王 理,施 維,薛 均,潘璀然,姚 敏,姚登福
(1 南通大學醫(yī)學院,江蘇 南通 226001; 2 南通大學附屬醫(yī)院,江蘇 南通 226001)
缺氧誘導因子1α異常表達對肝細胞癌血管生成的調控作用
王 理1,施 維1,薛 均1,潘璀然1,姚 敏1,姚登福2
(1 南通大學醫(yī)學院,江蘇 南通 226001; 2 南通大學附屬醫(yī)院,江蘇 南通 226001)
肝細胞癌是我國常見惡性腫瘤之一,伴有血供豐富,傳統(tǒng)療法易導致耐受,患者預后極差。肝組織缺氧誘導因子(HIF)1α與百余種下游靶基因的缺氧反應元件聯(lián)合,參與血管新生、糖代謝等過程,從而抑制癌細胞分化和凋亡,促進癌細胞增殖。HIF-1α的高表達,以及對血管生成相關因子的調控,與肝癌患者放、化療耐受,易浸潤、轉移及預后相關。綜述了肝癌細胞HIF-1α異常表達對血管生成相關因子的調控作用和相互關系。
癌,肝細胞; 缺氧誘導因子1; 血管內皮生長因子類; 血管生成素2; 綜述
肝細胞癌(HCC)是我國長江口地區(qū)較常見的惡性腫瘤之一,伴有血供豐富,傳統(tǒng)療法耐受,預后極差。大多數(shù)患者肝癌的發(fā)生、發(fā)展伴有HBV和HCV的慢性持續(xù)性感染及肝硬化背景[1-2]。在肝癌進展過程中,肝細胞被嚴重破壞,瘤體增大,肝組織含氧量嚴重不足,造成嚴重缺氧環(huán)境,從而誘發(fā)位于胞漿的缺氧誘導因子(hypoxia inducible factor,HIF)1α活化,進入胞核與HIF-β形成異二聚體化,活化的HIF-1α與下游百余種靶基因的缺氧反應元件(hypoxia-response element,HRE)或核心序列(5′-RCG TG-3′)結合,調節(jié)癌組織糖代謝,促進癌細胞分化、增殖,同時抑制細胞凋亡,并使癌細胞對放、化療產生耐受[3]。在癌細胞生長過程中,營養(yǎng)物質和氧氣迅速耗竭,誘導大量血管新生,以獲得足夠的營養(yǎng)物質和氧氣供應。HIF-1α所介導的血管內皮生長因子(VEGF)及血管生成素(Ang)2為主要血管相關因子。在缺氧狀態(tài)下,肝組織HIF-1α過表達刺激血管形成,促進癌細胞生長或加速轉移[4-5]。本文綜述了HIF-1α基因活化、異常表達對VEGF和Ang-2的調控作用及相互關系。
肝癌發(fā)生的主要危險因素仍是HBV和(或)HCV的慢性持續(xù)性感染所引起的肝臟疾病[1]。雖然目前治療手段在不斷進步,但大部分患者仍在確診后1年內因復發(fā)或轉移死亡。新血管生成、高強度代謝及低氧是肝癌的顯著特征,且與預后及放、化療抵抗有關[6-7]。
1.1 HBV感染 HBV感染導致嚴重的持續(xù)進展性肝臟疾病,包括脂肪肝、肝纖維化、肝硬化和肝癌[8-9]。HBV感染可穩(wěn)定肝組織HIF-1α,造成假低氧現(xiàn)象;炎癥反應引起代謝供需比例變化進而導致局部組織低氧,程序性啟動HIF轉錄,調節(jié)促炎和抗炎反應;HBV復制引起慢性感染,HBV編碼蛋白X(HBx)通過與核轉錄因子相互作用、調節(jié)胞質信號轉導通路(如RAS/RAF/MAP)激活具有轉錄活性的多功能蛋白,使糖酵解及缺氧誘導的轉錄增強,刺激癌細胞增殖;HIF-1α的表達和轉錄活性的增加導致更易發(fā)生基因突變,產生致癌性,或促進癌細胞侵襲和擴散,與肝癌的發(fā)生、進展密切相關[10-11]。
