鮑詠澤 周永東
(中國林業(yè)科學(xué)研究院木材工業(yè)研究所 北京 100091)
柳杉鋸材過熱蒸汽干燥與常規(guī)干燥的比較*
鮑詠澤 周永東
(中國林業(yè)科學(xué)研究院木材工業(yè)研究所 北京 100091)
【目的】 比較柳杉鋸材過熱蒸汽干燥與常規(guī)干燥后鋸材的干燥質(zhì)量、微觀構(gòu)造和力學(xué)性能,探討過熱蒸汽干燥柳杉鋸材的適用性,為柳杉木材的高附加值利用、降低加工過程能耗、提高生產(chǎn)效率提供依據(jù)?!痉椒ā?分別進(jìn)行過熱蒸汽干燥和常規(guī)干燥試驗(yàn),依國家標(biāo)準(zhǔn)對(duì)干燥質(zhì)量和力學(xué)性能進(jìn)行檢測,并通過掃描電鏡觀察分析不同干燥條件下木材微觀構(gòu)造的變化?!窘Y(jié)果】 50 mm厚柳杉鋸材過熱蒸汽干燥的干燥周期為110 h,平均干燥速率為1.18%·h-1; 而常規(guī)干燥的干燥周期為193 h,平均干燥速率為0.64%·h-1。從含水率和應(yīng)力方面分析,過熱蒸汽干燥鋸材在終含水率、厚度上含水率偏差以及殘余干燥應(yīng)力指標(biāo)上的干燥質(zhì)量等級(jí)為一級(jí),常規(guī)干燥鋸材在厚度上含水率偏差和殘余干燥應(yīng)力指標(biāo)上的干燥質(zhì)量等級(jí)為一級(jí),終含水率指標(biāo)的質(zhì)量等級(jí)為二級(jí),2種干燥方法鋸材在含水率分布和殘余干燥應(yīng)力方面無顯著差別; 從外觀干燥缺陷質(zhì)量方面分析,過熱蒸汽干燥鋸材在順彎、橫彎和扭曲指標(biāo)上的干燥質(zhì)量等級(jí)為一級(jí),翹彎指標(biāo)的質(zhì)量等級(jí)為二級(jí),常規(guī)干燥鋸材的可見干燥缺陷質(zhì)量指標(biāo)等級(jí)均達(dá)到一級(jí)。力學(xué)性能方面,過熱蒸汽干燥鋸材的抗彎彈性模量均值為5 508.37 MPa,略高于常規(guī)干燥鋸材均值(5 237.52 MPa); 過熱蒸汽干燥鋸材的抗彎強(qiáng)度均值為32.35 MPa,略低于常規(guī)干燥鋸材均值(34.13 MPa)。對(duì)干燥鋸材微觀構(gòu)造進(jìn)行觀察發(fā)現(xiàn),過熱蒸汽干燥后木材的紋孔膜破裂及脫落的數(shù)量和程度大于常規(guī)干燥,因此可增加水分的遷移途徑,提高木材的滲透性,從而使干燥速率顯著提高?!窘Y(jié)論】 干燥方法對(duì)鋸材干燥速率具有極其顯著的影響,過熱蒸汽干燥比常規(guī)干燥的干燥周期縮短43%,干燥速率提高84%; 干燥質(zhì)量和力學(xué)性質(zhì)方面,除終含水率和翹彎翹曲度外,2種干燥方法的干燥質(zhì)量無顯著差別; 過熱蒸汽干燥鋸材的孔隙度大于常規(guī)干燥是造成過熱蒸汽干燥速率顯著提升的原因之一。總體分析,過熱蒸汽干燥柳杉鋸材質(zhì)量可滿足木制品對(duì)于干燥質(zhì)量的要求。關(guān)鍵詞: 過熱蒸汽干燥; 常規(guī)干燥; 柳杉鋸材
干燥是木材加工利用中的重要工序,關(guān)系到最終產(chǎn)品質(zhì)量、木材加工過程中的能源利用及木材綜合利用效率(張璧光等, 2008)。柳杉(Cryptomeriafortunei)是我國主要人工林樹種之一,具有生長快、壽命長等優(yōu)點(diǎn),廣泛用于房屋建筑、家具和農(nóng)具等(阮興盛, 2004)。國外對(duì)柳杉鋸材干燥的研究及應(yīng)用較早(Obatayaetal., 2006a; 2006b; Kuroda, 2007; Yamashitaetal., 2012),國內(nèi)也有采用常規(guī)干燥、高溫干燥和聯(lián)合干燥對(duì)柳杉干燥特性進(jìn)行研究的報(bào)道(韋鵬練等, 2012; 高利祥, 2014)。