變形與局部或全場網(wǎng)格重構(gòu)結(jié)合[3]。非結(jié)構(gòu)動網(wǎng)格技術(shù)對網(wǎng)格形狀和空間關(guān)聯(lián)性要求比結(jié)構(gòu)網(wǎng)格寬松得多,能夠非常方便地生成復(fù)雜幾何外形的網(wǎng)格,極大減輕CFD應(yīng)用中網(wǎng)格生成的工作量。近年來網(wǎng)格生成發(fā)展主流是非結(jié)構(gòu)/混合動網(wǎng)格技術(shù),大部分CFD應(yīng)用軟件都是建立在非結(jié)構(gòu)/混合網(wǎng)格基礎(chǔ)上。在非結(jié)構(gòu)網(wǎng)格上發(fā)展動網(wǎng)格技術(shù)主要難點(diǎn)是建立有效控制網(wǎng)格變形和運(yùn)動的計算方法。在許多應(yīng)用問題中,物體運(yùn)動和表面變形受流體作用力控制,流場內(nèi)網(wǎng)格的運(yùn)動規(guī)律難以事先預(yù)測,常會出現(xiàn)品質(zhì)優(yōu)良的初始網(wǎng)格計算不久就引起局部網(wǎng)格嚴(yán)重扭曲的情況,最終導(dǎo)致計算失敗。應(yīng)用動網(wǎng)格技術(shù)對控制方程也有特別要求,為了應(yīng)用動網(wǎng)格技術(shù),需要從常見的空間坐標(biāo)位置靜止的流體方程出發(fā),變換為能夠描述運(yùn)動邊界的任意拉格朗日-歐拉(arbitrary lagrange-euler—ALE)形式的方程。朱一西等[4]采用動網(wǎng)格方法對多段翼型的非定常地面效應(yīng)進(jìn)行了數(shù)值模擬,張偉偉等[5]采用非結(jié)構(gòu)混合動網(wǎng)格方法對拍撲翼推進(jìn)特性進(jìn)行數(shù)值模擬分析。張琛等[6]采用動網(wǎng)格方法對不同結(jié)構(gòu)和彈簧參數(shù)的壓力調(diào)節(jié)器性能進(jìn)行數(shù)值模擬分析。黃劍峰等[7]應(yīng)用動網(wǎng)格方法和標(biāo)準(zhǔn)-湍流模型對水輪機(jī)活動導(dǎo)葉兩段折線關(guān)閉過程進(jìn)行二維瞬態(tài)湍流數(shù)值模擬。
對于物體繞流后的流固耦合動態(tài)特性的研究一直為國內(nèi)外學(xué)術(shù)界和工程界關(guān)注。國外學(xué)者分別用動網(wǎng)格方法[8-14]、浸入邊界法[15-21]對圓柱繞流及方柱繞流等流固耦合問題進(jìn)行研究。祝志文等[22]采用大渦模擬方法研究了圓柱在高雷諾數(shù)下的繞流場,預(yù)測了圓柱表面的脈動壓力平均值和RMS值。董振營等[23]為了揭示有限管道壁面對圓柱繞流尾跡演化特性的影響,對矩形管道內(nèi)雷諾數(shù)為100的三維圓柱繞流尾跡流場進(jìn)行計算分析,探討阻流比和長徑比對圓柱表面和尾跡流場中壓力分布的影響。張偉等[24]采用有限體積法對低雷諾數(shù)下等邊布置三方柱的二維繞流問題進(jìn)行數(shù)值模擬。水慶象等[25]為揭示尾跡區(qū)添加橫隔板對圓柱繞流流場特性影響,建立了基于多步格式的特征線算子分裂有限元法,對帶橫隔板圓柱繞流特性進(jìn)行數(shù)值模擬研究。趙萌等[26]采用大渦模擬及雷諾平均的方法,對高雷諾數(shù)下有限長圓柱繞流阻力特性進(jìn)行數(shù)值模擬和分析,得到了圓柱阻力系數(shù)隨長徑比和雷諾數(shù)的變化規(guī)律,討論端面效應(yīng)對繞流阻力系數(shù)的影響。可以看出,大部分研究都是關(guān)于圓柱繞流和方柱繞流方面的,而對于動邊界下水輪機(jī)翼型導(dǎo)葉繞流流固耦合效應(yīng)的研究相對比較少。