1.2 HCV感染 對HCV感染的肝細胞進行研究或對丙型肝炎患者的肝活組織檢查,均證實HCV感染會上調HIF-1α表達,參與HCC的發(fā)生、發(fā)展[12]。細胞水平研究發(fā)現(xiàn),肝癌患者感染的HCV核心蛋白轉染肝癌HepG2細胞株后,可激活體內的核因子-κB(NF-κB),誘發(fā)TGFα加速轉錄,活化MAPK/ERK通路刺激細胞增殖。正常氧含量下HIF-1α穩(wěn)定,低氧促進HCV復制,提高HIF依賴性VEGF轉錄活性,使肝細胞去極化。VEGF是明確的HIF-1α調節(jié)的基因,在促進病毒復制周期中發(fā)揮作用。HCV感染細胞中HIF-1α活性改變并影響代謝,線粒體氧化磷酸化減少,糖酵解酶表達增加。HCV活化NF-κB、STAT3、PI3K/Akt和P42/P44絲裂酶原蛋白激酶,穩(wěn)定HIF-1α,促進血管生成因子釋放進入循環(huán)血。HCV感染陽性的肝癌患者其VEGF、CD34和TGFβ2表達均顯著高于未感染HCV的肝癌患者。另外,肝癌患者的HCV核心蛋白還可激活E2F1、ASK1、HIF-1α、JNK/P38、AP-1、ATF-2、ERK和CREB等信號通路中的關鍵信號分子,誘發(fā)或激活TGF、VEGF和CD34轉錄,促進新血管生成[13-15]。
2.1 肝細胞惡性轉化 癌細胞難以調控生長,迅速增多的癌細胞致耗氧量增加,易造成瘤體內缺氧,這是肝癌最主要的特征。HBV和(或)HCV的慢性持續(xù)性感染、炎癥等致癌基因激活或抑癌基因失活,在氧濃度低下的微環(huán)境中,HIF-1α轉錄活性增強。對肝細胞發(fā)生惡性轉化的動態(tài)模型觀察發(fā)現(xiàn),在肝細胞發(fā)生變性階段,HIF-1α mRNA轉錄和HIF-1α過表達,在肝細胞發(fā)生變性、癌前期病變和癌變的不同發(fā)展階段,HIF-1α基因及蛋白呈動態(tài)的進行性表達,且循環(huán)血HIF-1α表達變化與肝組織平行,整個過程中HIF-1α基因序列與GenBank源序列一致。肝細胞惡性轉化過程中,HIF-1α mRNA轉錄和HIF-1α蛋白表達表現(xiàn)為癌前病變和癌形成階段達到高峰[16]。肝細胞中Ang-2高度依賴于高濃度VEGF的存在時,發(fā)揮血管生成作用,可使毛細血管改變、基底膜發(fā)生重塑,致使內皮細胞增殖、遷移及新血管生成,穩(wěn)定性發(fā)生衰減,對血管新生刺激增強,加速瘤體新生血管生成,以獲取更多氧氣供給,利于腫瘤生長;反之,Ang-2則誘導內皮細胞凋亡,加速血管退化[17-18]。上述研究表明,在肝細胞惡性轉化過程中,HIF-1α表達與VEGF、Ang-2表達呈正相關。
2.2 HCC微環(huán)境 HCC微環(huán)境包括腫瘤細胞和間質細胞,如成血管細胞、免疫細胞和腫瘤相關成纖維細胞。肝癌細胞分泌溶血磷脂酸,活化癌周成纖維細胞,使其成為腫瘤相關成纖維細胞。HCC鼠模型中抑制溶血磷脂酸可阻斷肌成纖維細胞分化轉移和腫瘤發(fā)展,癌細胞溶血磷脂酸激活PI3K并穩(wěn)定HIF-1α表達[19-20]。肝癌細胞可通過羥基化、乙?;?、巰基化、泛素化或磷酸化等多種機制參與調節(jié)HIF-1α轉錄,瘤體缺氧微環(huán)境促使癌細胞的增殖、浸潤、遷移等,適應缺氧微環(huán)境,調控并依賴HIF-1α表達[19]。低氧可通過HIF-1α激活Rab11家族相互作用蛋白(Rab11- family interacting protein,Rab11-FIP)4啟動子,上調Rab11-FIP4表達能顯著增強肝癌細胞遷移能力和侵襲性,在活體研究中沉默Rab11-FIP4可抑制HCC轉移。HCC轉移和預后差關系密切,HCC組織中Rab11-FIP4表達水平顯著提高,與HIF-1α呈顯著正相關,兩者結合可更好地判斷HCC患者預后。已證實Rab11-FIP4是HIF-1α靶基因之一,提示低氧微環(huán)境促新血管生成是HCC侵襲和轉移的推動力[21-22]。