過熱蒸汽干燥是最近發(fā)展起來的一項(xiàng)干燥新技術(shù),是指利用過熱蒸汽直接與被干物料接觸而去除水分的一種干燥方式,其單位熱耗僅為1 000~1 500 kJ·kg-1水,為普通熱風(fēng)干燥熱耗的1/3,(Mujumdar, 2010),其在橡膠木(Heveabrasiliensis)(Bovornsethananetal., 2007)、輻射松(Pinusradiata)(Haqueetal., 2008)、人工林杉木(Cunninghamialanceolata)(馬世春等, 2006)等材種的研究表明,過熱蒸汽干燥質(zhì)量較好,干燥周期短,干燥速率高。本文對(duì)柳杉鋸材的過熱蒸汽干燥與常規(guī)干燥進(jìn)行研究,比較2種干燥方法后柳杉鋸材的干燥質(zhì)量、微觀構(gòu)造和力學(xué)性能,探討過熱蒸汽干燥柳杉鋸材的適用性,以期為柳杉木材的高附加值利用、降低加工過程能耗和提高生產(chǎn)效率提供依據(jù)。
1.1 試驗(yàn)材料
柳杉采自四川,樹齡30年。采伐后原木的長度截為2.0 m,端頭涂石蠟乳液,防止端裂。鋸解成50 mm厚規(guī)格板材后放入冷藏庫中保存(溫度保持在-6 ℃),以保持其生材的高含水率狀態(tài)。在干燥前將其加工鋸解成規(guī)格為900 mm×130 mm×50 mm(軸向×弦向×徑向)的鋸材,初含水率為120%~140%。2種干燥方法的試樣數(shù)均為42塊。1.2 儀器設(shè)備
木材干燥機(jī): 日本產(chǎn)HD74/TAII小型干燥試驗(yàn)機(jī),采用電熱鍋爐產(chǎn)生蒸汽為干燥機(jī)熱源,通過翅片管式加熱器加熱,并可通過噴蒸管將蒸汽導(dǎo)入干燥機(jī)進(jìn)行加濕,可進(jìn)行常規(guī)干燥及過熱蒸汽干燥試驗(yàn)。試驗(yàn)風(fēng)速約為2.5 m·s-1,最高溫度可達(dá)130 ℃,滿足過熱蒸汽干燥要求。試驗(yàn)過程參數(shù)由電腦進(jìn)行全自動(dòng)控制,并自動(dòng)記錄干燥過程參數(shù)。
檢測儀器: 采用精度為0.01 g的電子天平測量含水率試片質(zhì)量; 采用精度為0.01 mm的數(shù)顯游標(biāo)卡尺測量木材應(yīng)力試片; 采用AG-2000A型電子萬能力學(xué)試驗(yàn)機(jī)測量MOE和MOR; 采用TU-213木材切片機(jī)制作木材切片; 采用Hitachi-S4800型掃描電鏡進(jìn)行木材顯微構(gòu)造觀察。
1.3 試驗(yàn)方法
干燥前從試材中鋸取含水率試片,采用絕干法測量試片的初含水率。過熱蒸汽干燥與常規(guī)干燥材料取自同一批木材,一塊鋸材分為2段,其中一段用于常規(guī)干燥試驗(yàn),另一段用于過熱蒸汽干燥試驗(yàn),干燥工藝如表1和表2所示。常壓過熱蒸汽干燥工藝,要求干燥室內(nèi)的濕球溫度控制在100 ℃,以確保干燥介質(zhì)全為蒸汽,干球溫度則在100~115 ℃之間變化,干球溫度越高,相對(duì)濕度越低,干燥介質(zhì)吸收水蒸氣的能力就越大; 而常規(guī)干燥中干燥介質(zhì)屬于濕空氣的性質(zhì),濕空氣的物理特性與常壓過熱蒸汽不同,其熱含量低于常壓過熱蒸汽(馬世春, 2004)。
表1 柳杉鋸材過熱蒸汽干燥工藝
表2 柳杉鋸材常規(guī)干燥工藝