為了探索水電站水輪機(jī)調(diào)節(jié)過程中活動導(dǎo)葉繞流后強(qiáng)瞬變流誘發(fā)流激振動的非線性流固耦合機(jī)理,本文采用先進(jìn)的大渦模擬LES結(jié)合處理動邊界的ALE非結(jié)構(gòu)動網(wǎng)格技術(shù)研究槽道內(nèi)轉(zhuǎn)動導(dǎo)葉翼型繞流的動態(tài)流固耦合水力振動特性。采用笛卡爾自適應(yīng)網(wǎng)格對整個流場區(qū)域離散,分別采用彈簧光順法和局部網(wǎng)格重劃法在每個關(guān)閉時間步上更新動網(wǎng)格計算模型,通過ANSYS FLUENT二次開發(fā)的UDF方式控制導(dǎo)葉關(guān)閉動作規(guī)律,得到了導(dǎo)葉繞流的動態(tài)流場水力特性及尾渦動力響應(yīng)特征,包括各關(guān)閉典型時刻的壓力、速度、尾跡渦分布及卡門渦脫落頻率和升、阻力系數(shù)動態(tài)變化過程等結(jié)果。
計算針對某型號混流式水輪機(jī)真機(jī)活動導(dǎo)葉及其有代表性的關(guān)閉運(yùn)動,取單個導(dǎo)葉對應(yīng)的葉道建立單葉道功能模型,并將葉道拓展為槽道,形成在二維槽道內(nèi)模擬導(dǎo)葉關(guān)閉動作產(chǎn)生的動態(tài)繞流問題,導(dǎo)葉起始“0”點(diǎn)對應(yīng)于導(dǎo)葉擺放的實(shí)際初始位置與槽道平行,該型水輪機(jī)額定水頭10 m,額定流量0.7m3/s,額定轉(zhuǎn)速600 r/min。槽道流向長度12 L,橫向長度4 L,其中L為活動導(dǎo)葉翼型弦長。槽道計算區(qū)域的入口距導(dǎo)葉翼型前緣為3 L,為了能充分捕捉繞流尾跡渦的發(fā)展形態(tài),出口距導(dǎo)葉翼型尾緣的距離為8 L。計算工況對應(yīng)的基于導(dǎo)葉弦長的雷諾數(shù)為120 421。計算使用槽道模型如圖1所示。計算網(wǎng)格采用適應(yīng)復(fù)雜邊界較強(qiáng)的三角形非結(jié)構(gòu)網(wǎng)格劃分。經(jīng)過網(wǎng)格無關(guān)性驗證,最終確定網(wǎng)格節(jié)點(diǎn)數(shù)約90 369個,網(wǎng)格單元數(shù)約1 793 528個。圖2為第2 s時的網(wǎng)格,可見導(dǎo)葉翼型表面周圍三角形網(wǎng)格發(fā)生拉伸和擠壓變形,特別是導(dǎo)葉前緣和尾緣部位網(wǎng)格畸變較大。計算程序由商用CFD軟件ANSYS FLUENT完成。采用大渦模擬中的Smargorinsky-Lilly亞格子應(yīng)力模型[27]。采用有限體積法對瞬態(tài)LES-ALE形式的N-S方程進(jìn)行離散,對流項采用中心差分格式,非定常計算采用非迭代時間推進(jìn)(NITA)格式,該格式專門用于非穩(wěn)態(tài)問題的快速求解,每一個時間步長的收斂無需外迭代,與原來的迭代時間推進(jìn)(ITA,iterative time advancement)格式相比計算時間將減少1/3~1/2。壓力和速度的耦合求解采用Fractional-step格式。該格式每個時間步所耗時間比PISO(pressure-implicit with splitting of operators)格式節(jié)省將近20%。