2.3 HIF-1α與良性肝病 從體健、慢性病毒性肝炎、肝硬化發(fā)展至肝癌的過程中,循環(huán)血中VEGF和Ang-2的表達與HIF-1α呈平行改變,進行性逐漸升高;具體表現(xiàn)為肝癌患者血VEGF和Ang-2異常表達,兩者水平顯著高于各良性肝病組和健康對照組,HIF-1α與VEGF呈正相關 (r=0.937,P<0.001),與Ang-2亦呈正相關(r=0.933,P<0.001),證實HIF-1α與血管生成密切相關[23]。三者表達均高于一定界值,肝癌預后差。分析HIF-1α水平發(fā)現(xiàn),其與性別、年齡、AFP濃度和HBV感染與否未見明顯相關,但與瘤體大小或是否存在肝外轉移等相關;分析肝癌患者血清HIF-1α與AFP的表達水平對肝癌診斷的受試者工作特征曲線,顯示AFP診斷肝癌的受試者工作特征曲線下面積為0.85,HIF-1α為0.91,提示HIF-1α過表達可作為肝癌診斷的血清學標志物;血清HIF-1α表達與AFP濃度無明顯相關性,AFP陽性良性肝病患者HIF-1α表達可不高,AFP陰性肝癌患者HIF-1α表達可很高,故二者可作為獨立因素聯(lián)合用于肝癌的疾病進展及預后監(jiān)測[23]。上述研究資料顯示良性肝病患者血HIF-1α、VEGF和Ang-2水平均較低,而肝癌患者的3項指標均明顯異常,有助于良、惡性肝病的診斷與鑒別。
3.1 HIF-1α組織來源 外周血中 HIF-1α異常升高系來源于癌組織,肝癌組織及其周圍組織中HIF-1α呈棕黃色顆粒狀,主要位于細胞漿,少見于細胞核。肝癌組織中HIF-1α表達均勻,肝癌周圍近癌灶邊緣組織條索及中央靜脈周圍表達顯著,肝癌組織邊緣部分表達明顯高于癌組織的中央?yún)^(qū)域,可能因癌組織中心缺氧且存在較多壞死組織所致,癌周圍組織增生活躍,促進新血管生成。臨床病理學特征顯示,HIF-1α表達與肝癌組織的分化程度呈負相關,HIF-1α陽性率與瘤體大小呈正相關,與HBV感染、腫瘤數(shù)目之間未見明顯相關。HIF-1α是HIF-1分子的特異性活性調節(jié)亞單位,有氧環(huán)境下,HIF-1α處于非活化并降解狀態(tài),在微環(huán)境缺氧條件下,HIF-1α活化并異常表達。肝組織HIF-1α表達,加速了VEGF基因轉錄和維持VEGF mRNA的穩(wěn)定調節(jié),并誘導肝癌血管新生。肝癌組織不同部位VEGF表達水平不同,壞死區(qū)附近表達增高,且隨著缺氧程度加重而異常表達。肝癌組織中HIF-1α與VEGF表達呈一致性改變,并且VEGF依賴于HIF-1α活化,提示HIF-1α與VEGF可反映肝癌生物學行為,是預測肝癌發(fā)生浸潤、轉移的重要指標[24-25]。
3.2 HIF-1α轉錄表達與肝癌預后 肝癌早期缺乏特異性癥狀,除普查外難以發(fā)現(xiàn),待出現(xiàn)癥狀后,多屬中晚期,90%患者失去了手術切除的可能。肝癌對化療表現(xiàn)為原發(fā)性耐藥,化療在肝癌術后的輔助治療中不能提高療效,在晚期肝癌的姑息治療中緩解率較低。臨床上,晚期不可手術HCC患者采用導管動脈栓塞/經(jīng)肝動脈化療栓塞術治療,可阻斷肝癌組織的血液供給,從而引起組織壞死和萎縮,同時也因栓塞血管造成了組織缺氧,促癌組織中HIF-1α活化、VEGF等表達加速,導致癌周組織新血管生成建立側支循環(huán),便于癌細胞發(fā)生遷移,殘余癌組織迅速生長,最終使肝癌的治療效果欠佳[3,26]。