干燥過程結(jié)束后按GB/T 6491—2012《鋸材干燥質(zhì)量》規(guī)定,從試件上截取含水率試片和應(yīng)力試片,用絕干法測量木材終含水率和分層含水率,用叉齒法測量木材干燥殘余應(yīng)力,并檢測橫彎、順彎、翹彎和扭曲等干燥缺陷,對(duì)干燥質(zhì)量進(jìn)行評(píng)價(jià); 過熱蒸汽干燥和常規(guī)干燥后的試件依據(jù)GB/T 1936.1—2009《木材抗彎強(qiáng)度實(shí)驗(yàn)方法》和GB/T 1936.2—2009《木材抗彎彈性模量測定方法》加工成規(guī)格為300 mm×20 mm×20 mm(軸向×徑向×弦向)的試件,使用電子萬能力學(xué)試驗(yàn)機(jī)測量木材的抗彎強(qiáng)度和抗彎彈性模量。干燥后的鋸材沿順紋方向用帶鋸機(jī)截取10 mm×10 mm(弦向×徑向)的木條,然后進(jìn)行水煮軟化。用刀片將軟化好的木條切成長度10 mm的樣塊。用木材切片機(jī)將軟化好的試材切成厚度2~3 mm的切片,烘至絕干后表面進(jìn)行噴金并使用SEM觀察微觀結(jié)構(gòu)。
1.4 數(shù)據(jù)分析
使用IBM SPSS Statistics 19.0對(duì)干燥后的干燥質(zhì)量和力學(xué)性能進(jìn)行數(shù)據(jù)分析,求出平均值和標(biāo)準(zhǔn)差; 在95%的置信區(qū)間內(nèi)(P=0.05)使用T檢驗(yàn)檢測均值的顯著性。
2.1 干燥過程曲線
圖1為柳杉鋸材過熱蒸汽干燥和常規(guī)干燥過程曲線。2種干燥方法初含水率的差異是由于使用相同的干燥設(shè)備要先進(jìn)行過熱蒸汽干燥,再進(jìn)行常規(guī)干燥,因此進(jìn)行常規(guī)干燥時(shí)柳杉鋸材含水率稍有下降。2種干燥方法的鋸材干燥至含水率為8%~9%時(shí)進(jìn)行終了處理,使鋸材厚度上水分分布均勻并釋放殘余干燥應(yīng)力。結(jié)果發(fā)現(xiàn),雖然過熱蒸汽干燥鋸材初含水率高于常規(guī)干燥鋸材,但干燥周期遠(yuǎn)遠(yuǎn)少于常規(guī)干燥,過熱蒸汽干燥的干燥周期為110 h,而常規(guī)干燥的干燥周期為193 h,干燥周期縮短約43%。表3列出了柳杉鋸材不同含水率階段的干燥速率和平均干燥速率。干燥初期,柳杉鋸材的含水率較高,木材內(nèi)自由水在毛細(xì)管張力作用下,由內(nèi)部迅速移動(dòng)至表層蒸發(fā); 隨著含水率降低,自由水逐漸蒸發(fā)完畢,結(jié)合水開始蒸發(fā),干燥速率逐漸降低。綜合來看,過熱蒸汽干燥速率一直大于常規(guī)干燥,這是由對(duì)流傳熱系數(shù)以及蒸汽-固體之間的溫度差決定的(Pakowskietal., 2011),過熱蒸汽干燥過程中溫度高于常規(guī)干燥,因此在干燥前期,蒸汽-木材的溫差較大,干燥速率較快; 在干燥后期,木材與周圍環(huán)境溫度趨于一致,而過熱蒸汽的傳熱系數(shù)大于濕熱空氣(Pang, 2004),使得熱量和水分的傳遞速度加快,宏觀上干燥速率提高。
圖1 柳杉鋸材過熱蒸汽干燥和常規(guī)干燥過程曲線Fig.1 The drying curve of superheated steam drying and conventional drying
2.2 干燥質(zhì)量
2.2.1 含水率與應(yīng)力 2種干燥方法干燥后,鋸材的含水率及殘余應(yīng)力檢測結(jié)果如表4所示。數(shù)據(jù)顯示,2種干燥方法干燥后鋸材的平均終含水率、厚度上含水率偏差以及殘余應(yīng)力均達(dá)到標(biāo)準(zhǔn)規(guī)定的二級(jí)干燥質(zhì)量要求。終含水率均值存在顯著性差異,而厚度上含水率偏差和殘余應(yīng)力差異不顯著。相比常規(guī)干燥,過熱蒸汽干燥柳杉心層含水率低于表層,這是由于在干燥結(jié)束后,終了調(diào)濕處理使得表層含水率較高所致。
表3 不同含水率階段的柳杉鋸材干燥速率
表4 柳杉鋸材過熱蒸汽干燥和常規(guī)干燥后的含水率及干燥應(yīng)力**表示在0.05水平顯著,—表示在0.05水平不顯著。下同。*means significant at 0.05 level, —means not significant at 0.05 level. The same below.