采用速度進(jìn)口和自由出流邊界條件,在壁面處采用無滑移邊界條件。采用動網(wǎng)格技術(shù)來實(shí)現(xiàn)導(dǎo)葉與流體之間的耦合作用,在每個時間步內(nèi)求解LES-ALE流體動力學(xué)控制方程得到流體的壓力場、速度場以及作用于導(dǎo)葉上的升力和阻力系數(shù)。動網(wǎng)格更新計算模型聯(lián)合應(yīng)用彈性光順法和局部重構(gòu)法處理網(wǎng)格變形情況。應(yīng)用ANSYS FLUENT的二次開發(fā)功能對活動導(dǎo)葉的運(yùn)動方式采用自定義函數(shù)(UDF)來控制[28]?;顒訉?dǎo)葉關(guān)閉規(guī)律采用了一段直線線性關(guān)閉。先采用標(biāo)準(zhǔn)-湍流模型對槽道導(dǎo)葉繞流進(jìn)行定常計算收斂后得到的流場結(jié)果作為非定常計算的初始解,再采用動網(wǎng)格技術(shù)模擬槽道翼型導(dǎo)葉關(guān)閉動作的瞬態(tài)過程。瞬態(tài)計算中時間步長取為0.001 s。一段直線線性關(guān)閉的時間為6 s。
2.1 導(dǎo)葉關(guān)閉過程不同瞬時壓力分析
活動導(dǎo)葉一段直線關(guān)閉過程各個典型時刻槽道內(nèi)及導(dǎo)葉表面壓力分布如圖3所示。關(guān)閉初期第1秒(導(dǎo)葉轉(zhuǎn)過15°)時,活動導(dǎo)葉開始轉(zhuǎn)動在導(dǎo)葉負(fù)力面靠近上游區(qū)域形成高壓區(qū),其中導(dǎo)葉前緣上部的一個小范圍區(qū)域內(nèi)壓力梯度較大,導(dǎo)葉壓力面中部近壁面位置附近形成一個明顯的負(fù)壓中心,流場壓力分布變得不均勻;在第2秒(導(dǎo)葉轉(zhuǎn)過30°)時,導(dǎo)葉壓力面周圍的負(fù)壓中心繼續(xù)增強(qiáng)并向尾緣部位轉(zhuǎn)移,強(qiáng)負(fù)壓中心分離出弱負(fù)壓中心發(fā)展到槽道下游靠近下壁面附近;在第3秒(導(dǎo)葉轉(zhuǎn)過45°)時,隨著導(dǎo)葉轉(zhuǎn)動導(dǎo)葉壓力面周圍形成連續(xù)的負(fù)壓中心不斷向槽道下游方向轉(zhuǎn)移;在第4秒(導(dǎo)葉轉(zhuǎn)過60°)時,整個槽道的流場被高壓控制,高壓區(qū)在導(dǎo)葉負(fù)力面靠近上游區(qū)域,最大高壓達(dá)到4.85 kPa,距導(dǎo)葉壓力面1倍弦長處有1個強(qiáng)負(fù)壓中心;在第5秒(導(dǎo)葉轉(zhuǎn)過75°)時,槽道流場壓力逐漸減弱而負(fù)壓中心不斷增強(qiáng),在靠近導(dǎo)葉壓力面周圍形成一個8字形負(fù)壓帶,負(fù)壓中心處最強(qiáng)負(fù)壓已達(dá)到?6.72 kPa,其余負(fù)壓中心不斷向槽道下游演化;導(dǎo)葉關(guān)閉結(jié)束第6秒(導(dǎo)葉轉(zhuǎn)過90°)時,槽道下游流場被5個較為明顯的負(fù)壓中心控制,特別是導(dǎo)葉壓力面近壁面處有一強(qiáng)負(fù)壓中心對導(dǎo)葉極為不利,會誘發(fā)整個流場產(chǎn)生壓力振蕩。
2.2 導(dǎo)葉關(guān)閉過程不同瞬時速度分析
活動導(dǎo)葉一段直線關(guān)閉過程各個典型時刻槽道內(nèi)速度矢量分布如圖4所示。表1為根據(jù)導(dǎo)葉出口速度按文獻(xiàn)[29]和[30]中給出的計算公式計算出的關(guān)閉各時刻卡門渦脫落頻率及斯特勞哈爾數(shù)。斯特勞哈爾數(shù)是一個表明旋渦脫落特性的相似準(zhǔn)則數(shù),反映了尾流的非定常動力學(xué)特性。