介入導向的基因療法已在某些腫瘤的治療中顯示出較好效果,減少了不良反應。研究[27]顯示HIF-1α高表達的HCC患者,其總體生存率和無病生存率均較低表達者明顯降低,且靜脈及淋巴結轉移率較高,非癌組織HIF-1α過表達是HCC復發(fā)的高危因素。癌組織缺氧誘發(fā)HIF-1α異常轉錄,促進肝癌新血管生成,對傳統(tǒng)療法耐受[23]。提示HIF-1α基因高轉錄水平與肝癌預后密切相關。
4.1 微小RNA(miRNA) 體內廣泛存在由20~25個核苷酸組成的非編碼miRNAs,在轉錄后水平調節(jié)基因表達,參與胚胎發(fā)育、細胞增殖與分化、凋亡等生命過程[28],在新血管生成、干細胞分化、浸潤及轉移等過程中發(fā)揮重要作用。肝癌組織發(fā)生缺氧,除經(jīng)HIF-1α介導的經(jīng)典途徑促進HCC進展,也可作用于缺氧調節(jié)的多種小分子的miRNAs,促進肝癌的新血管生成、發(fā)揮糖酵解作用、導致DNA損傷、抗凋亡等靶向效應。對肝癌組織及血miRNA表達譜的相關研究,大多分析miRNA異常與肝癌臨床病理學特征,并未涉及miRNA表達與肝癌致病因素間的相互關系[29]。循環(huán)血miRNA穩(wěn)定,不易被RNA酶消化,不受pH、凍融和儲存等影響,現(xiàn)有1000多種miRNAs倍受臨床關注。肝miRNA為重要的生物調節(jié)劑,而在轉錄后水平上如何調控肝癌新血管生成尚待進一步探究。
在肝組織缺氧狀態(tài)下細胞HIF-1α可上調或下調多種miRNAs,如上調miRNA-155、miRNA-21等[29],下調miRNA-122等;肝miRNA-21和miRNA-155的作用機制可通過下調PTEN和C/EBPβ表達,促肝癌形成和發(fā)展;下調miRNA-26促進相關炎癥介質NF-κB信號通路活化,使下游多種相關基因加速表達,促肝細胞轉化及HCC形成;miRNA-122可敲除靶基因ADAM-17,抑制血管生成、轉移和侵襲等[4,30-31]。上述研究表明肝癌組織缺氧,可調節(jié)miRNA促進肝癌的新血管生成,發(fā)揮生物學功能。
4.2 信號通路 肝細胞缺氧,核內HIF-1α積聚,誘發(fā)肝癌形成。阻斷HIF-1α激活信號通路,可從源頭阻斷促進血管生成、葡萄糖轉運和調節(jié)糖代謝等百余種下游靶基因被激活,削弱腫瘤細胞適應性調節(jié)能力,不能為癌細胞生長提供必需能量需求,導致增殖減慢和凋亡數(shù)目增多,增強癌細胞對化療藥物敏感性,抑制癌細胞轉移[11,19]。肝細胞惡性轉化、肝癌的發(fā)生與進展均與多種信號通路密切相關,如PI3K/Akt/mTOR/4E結合蛋白、Ras/Raf/MEK1/ERK等通路,調節(jié)HIF-1α表達。HIF-1α上調FoxM1表達,降低核內p21,升高cyclinB1和cyclinD1,參與肝癌細胞增生和抵抗凋亡。HCC患者p28過表達,可激活PI3K/Akt/HIF-1途徑,促使抑癌蛋白TWIST1、VEGF和MMP2過表達,誘導細胞發(fā)生上皮間質變及血管新生,加速HCC侵襲和轉移[30-32]。上述研究提示,多種信號通路可調控HIF-1α表達,而穩(wěn)定的HIF-1α活化,可上調VEGF誘導肝癌血管新生,利于癌細胞侵襲與轉移。