2.2.2 外觀干燥質(zhì)量缺陷 鋸材外觀質(zhì)量檢測結(jié)果如表5所示。2種干燥方法干燥后鋸材的外觀質(zhì)量均達(dá)到標(biāo)準(zhǔn)規(guī)定的二級(jí)干燥質(zhì)量要求,但翹彎程度存在顯著性差異。這是由于過熱蒸汽干燥過程中水分蒸發(fā)強(qiáng)度高,厚度上含水率偏差大導(dǎo)致干燥應(yīng)力大,從而使翹彎較大。2種干燥方法干燥后鋸材的表面和端面均產(chǎn)生細(xì)小裂紋,但開裂寬度小于2 mm,根據(jù)標(biāo)準(zhǔn)可不計(jì); 而原先有的細(xì)裂紋在干燥后都有所擴(kuò)展,鋸材干燥后均無內(nèi)裂和皺縮現(xiàn)象。
表5 柳杉鋸材過熱蒸汽干燥和常規(guī)干燥后的干燥缺陷及差異
2.3 力學(xué)性能
2種干燥方法干燥后鋸材的抗彎彈性模量(MOE)及抗彎強(qiáng)度(MOR)結(jié)果如表6所示。過熱蒸汽干燥鋸材的抗彎彈性模量(5 508.37 MPa)略高于常規(guī)干燥(5 237.52 MPa),而抗彎強(qiáng)度(32.35 MPa)略低于常規(guī)干燥(34.13 MPa),這可能是因?yàn)榻?jīng)高溫過熱蒸汽干燥處理后,木材的綜纖維素量有所減小,木質(zhì)素含量相對(duì)增加,木材的剛度有所增加,彈性模量增大;但由于溫度較高,木材細(xì)胞壁結(jié)構(gòu)物質(zhì)出現(xiàn)一定程度的軟化,抗彎強(qiáng)度有所降低(齊華春等, 2005)。
2.4 微觀構(gòu)造
經(jīng)過熱蒸汽干燥的柳杉鋸材微觀構(gòu)造如圖2a所示,其徑切面紋孔塞大量脫落,紋孔打開,孔隙大規(guī)模增加,與常規(guī)干燥后鋸材微觀構(gòu)造(圖2b)的對(duì)比明顯。這可能是因?yàn)槟静膬?nèi)水分蒸發(fā)產(chǎn)生的作用力以及熱應(yīng)力打開了木材內(nèi)的閉塞紋孔,破壞了紋孔膜(Zhangetal., 2008),而且在汽蒸過程中,木材內(nèi)部水分迅速被加熱至沸點(diǎn)并發(fā)生汽化,木材內(nèi)部會(huì)產(chǎn)生一個(gè)蒸汽壓力作用于紋孔膜等較薄弱的組織,也會(huì)破壞閉塞的紋孔膜,打通了木材內(nèi)部水分移動(dòng)的通道; 同時(shí)隨著汽蒸處理溫度的升高,水分汽化越劇烈,蒸汽壓力對(duì)紋孔膜的破壞程度也在加劇,增大、增多了有效滲透路徑的半徑和數(shù)量,從而在一定程度上提高了木材滲透性,增大了水分傳導(dǎo)途徑,導(dǎo)致木材干燥速率加快,有助于木材的干燥(彭毅卿, 2013)。
表6 過熱蒸汽干燥和常規(guī)干燥后柳杉木材力學(xué)強(qiáng)度及差異性
圖2 柳杉鋸材過熱蒸汽干燥(a)和常規(guī)干燥(b)后徑切面的微觀構(gòu)造Fig.2 The microstructure of radial section of Chinese cedar lumber after superheated steam drying(a) and conventional drying (b)
1) 干燥方法對(duì)鋸材干燥速率有極其顯著的影響,過熱蒸汽干燥比常規(guī)干燥的干燥周期縮短了43%,干燥速率提高了84%。
2) 從干燥后的終含水率及殘余應(yīng)力分析,過熱蒸汽干燥和常規(guī)干燥后鋸材均達(dá)到干燥質(zhì)量二級(jí)指標(biāo)要求。2種干燥方法干燥后鋸材的終含水率存在顯著性差異,厚度上含水率的偏差以及殘余應(yīng)力無顯著差異。
3) 從干燥后的干燥缺陷角度分析,過熱蒸汽干燥和常規(guī)干燥后鋸材的外觀質(zhì)量均達(dá)到干燥質(zhì)量二級(jí)指標(biāo)要求。2種干燥方法的翹彎翹曲度差異性顯著,其余無顯著差異。
4) 從干燥后的力學(xué)性能分析,過熱蒸汽干燥鋸材的MOE大于常規(guī)干燥,而MOR小于常規(guī)干燥,但差別不大,二者無顯著差異。
5) 從干燥后的微觀構(gòu)造角度分析,過熱蒸汽干燥柳杉鋸材的紋孔發(fā)生大量破裂,孔隙程度增加,遠(yuǎn)遠(yuǎn)大于常規(guī)干燥,是造成過熱蒸汽干燥速率顯著提升的原因之一。
總體來看,采用過熱蒸汽干燥柳杉鋸材的干燥質(zhì)量與常規(guī)干燥差別不大,能滿足國家標(biāo)準(zhǔn)二級(jí)以上質(zhì)量要求,且干燥效率顯著提高。
高利祥.2014.柳杉木材干燥工藝及其對(duì)物理性能的影響.北京: 中國林業(yè)科學(xué)研究院碩士學(xué)位論文.