由圖4可知,在第1秒(導(dǎo)葉轉(zhuǎn)過15°)時,水流繞過活動導(dǎo)葉后在壓力面附近產(chǎn)生明顯的撞擊,速度較大;在第2秒(導(dǎo)葉轉(zhuǎn)過30°)時,活動導(dǎo)葉尾緣后已形成較為明顯的2個渦旋,水流在壓力面周圍產(chǎn)生撞擊和脫流,靠近槽道下壁面附近也有2個渦旋形成;在第3秒(導(dǎo)葉轉(zhuǎn)過45°)時,由于水流繞過活動導(dǎo)葉后的速度較大,槽道下游不斷有強(qiáng)渦旋形成發(fā)展;在第4秒(導(dǎo)葉轉(zhuǎn)過60°)時,水流繞過導(dǎo)葉的最大速度達(dá)到3.23 m/s,導(dǎo)葉后方強(qiáng)渦旋逐漸顯出卡門渦列形態(tài);在第5秒(導(dǎo)葉轉(zhuǎn)過75°)時,槽道內(nèi)導(dǎo)葉轉(zhuǎn)動形成的卡門渦列繼續(xù)向下游轉(zhuǎn)移和演化;在第6秒(導(dǎo)葉轉(zhuǎn)過90°)時,隨著導(dǎo)葉關(guān)閉動作完成在導(dǎo)葉后方形成明顯的卡門渦列,會誘發(fā)槽道內(nèi)導(dǎo)葉產(chǎn)生渦激振動。從表1可以看出,在導(dǎo)葉關(guān)閉的各個時刻卡門渦頻率大小和數(shù)變化不大,卡門渦頻率約為轉(zhuǎn)輪轉(zhuǎn)頻10 Hz的3/10,即約為轉(zhuǎn)頻的0.3倍,可能誘發(fā)低頻壓力脈動。當(dāng)卡門渦的頻率與導(dǎo)葉的固有頻率接近時就會發(fā)生共振破壞,危害是相當(dāng)嚴(yán)重的。
a. 槽道內(nèi)壓力分布
a. Pressure distributionsin vane-channel
表1 導(dǎo)葉一段直線關(guān)閉過程各時刻葉后卡門渦脫落頻率及斯特勞哈爾數(shù)
2.3 導(dǎo)葉關(guān)閉過程不同瞬時尾跡渦分析
活動導(dǎo)葉一段直線關(guān)閉過程各個典型時刻槽道內(nèi)尾跡渦量分布如圖5所示。在第1秒(導(dǎo)葉轉(zhuǎn)過15°)時,由于活動導(dǎo)葉轉(zhuǎn)動開始在導(dǎo)葉翼型前緣誘發(fā)產(chǎn)生較大的渦量,強(qiáng)渦旋附著在導(dǎo)葉壓力面附近,而導(dǎo)葉靠近尾緣負(fù)力面壁面附近也誘發(fā)形成小渦旋逐漸向下游傳播發(fā)展;在第2秒(導(dǎo)葉轉(zhuǎn)過30°)時,隨著導(dǎo)葉的轉(zhuǎn)動,導(dǎo)葉壓力面附近的強(qiáng)渦旋向下游轉(zhuǎn)移,導(dǎo)葉尾緣后小渦旋合并增強(qiáng)為較大的渦旋分布在導(dǎo)葉壓力面后方,而小強(qiáng)度渦旋已發(fā)展到3倍弦長之外靠近槽道下壁面處;在第3秒(導(dǎo)葉轉(zhuǎn)過45°)時,導(dǎo)葉壓力面附近的2個不對稱強(qiáng)渦旋已經(jīng)合并為更大的渦旋,導(dǎo)葉尾緣拖出一條弧形尾跡渦,1倍弦長之外也拖出2個強(qiáng)渦旋,而拖出的最遠(yuǎn)渦旋已接近下游出口處;在第4秒(導(dǎo)葉轉(zhuǎn)過60°)時,導(dǎo)葉轉(zhuǎn)過較大角度,導(dǎo)葉壓力面壁面附近形成貼體渦,導(dǎo)葉尾緣繼續(xù)向下游拖出強(qiáng)渦旋,下游后方的渦量場表現(xiàn)出明顯的不均勻和不規(guī)則性;在第5秒(導(dǎo)葉轉(zhuǎn)過75°)時,導(dǎo)葉前緣轉(zhuǎn)動在導(dǎo)葉壓力面附近形成一個小強(qiáng)度渦旋,導(dǎo)葉尾緣拖出6個明顯的強(qiáng)渦旋,槽道內(nèi)渦量場呈現(xiàn)出非定常周期性卡門渦列;在第6秒(導(dǎo)葉轉(zhuǎn)過90°)時,導(dǎo)葉前緣拖出條形尾跡渦而導(dǎo)葉尾緣形成較強(qiáng)的卡門渦列向下游發(fā)展,可能誘發(fā)槽道內(nèi)導(dǎo)葉產(chǎn)生渦激振動和嚴(yán)重噪聲。
2.4 導(dǎo)葉關(guān)閉過程升力系數(shù)和阻力系數(shù)變化分析