5.1 細胞水平研究 針對肝癌HIF-1α高表達或HRE為靶點的基因治療,可作為肝癌靶向治療的輔助手段。在mRNA和蛋白水平上,下調HIF-1α及靶基因VEGF表達,可發(fā)揮抗肝癌血管生成效應[33-34]。干預HIF-1α活化后,隨時間延長,G1期細胞明顯增多,S期細胞顯著減少,阻滯細胞于G1/S期,且HepG2細胞凋亡率逐漸增加,抑制細胞增殖;沉默HIF-1α可抑制新血管生成,并誘導抗血管新生因子凝血酶敏感素1表達等,顯著抑制血管新生,阻斷腫瘤進展,抑制轉移。靶向HIF-1α不僅阻斷HIF-1α表達,還抑制其轉錄活性;培養(yǎng)液VEGF、Ang-2表達隨此變化而遞減,故特異性沉默HIF-1α可明顯抑制血管新生[35-36]。下調HIF-1α對VEGF的抑制強于Ang-2,明顯影響下游基因及蛋白表達[37]。干擾肝癌組織中HIF-1α表達,使bcl-2和bcl-xl表達下調,抗凋亡能力減弱,靶向HIF-1α基因治療HCC,有助于抑制肝癌細胞增殖、改善化療藥物敏感性及影響下游血管生成相關基因。
5.2 體內研究 大部分肝癌發(fā)現(xiàn)時已屬中晚期,無法手術切除。放、化療和血管阻斷劑等會引起腫瘤低氧,HIF-1α調節(jié)VEGF生成,與抗VEGF抑制劑作用及腫瘤侵襲性有關。HIF-1α介導VEGF mRNA和蛋白上調;VEGF mRNA 3′非翻譯區(qū)富含腺核苷酸-鳥核苷酸,與RNA結合蛋白親和力高,缺氧時該蛋白高表達,以增加VEGF mRNA穩(wěn)定性。以腺病毒介導的HIF-1α特異的小發(fā)夾RNA(shRNA)轉染人外周血祖細胞,可顯著下調HIF-1α及VEGF轉錄[32,38]。針對HIF-1α基因轉錄的HIF-1α siRNA可消除缺氧刺激下肝癌Hep3B細胞的遷移能力。同樣對VEGF特異干擾的VEGF siRNA可下調Ang-2、單核細胞化學吸引蛋白、TGFβ1、IL-6和IL-8表達,而特異性HIF-1α siRNA可下調VEGF、Ang和TGFβ1表達,上調單核細胞趨化因子1、IL-6和IL-8表達,聯(lián)合應用可有效抑制肝癌新血管生成。此外,癌組織HIF-1α異常表達,可誘導環(huán)氧化酶活化。已活化的環(huán)氧化酶2、前列腺素等,均通過除VEGF和Ang-2以外的堿性成纖維細胞生長因子、胰島素樣生長因子、表皮生長因子、TGFβ和血小板源性生長因子等調節(jié)肝癌的新血管生成[39-40]。
肝癌發(fā)病率高,進展快,早期發(fā)現(xiàn)難,易產生多藥耐藥和復發(fā)轉移,治療難度大,且預后差,是嚴重威脅人類健康的常見惡性腫瘤,亟待探索新的診治方法[41]。隨肝癌瘤體增大,在癌組織氧耗竭狀態(tài)下HIF-1α活化,調控下游靶基因及VEGF和Ang-2表達,促使肝癌新血管形成,利于癌細胞遷移或轉移。HIF-1α還可經(jīng)其他途徑促進血管新生,如誘導纖溶酶原激活物抑制因子1發(fā)揮促血管新生作用,使微血管密度、VEGF與HIF-1α同步增加;HIF-1α調節(jié)共轉錄反應使細胞適應低氧,與特定DNA序列如靶基因上HRE結合,調節(jié)多種信號分子表達。可見HIF-1α異常表達與HCC的形成、發(fā)展、轉移及產生耐藥密切相關[42-43]。
[1] BRUIX J,REIG M,SHERMAN M.Evidence-based diagnosis,staging,and treatment of patients with hepatocellular carcinoma[J].Gastroenterology,2016,150(4):835- 853.