(Gao L X. 2014 Drying and its influence to physical properties ofCryptomeriafortuneilumber. Beijing: MS thesis of Chinese Academy of Forestry. [in Chinese])
馬世春. 2004. 荷木厚板材干燥工藝的探索. 林業(yè)科學(xué),40(1):189-192.
(Ma S C. 2004. Research on drying technology forSchimasuperbathick timber. Scientia Silvae Sinicae, 40(1):189-192. [in Chinese])
馬世春,楊文斌. 2006. 人工林杉木板材高溫和常溫組合干燥研究. 林業(yè)科學(xué),42(3):125-128.
(Ma S C, Yang W B. 2006. Study of high temperature and normal temperature drying of Chinese fir board in plantation. Scientia Silvae Sinicae, 42(3):125-128. [in Chinese])
彭毅卿. 2013. 汽蒸預(yù)處理對(duì)楊木性質(zhì)及真空干燥速率的影響. 北京: 北京林業(yè)大學(xué)碩士學(xué)位論文.
(Peng Y Q. 2013. Effects of pre-steaming on the characteristics and vacuum drying rate of poplar. Beijing: MS thesis of Beijing Forestry University. [in Chinese])
齊華春,程萬里,劉一星. 2005. 高溫高壓過熱蒸汽處理木材的力學(xué)特性及化學(xué)成分變化. 東北林業(yè)大學(xué)學(xué)報(bào),33(3):44-46.
(Qi H C, Cheng W L, Liu Y X. Mechanical characteristics and chemical compositions of superheated steam-treated wood under high temperature and pressure. Journal of Northeast Forestry University, 33(3):44-46. [in Chinese])
阮興盛. 2004. 柳杉的生態(tài)學(xué)特性及栽培技術(shù). 林業(yè)勘察設(shè)計(jì),(1):12-13.
(Ruan X S. 2004. Ecological characteristics and cultivation technology ofCryptomeriafortunei. Forestry Prospect and Design,(1):12-13. [in Chinese])
韋鵬練,李永忠,符韻林,等. 2012. 柳杉木材干燥特性研究. 林業(yè)實(shí)用技術(shù),5(2):54-56.
(Wei P L, Li Y Z, Fu Y L,etal. 2012. Study on drying characteristics ofCryptomeriafortunei. Forest Science and Technology,5(2):54-56. [in Chinese])
張璧光, 謝擁群. 2008. 國際干燥技術(shù)的最新研究動(dòng)態(tài)與發(fā)展趨勢. 木材工業(yè), 22(2):5-7.
(Zhang B G, Xie Y Q. 2008. Progress of research and development of drying technology in the world. China Wood Industry, 22(2):5-7.[in Chinese])
Bovornsethanan S,Wongwise K. 2007. Drying parawood with superheated steam. American Jounral of Applied Science,4(4):215-219.
Haque M N,Sargent R. 2008. Standard and superheated steam schedules for radiata pine single-board drying: model prediction and actual measurements.Drying Techonlogy,26(2): 186-191.