升力系數(shù)和阻力系數(shù)是描述繞流對導(dǎo)葉作用力的重要特征參數(shù)。在整個關(guān)閉過程中活動導(dǎo)葉的升力系數(shù)和阻力系數(shù)的變化曲線如圖6所示??梢钥闯觯陉P(guān)閉的第1秒活動導(dǎo)葉升力系數(shù)平緩下降,后5 s隨時間步長的增加時而增大時而減小,出現(xiàn)了渦激振動中“拍”現(xiàn)象,表現(xiàn)出調(diào)諧狀態(tài);活動導(dǎo)葉阻力系數(shù)在關(guān)閉過程中前1 s平緩上升,后5 s表現(xiàn)出不規(guī)則的周期性波動,整個時間歷程中基本呈現(xiàn)出非線性動力響應(yīng)特征。
a. 升力系數(shù)
a. Lift coefficient
水輪機(jī)導(dǎo)葉在關(guān)閉過程中進(jìn)口流場會受到上游固定導(dǎo)葉繞流后的波動影響,出口邊界還與其后的轉(zhuǎn)輪運(yùn)行工況及下游水位有關(guān)。由于會增加物理模型動網(wǎng)格計算量本文沒有考慮上述因素的影響,主要關(guān)注的是動邊界下活動導(dǎo)葉繞流后誘發(fā)的強(qiáng)瞬變流。活動導(dǎo)葉的動態(tài)調(diào)節(jié)運(yùn)動是產(chǎn)生水力瞬態(tài)過程的關(guān)鍵源頭,其向上在管道系統(tǒng)中誘發(fā)水擊波動,向下影響轉(zhuǎn)輪葉道中的暫態(tài)特性,可以說活動導(dǎo)葉運(yùn)動產(chǎn)生的動態(tài)繞流特性是耦合機(jī)組和管道系統(tǒng)的關(guān)鍵所在。目前尚鮮見這方面的研究報道,不但模型試驗開展困難而且數(shù)值實(shí)現(xiàn)也有相當(dāng)?shù)碾y度,因此本文模擬了按原型水輪機(jī)活動導(dǎo)葉尺寸建立在槽道中按線性規(guī)律關(guān)閉運(yùn)動時產(chǎn)生的動態(tài)繞流及其尾跡渦的分布特性,雖然與真機(jī)尚有一定差距,但對揭示活動導(dǎo)葉翼型的動態(tài)繞流特性任然是有意義的。
1)采用ALE非結(jié)構(gòu)動網(wǎng)格技術(shù)和大渦模擬Smargorinsky-Lilly亞格子應(yīng)力模式,建立單葉道功能模型并擴(kuò)展為槽道對某型號混流式水輪機(jī)活動導(dǎo)葉調(diào)節(jié)運(yùn)動的關(guān)閉過程,進(jìn)行了高雷諾數(shù)下二維瞬態(tài)湍流數(shù)值模擬研究。計算得到了在活動導(dǎo)葉一段直線關(guān)閉規(guī)律下槽道內(nèi)的壓力、速度和尾跡渦特性分布特征,分析了關(guān)閉過程中典型時刻流場水力特性的動態(tài)變化過程,結(jié)果發(fā)現(xiàn)隨著導(dǎo)葉關(guān)閉動作的完成葉后卡門渦逐漸脫落,流場與導(dǎo)葉間的流固耦合效應(yīng)進(jìn)一步加強(qiáng),卡門渦頻率約為水輪機(jī)轉(zhuǎn)輪轉(zhuǎn)頻的0.3倍,存在激發(fā)低頻壓力脈動的可能性,應(yīng)該引起足夠重視,合理控制導(dǎo)葉關(guān)閉規(guī)律。
2)利用LES-ALE混合計算模型對槽道內(nèi)導(dǎo)葉繞流的渦激振動進(jìn)行數(shù)值模擬是可行的,該方法可以較好地模擬高雷諾數(shù)下具有復(fù)雜幾何外形的運(yùn)動邊界引起的流場變化,為高雷諾數(shù)下水力機(jī)械瞬態(tài)強(qiáng)非線性流固耦合動力學(xué)問題的研究奠定了基礎(chǔ)。
[1] Sotiropoulos F, Yang Xiaolei. Immersed boundary methods for simulating fluid-structure interaction[J]. Progress in Aerospace Sciences, 2014, 65(5): 1-21.