[2] CHEN W,ZHENG R,BAADE PD,et al.Cancer statistics in China,2015[J].CA cancer J Clin,2016,66(2):115-132.
[3] CHOW AK,YAU TC,NG L,et al.A preclinical study on the combination therapy of everolimus and transarterial chemoembolization in hepatocellular carcinoma[J].Am J Cancer Res,2015,5(8):2376-2386.
[4] XUE TM,TAO LD,ZHANG M,et al.Clinicopathological significance of microRNA-20b expression in hepatocellular carcinoma and regulation of HIF-1α and VEGF effect on cell biological behaviour[J].Dis Markers,2015,2015:325176.
[5] LEWANDOWSKI RJ,ANDREOLI JM,HICKEY R,et al.Angiogenic response following radioembolization:results from a randomized pilot study of yttrium-90 with or without sorafenib[J].J Vasc Interv Radiol,2016,27(9):1329-1336.
[6] XI S,PENG Y,MINUK GY,et al.The combination effects of Shen-Ling-Bai-Zhu on promoting apoptosis of transplanted H22 hepatocellular carcinoma in mice receiving chemotherapy[J].J Ethnopharmacol,2016,190(1):1-12.
[7] BUPATHI M,KASEB A,JANKU F.Angiopoietin 2 as a therapeutic target in hepatocellular carcinoma treatment:current perspectives[J].Onco Targets Ther,2014,7:1927-1932.
[9] HE YF,WANG CQ,YU Y,et al.Tie2-expressing monocytes are associated with identification and prognoses of hepatitis B virus related hepatocellular carcinoma after resection[J].PLoS One,2015,10(11):e0143657.
[10] LU Y,SUI J,LIU Y,et al.Association between hypoxia-inducible factor-1α gene polymorphisms and risk of chronic hepatitis B and hepatitis B virus-related liver cirrhosis in a Chinese population:a retrospective case-control study[J].Gene,2015,564(1):96-100.
[11] ZHU M,GUO J,LI W,et al.Hepatitis B virus X protein induces expression of alpha-fetoprotein and activates PI3K/mTOR signaling pathway in liver cells[J].Oncotarget,2015,6(14):12196-12208.
[12] VASSILAKI N,KALLIAMPAKOU KI,KOTTA-LOIZOU I,et al.Low oxygen tension enhances hepatitis C virus replication[J].J Virol,2013,87(5):2935-2948.
[13] WILSON GK,BRIMACOMBE CL,ROWE IA,et al.A dual role for hypoxia inducible factor-1α in the hepatitis C virus lifecycle and hepatoma migration[J].J Hepatol,2012,56(4):803-809.
[14] LEE SH,CHUNG YH,KIM JA,et al.Single nucleotide polymorphisms associated with metastatic tumour antigen 1 overexpression in patients with hepatocellular carcinoma[J].Liver Int,2012,32(3):457-466.
[15] NASIMUZZAMAN M,WARIS G,MIKOLN D,et al.Hepatitis C virus stabilizes hypoxia-inducible factor 1alpha and stimulates the synthesis of vascular endothelial growth factor[J].J Virol,2007,81(19):10249-10257.
[16] YAO DF,JIANG H,YAO M,et al.Quantitative analysis of hepatic hypoxia-inducible factor-1alpha and its abnormal gene expression during the formation of hepatocellular carcinoma[J].Hepatobiliary Pancreat Dis Int,2009,8(4):407-413.
[17] LI Y,GUO B,XIE Q,et al.STIM1 mediates hypoxia-driven hepatocarcinogenesis via interaction with HIF-1[J].Cell Rep,2015,12(3):388-395.
[18] YAO DF,QIU LW,WU W,et al.Dynamic alterations of VEGF and intervention of its expression on effect of hepatocyte malignant transformation[J].Natl Med J China,2010,90(42):3014-3018.(in Chinese) 姚登福,邱歷偉,吳瑋,等.血管內皮生長因子動態(tài)表達及干預對肝細胞癌變的影響[J].中華醫(yī)學雜志,2010,90(42):3014-3018.