Kuroda N. 2007. Development of fundamental research on drying of boxed-heart square timber of Sugi (Cryptomeriajaponica). Journal of the Japan Wood Research Society, 53(5) :243-253.
Mujumdar A S, Law C L. 2010. Drying technology: trends and applications in postharvest processing. Food & Bioprocess Technology, 3(6):843-852.
Obataya E, Shibutani S, Hanata K,etal. 2006a. Effects of high temperature kiln drying on the practical performances of Japanese cedar wood (Cryptomeriajaponica) I: changes in hygroscopicity due to heating. Journal of Wood Science, 2006, 52(1):33-38.
Obataya E, Shibutani S, Hanata K,etal. 2006b. Effects of high temperature kiln drying on the practical performances of Japanese cedar wood (Cryptomeriajaponica) II: changes in mechanical properties due to heating. Journal of Wood Science, 52(2):111-114.
Pang S S. 2004. External heat transfer in moist air and superheated steam for softwood drying. Chinese Journal of Chemical Engineering, 6(6):762-766.
Pakowski Z, Adamski R. 2011. On prediction of the drying rate in superheated steam drying process. Drying Technology, 29(13): 1492-1498
Yamashita K, Hirakawa Y, Saito S,etal. 2012. Internal-check variation in boxed-heart square timber of sugi (Cryptomeriajaponica) cultivars dried by high-temperature kiln drying. J Wood Sci, 58(5):375-382.
Zhang Y L, Cai L P. 2008. Impact of heating speed on permeability of sub-alpine fir. Wood Science and Technology, 42(3): 241-250.
(責(zé)任編輯 石紅青)
Comparation between Superheated Steam Drying and Conventional Drying of Chinese Cedar Lumber
Bao Yongze Zhou Yongdong
(ResearchInstituteofWoodIndustry,CAFBeijing100091)
【Objective】In order to provide basis for the high value-added utilization, reducing energy consumption and improving production efficiency of Chinese cedar, superheated steam drying and conventional drying of Chinese cedar (Cryptomeriafortunei)lumber were investigated in this study. Drying quality, microstructure and mechanical properties were compared between two kinds of drying wood. The applicability of superheated steam drying on Chinese cedar lumber was also discussed.【Method】The drying quality and mechanical properties of dried lumber were analyzed by national standards. Furthermore, microstructure of Chinese cedar wood under two kinds of drying methods were observed by scanning electron microscope.【Result】As for 50 mm thickness lumber, the drying time and drying rate was 110 h and 1.18%·h-1in superheated steam drying, and 193 h and 0.64%·h-1in conventional drying, respectively. Final moisture content (MC), MC deviation in thickness and residual drying stress of lumber with superheated steam drying met the requirements of the 1stgrade of national standard for lumber drying quality. The corresponding quality index obtained by conventional drying met the 1stgrade, but the final MC was in 2ndgrade. There was no significant difference in MC distribution and residual drying stress between the two drying methods. As for drying defect, the crook, cup and twist of lumber after superheated steam drying met the requirements of the 1stgrade, however, warp index only met the requirements of the 2ndgrade. All defects’ index of conventional drying lumber met the requirements of the 1stgrade. As for mechanical properties, the average MOE value of superheated steam drying and conventional drying lumber was 5 508.37 MPa and 5 237.52 MPa, respectively. However, the average MOR value of superheated steam drying and conventional drying lumber was 32.35 MPa and 34.13 MPa, respectively. The observation of cell wall showed that the extent and number of splits in pits membrane after superheated steam drying was greater than that after conventional drying. Thus, the moisture was easier to transfer and the permeability of wood was improved, and led to the increased drying rate. 【Conclusion】Drying rate of Chinese cedar lumber was extremely affected by drying methods. Compared with the conventional drying, the drying time was shortened by 43% and drying rate was improved by 84% in superheated steam drying. There was no significant difference in drying quality and mechanical properties between the two drying methods, except for the final MC and warp. Porosity in wood after superheated steam drying was greater than that of conventional drying, and this is one of the reasons for improving the wood drying rate. All of these results indicated that the application of superheated steam drying for Chinese cedar lumber would be reasonable, and the drying quality could meet the requirements of wood products.
superheated steam drying; conventional drying; chinese Cedar lumber
10.11707/j.1001-7488.20170111
2015-11-10;
2016-01-13。
林業(yè)公益性行業(yè)科研專項(xiàng)(201404502)。
S782.31
A
1001-7488(2017)01-0088-06
*周永東為通訊作者。