国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一類含有三角函數(shù)和絕對值的函數(shù)求導(dǎo)問題

2017-03-14 10:43王志高
科技視界 2016年27期
關(guān)鍵詞:三角函數(shù)

王志高

【摘 要】介紹了了一類特殊表達(dá)式中的含三角函數(shù)和絕對值的函數(shù)求導(dǎo)問題,給出了該類問題可導(dǎo)的充要條件。

【關(guān)鍵詞】求導(dǎo);三角函數(shù);絕對值;充要條件;導(dǎo)數(shù)定義

求導(dǎo)問題是微積分中的一個重要內(nèi)容,在導(dǎo)數(shù)概念的基礎(chǔ)上推演出了一系列的求導(dǎo)的公式和方法[1-2]。但是分段函數(shù)的求導(dǎo)一直是比較麻煩的問題,尤其是含有三角函數(shù)和絕對值的函數(shù)求導(dǎo)問題更是讓學(xué)生們困惑。本文就一類特殊的含三角函數(shù)和絕對值的求導(dǎo)問題展開討論。

命題1:函數(shù)f(x)可導(dǎo),函數(shù)F(x)=f(x)(1+|sinx|),則f(0)=0是F(x)在[-1,1]內(nèi)可導(dǎo)的充要條件。

證明:

所以F(x)在[-1,1]內(nèi)可導(dǎo)等價于F(x)在0點可導(dǎo),即F'(0)=F'(0),等價于f'(0)+f(0)=f'(0)-f(0),即f(0)=0。

命題2:函數(shù)f(x)可導(dǎo),函數(shù)F(x)=f(x)(1+|sinx|),則f(0)=0不是F(x)可導(dǎo)的充要條件。

證明:首先由已知條件顯然有函數(shù)f(x)在整個實數(shù)集上可導(dǎo)、連續(xù)。

其次根據(jù)函數(shù)sinx的性質(zhì)可以知道

在實數(shù)集上可導(dǎo)的充要條件。

進(jìn)一步,可以推廣到更為復(fù)雜的函數(shù)表達(dá)式里面含有三角函數(shù)和絕對值的求導(dǎo)問題,該類問題的核心是在分段點上回到導(dǎo)數(shù)的定義去求解,并注意把握三角函數(shù)自身的一些屬性對求導(dǎo)的影響。

【參考文獻(xiàn)】

[1]趙樹嫄.微積分(第三版)[M].北京:中國人民大學(xué)出版社,2007.

[2]同濟(jì)大學(xué)數(shù)學(xué)系,高等數(shù)學(xué)(第六版上冊)[M].上海:同濟(jì)大學(xué)出版社,2007.

[責(zé)任編輯:朱麗娜]

猜你喜歡
三角函數(shù)
高中數(shù)學(xué)三角函數(shù)的解題技巧
高中數(shù)學(xué)教學(xué)方法略談
略談高中數(shù)學(xué)三角函數(shù)學(xué)習(xí)
三角函數(shù)最值問題
三角函數(shù)在物理中的應(yīng)用賞析
三角函數(shù)求最值問題
白山市| 湄潭县| 曲阳县| 扎兰屯市| 甘肃省| 浮梁县| 大同市| 伽师县| 汝阳县| 乌拉特后旗| 朔州市| 沂水县| 华坪县| 石景山区| 无为县| 威远县| 临澧县| 临高县| 罗山县| 中牟县| 涟水县| 成安县| 贵州省| 陇川县| 九龙县| 永嘉县| 东丰县| 金川县| 嘉兴市| 大连市| 都江堰市| 政和县| 龙里县| 阿拉善左旗| 巧家县| 井冈山市| 哈巴河县| 义乌市| 泰安市| 江永县| 涟源市|