[19] LAI FB,LIU WT,JING YY,et al.Lipopolysaccharide supports maintaining the stemness of CD133+hepatoma cells through activation of the NF-κB/HIF-1α pathway[J].Cancer Lett,2016,378(2):131-141.
[20] YE LY,CHEN W,BAI XL,et al.Hypoxia-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma induces an immunosuppressive tumor microenvironment to promote metastasis[J].Cancer Res,2016,76(4):818-830.
[21] HU F,DENG X,YANG X,et al.Hypoxia upregulates Rab11-family interacting protein 4 through HIF-1α to promote the metastasis of hepatocellular carcinoma[J].Oncogene,2015,34(49):6007-6017.
[22] ZHUANG PY,WANG JD,TANG ZH,et al.Higher proliferation of peritumoral endothelial cells to IL-6/sIL-6R than tumoral endothelial cells in hepatocellular carcinoma[J].BMC Cancer,2015,15:830.
[23] LI S,YAO D,WANG L,et al.Expression characteristics of hypoxia-inducible factor-1α and its clinical values in diagnosis and prognosis of hepatocellular carcinoma[J].Hepat Mon,2011,11(10):821-828.
[24] MATSUBARA T,KANTO T,KURODA S,et al.TIE2-expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis[J].Hepatology,2013,57(4):1416-1425.
[25] SHARMA BK,SRINIVASAN R,KAPIL S,et al.Serum levels of angiogenic and anti-angiogenic factors:their prognostic relevance in locally advanced hepatocellular carcinoma[J].Mol Cell Biochem,2013,383(1-2):103-112.
[26] VILLA E,CRITELLI R,LEI B,et al.Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival.Results from a prospective study[J].Gut,2016,65(5):861-869.
[27] CAMPILLO A,SOLANAS E,MORANDEIRA MJ,et al.Angiogenesis and proliferation markers in adjacent cirrhotic tissue could predict hepatocellular carcinoma outcome after liver transplantation[J].Eur J Gastroenterol Hepatol,2014,26(8):871- 879.
[28] LIU L,LI SQ,MI XG,et al.Relationship of clinical outcomes and expression of microRNA-199a/b-3p in HCC[J].Chin J Immunol,2015,31(6):806-808.(in Chinese) 劉磊,李首慶,米旭光,等.microRNA-199a/b-3p表達與肝細胞癌臨床預后的相關性[J].中國免疫學雜志,2015,31(6):806-808.
[29] HUNG CL,YEN CS,TSAI HW,et al.Upregulation of MicroRNA-19b predicts good prognosis in patients with hepatocellular carcinoma presenting with vascular invasion or multifocal disease[J].BMC Cancer,2015,15:665.
[30] CHAI ZT,KONG J,ZHU XD,et al.MicroRNA-26a inhibits angiogenesis by down-regulating VEGFA through the PIK3C2α/Akt/HIF-1α pathway in hepato- cellular carcinoma[J].PLoS One,2013,8(10) :e77957.
[31] WANG YH,DONG YY,WANG WM,et al.Vascular endothelial cells facilitated HCC invasion and metastasis through the Akt and NF-κB pathways induced by paracrine cytokines[J].J Exp Clin Cancer Res,2013,32(1):51.
[32] WON C,KIM BH,YI EH,et al.Signal transducer and activator of transcription 3-mediated CD133 up-regulation contributes to promotion of hepatocellular carcinoma[J].Hepatology,2015,62(4):1160-1173.
[33] LIN D,WU J.Hypoxia inducible factor in hepatocellular carcinoma:a therapeutic target[J].World J Gastroenterol,2015,21(42):12171-12178.
[34] LI H,CHEN J,ZEN W,et al.Effect of hypoxia inducible factor-1 antisense oligonucleotide on liver cancer[J].Int J Clin Exp Med,2015,8(8):12650-12655.