[2] 張來平,鄧小剛,張涵信. 動網(wǎng)格生成技術(shù)及非定常計算方法進(jìn)展綜述[J].力學(xué)進(jìn)展,2010,40(4):424-447.
Zhang Laiping, Deng Xiaogang, Zhang Hanxin. Reviews of moving grid generation techniques and numerical methods for unsteady flow[J]. Advancesin Mechanics, 2010, 40(4): 424-447. (in Chinese with English abstract)
[3] 周璇,李水鄉(xiāng),孫樹立,等. 非結(jié)構(gòu)網(wǎng)格變形方法研究進(jìn)展[J]. 力學(xué)進(jìn)展,2011,41(5):547-561.
Zhou Xuan, Li Shuixiang,Sun Shuli, et al.Advances in the research on unstructured mesh deformation[J]. Advancesin Mechanics, 2011, 41(5): 547-561. (in Chinese with English abstract)
[4] 朱一西,陸志良,郭同慶. 多段翼型非定常地面效應(yīng)數(shù)值模擬[J].空氣動力學(xué)學(xué)報,2015,33(6):806-811.
Zhu Yixi, Lu Zhiliang, Guo Tongqing. Numerical simulation of multi-element airfoil in unsteady ground effect[J]. ActaAerodynamica Sinica, 2015, 33(6): 806-811. (in Chinese with English abstract)
[5] 張偉偉,徐楊,蔣躍文,等. 基于CFD方法的對拍撲翼推進(jìn)特性分析[J].空氣動力學(xué)學(xué)報,2014,32(4):446-452.
Zhang Weiwei, Xu Yang, Jiang Yuewen, et al. Analysis of propulsive performance for dual flapping airfoils using CFD method[J]. ActaAerodynamica Sinica, 2014, 32(4): 446-452. (in Chinese with English abstract )
[6] 張琛,李光永. 結(jié)構(gòu)和彈簧參數(shù)對壓力調(diào)節(jié)器性能影響的數(shù)值模擬分析[J].農(nóng)業(yè)工程學(xué)報,2016,32(11):117-123.
Zhang Chen, Li Guangyong.Simulation analysis on effect of geometric and spring parameters on performance of pressure regulator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 117-123. (in Chinese with English abstract)
[7] 黃劍峰,張立翔,王文全,等. 基于動網(wǎng)格的活動導(dǎo)葉流道內(nèi)湍流場數(shù)值模擬[J].排灌機(jī)械工程學(xué)報,2010,28(2):140-143.
Huang Jianfeng, Zhang Lixiang, Wang Wenquan, et al.Numerical simulation of turbulent flow in vane passage based on dynamical mesh technology[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(2): 140-143. (in Chinese with English abstract)
[8] Guardone A, Isola D, Quaranta G. Arbitrary Lagrangian Eulerian formulation for two-dimensional flows using dynamic meshes with edge swapping[J]. Journal of Computational Physics, 2011, 230(20): 7706-7722.
[9] Degand C, Farhat C. A three-dimensional torsional spring analogy method for unstructured dynamic meshes[J]. Computers and Structures, 2002, 80: 305-316.
[10] Mavriplis D J, Yang Z. Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes[J]. Journal of Computational Physics, 2006, 213(2): 557-573.
[11] Malcevic I, Ghattas O. Dynamic-mesh finite element method for Lagrangian computational fluid dynamics[J]. Finite Elements in Analysis & Design, 2002, 38(10): 965-982.
[12] Li Y, Kong S C. Integration of parallel computation and dynamic mesh refinement for transient spray simulation[J]. Computer Methods in Applied Mechanics & Engineering, 2009, 198: 1596-1608.
[13] Bottasso C L, Detomi D, Serra R. The ball-vertex method: a new simple spring analogy method for unstructured dynamic meshes[J]. Computer Methods in Applied Mechanics & Engineering, 2005, 194(39): 4244-4264.
[14] Oh W S, Kim J S, Kwon O J. Time-accurate Navier–Stokes simulation of vortex convection using an unstructured dynamic mesh procedure[J]. Computers & Fluids, 2003,
32(5): 727-749.
[15] Le D V, Khoo B C, Lim K M. An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains[J]. Computer Methods in Applied Mechanics & Engineering, 2008, 197: 2119-2130.
[16] Margnat F, Morinière V. Behaviour of an immersed boundary method in unsteady flows over sharp-edged bodies[J]. Computers & Fluids, 2009, 38(6):1065-1079.
[17] Devendran D, Peskin C S. An immersed boundary energy-based method for incompressible viscoelasticity[J]. Journal of Computational Physics, 2012, 231(14):4613-4642.
[18] Ilinca F, Hétu J F. Numerical simulation of fluid–solid interaction using an immersed boundary finite element method[J]. Computers & Fluids, 2012, 59(10):31-43.
[19] Yang J, Stern F. A simple and efficient direct forcing immersed boundary framework for fluid–structure interactions[J]. Journal of Computational Physics, 2012, 231(15):5029-5061.
[20] Luo H, Dai H, Paulo JSA. Ferreira de Sousa, et al. On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries[J]. Computers & Fluids, 2012, 56(6):61-76.
[21] Lee J, You D. An implicit ghost-cell immersed boundary method for simulations of moving body problems with control of spurious force oscillations[J]. Journal of Computational Physics, 2013, 233(1): 295-314.
[22] 祝志文,鄧燕華,陳魏. 圓柱高Re數(shù)繞流特性的大渦模擬研究[J].振動工程學(xué)報,2014,27(1):51-59.
Zhu Zhiwen, Deng Yanhua, Chen Wei. Large eddy simulation of flow around circular cylinder under high Reynolds number[J]. Journal of Vibration Engineering, 2014, 27(1): 51-59. (in Chinese with English abstract)
[23] 董振營,周本釗,孫志強(qiáng),等. 矩形管道內(nèi)低雷諾數(shù)圓柱繞流尾跡演化特性[J].中南大學(xué)學(xué)報:自然科學(xué)版,2016,47(1):273-278.
Dong Zhenying, Zhou Benzhao, Sun Zhiqiang, et al. Evolution of circular cylinder wake at low Reynolds number in rectangular channels[J]. Journal of Central South University: Science and Technology, 2016, 47(1): 273-278. (in Chinese with English abstract )
[24] 張偉,戴玉滿. 低雷諾數(shù)下等邊布置三方柱繞流的數(shù)值研究[J].機(jī)械工程學(xué)報,2015,51(12):185-191.
Zhang Wei, Dai Yuman. Numerical study of flow around three equispaced square cylinders at low reynolds number[J]. Journal of Mechanical Engineering, 2015, 51(12): 185-191. (in Chinese with English abstract)
[25] 水慶象,王大國,王偉. 帶橫隔板圓柱繞流特性數(shù)值模擬[J].水科學(xué)進(jìn)展,2016,27(4):586-593.
Shui Qingxiang, Wang Daguo, Wang Wei. Numerical simulation of the characteristics of flow past circular cylinder with splitter plate[J]. Advances inWater Science, 2016, 27(4): 586-593. (in Chinese with English abstract )
[26] 趙萌,毛軍,郗艷紅. 高雷諾數(shù)下有限長圓柱繞流阻力特性研究[J].機(jī)械工程學(xué)報,2015,51(22):176-182.
Zhao Meng, Mao Jun, Xi Yanhong. Research on drag characteristic of flow around finite circular cylinder at high reynolds numbers[J]. Journal of Mechanical Engineering, 2015, 51(22): 176-182. (in Chinese with English abstract)
[27] 王福軍. 流體機(jī)械旋轉(zhuǎn)湍流計算模型研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(2):1-14.
Wang Fujun. Research progress of computational model for rotating turbulent flow in fluid machinery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 1-14. (in Chinese with English abstract )
[28] 江帆,黃鵬. Fluent高級應(yīng)用與實(shí)例分析[M]. 北京:清華大學(xué)出版社,2008.