[35] LAI KG,LIN YH,HO CT,et al.Paclitaxel pretreatment overcomes hypoxia inducible factor-1α-induced radioresistance acquisition of human hepatoma and lung adenocarcinoma cells[J].Life Sci,2015,136(1):7-12.
[36] CHOI SH,PARK JY,KANG W,et al.Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells[J].Apoptosis,2016,21(1):85-95.
[37] WANG L,YAO M,YAN MJ,et al.Silencing hypoxia-inducible factor-1α gene transcription on effects of human hepG2 cell proliferation and angiogenesis factors[J].J Pure App Microbiol,2013,7:461-467.
[38] HAN KQ,HE XQ,MA MY,et al.Targeted silencing of CXCL1 by siRNA inhibits tumor growth and apoptosis in hepatocellular carcinoma[J].Int J Oncol,2015,47(6):2131-2140.
[39] LU S,GAO Y,HUANG X,et al.GYY4137,a hydrogen sulfide (H2S) donor,shows potent anti-hepatocellular carcinoma activity through blocking the STAT3 pathway[J].Int J Oncol,2014,44(4):1259-1267.
[40] LIU X,CHEN S,TU J,et al.HSP90 inhibits apoptosis and promotes growth by regulating HIF-1α abundance in hepatocellular carcinoma[J].Int J Mol Med,2016,37(3):825-835.
[41] ZHAO HZ,QIQI G.Clinical analysis of 207 cases with promary hepatcellular carcinoma[J/CD].Chin J Liver Dis:Electronic Edition,2015,7(3):89-97.(in Chinese) 趙海珍,其其格,207例原發(fā)性肝細胞癌患者臨床分析[J/CD].中國肝臟病雜志:電子版,2015,7(3):89-97.
[42] MALVICINI M,AQUINO JB,MAZZOLINI G.Combined therapy for gastrointestinal carcinomas:exploiting synergies between gene therapy and classical chemo-radiotherapy[J].Curr Gene Ther,2015,15(2):151-160.
[43] MA F,HU L,YU M,et al.Emodin decreases hepatic hypoxia-inducible factor-1α by inhibiting its biosynthesis[J].Am J Chin Med,2016,44(5):997-1008.
引證本文:WANG L,SHI W,XUE J,et al.Regulatory effect of abnormal expression of hypoxia-inducible factor-1α on angiogenesis in hepatocellular carcinoma[J].J Clin Hepatol,2017,33(2):369-374.(in Chinese)
王理,施維,薛均,等.缺氧誘導因子1α異常表達對肝細胞癌血管生成的調控作用[J].臨床肝膽病雜志,2017,33(2):369-374.
(本文編輯:葛 俊)
Regulatory effect of abnormal expression of hypoxia-inducible factor-1α on angiogenesis in hepatocellular carcinoma
WANGLi,SHIWei,XUEJun,etal.
(MedicalSchool,NantongUniversity,Nantong,Jiangsu226001,China)
Hepatocellular carcinoma (HCC) is a common malignant tumor in China with abundant blood supply.Conventional therapies may easily cause tolerance and patients tend to have poor prognosis.Combined with the hypoxia response elements of over a hundred of downstream target genes,hypoxia-inducible factor-1α (HIF-1α) in liver tissue participates in many processes including angiogenesis and glucose metabolism,inhibits the differentiation and apoptosis of tumor cells,and promotes the proliferation of tumor cells.High expression of HIF-1α and its regulatory effect on angiogenesis-related factors are closely associated with patients′ tolerance to radiotherapy and chemoradiotherapy,tumor invasion,metastasis,and prognosis.This article reviews the regulatory effect of abnormal expression of HIF-1α in HCC cells on angiogenesis-related factors and their interrelation.
carcinoma,hepatocellular; hypoxia-inducible factor 1; vascular endothelial growth factors; angiopoietin-2; review
10.3969/j.issn.1001-5256.2017.02.037
2016-09-26;
2016-10-17。
江蘇省“六大人才高峰”(2013-WSN-011);國家自然科學基金(81673241)
王理(1979-),男,博士后,副教授,主要從事醫(yī)學信息學與轉化醫(yī)學方面的研究。
姚登福,電子信箱:yaodf@ahnmc.com。
R735.7
A
1001-5256(2017)02-0369-06