[29] 張阿漫,戴紹仕. 流固耦合動力學(xué)[M]. 北京:國防工業(yè)出版社,2011.
[30] 王玲花. 水輪發(fā)電機(jī)組振動及分析[M]. 鄭州:黃河水利出版社,2011.
Analysis on hydraulic characteristics of dynamic flow around vane in hydro-turbine channel using large eddy simulation
Huang Jianfeng1, Zhang Lixiang2, Yang Song1, Yao Ji2
(1.,,650201,; 2.,,650500,)
Numerical simulation of turbulent flow around a vane in the channel with guide vane closure based on the two-dimensional transient N-S equation was conducted with the large eddy simulation (LES) technique on Smargorinsky-Lilly model and Arbitrary Lagrange-Euler (ALE) dynamic mesh technology. In order to explore nonlinear mechanics of fluid-structure interaction between the fluid and guide vane which produced strong transient flow in the adjustment process of hydro-turbine, the Non-iterative Time Advancement (NITA) scheme was used in such a unsteady flow problem. The Reynolds number in calculation condition corresponding to chord length based on guide vane was 120 421. The model mesh was divided into triangular cell with strong adaptability. The number of mesh nodes was about 90 366, and the number of mesh elements was about 1 793 528. The finite volume method was used to disperse the LES-ALE form of transient N-S equation. The discretization of the convection term was based on the central difference scheme. The convergence of each time step in NITA scheme did not require an outer iteration. Compared with the original Iterative Time Advancement (ITA) scheme, the computation time of NITA scheme was reduced to 1/3 or 1/2. The coupling of pressure and velocity was solved by using fractional-step format.The format could save nearly 20% time compared with the PISO (pressure-implicit with splitting of operators)format in each time step. The velocity inlet and the free flow outlet were adopted in boundary condition. The non-slip boundary condition was used in the wall. The straight line of the guide vane closure law was controlled by the UDF (user defined function) method. The initial solution for unsteady calculation was used to the steady flow field by the standard-turbulence model.The dynamic mesh model was used to simulate the transient process of a vane in the channel with guide vane closure. The dynamic mesh model was updated by the spring smoothing method and local remeshing method in each time step. The time step was 0.001 s. The time for a straight line closure was 6 s. The hydrodynamic characteristics and vortex induced vibration of the flow around a vane in the channel were analyzed. The fields of pressure, velocity and vorticity in the channel showed obviously unsteady characteristics. The results showed that the Karman vortex frequency was about 0.3 times of the runner rotating frequency. It was easily induced by low-frequency pressure pulsation. With the end closure of time the wake vortex morphology in the channel showed an obvious Karman vortex shedding process. The lift and drag coefficients of the guide vanes in the closing process showed nonlinear dynamic response characteristics. The formation of the low-frequency pressure oscillation was related to the Karman vortex in the tail of the vane with the closing action of the guide vanes. The nonlinear flow induced vibration by Karman vortex was the main factor that affected the hydraulic stability of hydro-turbine and the hydraulic resonance of upstream pressure conduit. The method can be used to effectively simulate the transient nonlinear fluid-structure interaction problem of hydraulic machinery.
computer simulation; models; vibrations; hydro-turbine; vane; hydraulic characteristics; dynamic mesh; large eddy simulation
10.11975/j.issn.1002-6819.2017.04.018
TK733.1
A
1002-6819(2017)-04-0125-06
2016-05-24
2017-01-19
國家自然科學(xué)基金項目(51541913,51279071);云南農(nóng)業(yè)大學(xué)自然科學(xué)青年基金項目(2015ZR17)
黃劍峰,男,云南楚雄人,副教授,博士,主要從事水力機(jī)械內(nèi)部流動研究,昆明 云南農(nóng)業(yè)大學(xué)水利學(xué)院,650201。Email:hjf30@126.com
黃劍峰,張立翔,楊 松,姚 激. 水輪機(jī)槽道內(nèi)導(dǎo)葉動態(tài)繞流水力特性大渦模擬分析[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(4):125-130. doi:10.11975/j.issn.1002-6819.2017.04.018 http://www.tcsae.org
Huang Jianfeng, Zhang Lixiang, Yang Song, Yao Ji. Analysis on hydraulic characteristics of dynamic flow around vane in hydro-turbine channel using large eddy simulation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 125-130. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.04.018 http://www.tcsae.org