許茂松 呂文華 王雪玉
(中國林業(yè)科學(xué)研究院木材工業(yè)研究所 北京 100091)
人工林楊木增強(qiáng)-染色復(fù)合改性材的性能*
許茂松 呂文華 王雪玉
(中國林業(yè)科學(xué)研究院木材工業(yè)研究所 北京 100091)
【目的】 探討人工林楊木增強(qiáng)-染色復(fù)合改性方法及改性材性能,為人工林楊木資源的高效開發(fā)利用提供技術(shù)支持?!痉椒ā?將相同質(zhì)量分?jǐn)?shù)的酸性大紅G水溶液、酸性湖藍(lán)A水溶液、酸性大紅G和酸性湖藍(lán)A與水溶性樹脂型增強(qiáng)改性劑MUF復(fù)配得到的增強(qiáng)-染色復(fù)合改性劑,分別對(duì)人工林楊木進(jìn)行真空加壓浸漬處理,得到DG、DA、MUF-DG和MUF-DA4種染色改性材,測(cè)試其強(qiáng)度、顏色、耐水色牢度等性能?!窘Y(jié)果】 1) DA和DG染色材的質(zhì)量增加率分別為-1.69%和-0.65%,密度分別為0.352和0.365 g·cm-3; MUF-DA和MUF-DG增強(qiáng)-染色復(fù)合改性材的質(zhì)量增加率分別為42.64%和54.27%,密度分別為0.445和0.510 g·cm-3。與DA染色材相比,MUF-DA增強(qiáng)-染色復(fù)合改性材的密度、抗彎彈性模量、抗彎強(qiáng)度和抗壓強(qiáng)度分別提高26.42%,6.76%,17.63%和54.32%; 與DG染色材相比,MUF-DG增強(qiáng)-染色復(fù)合改性材的密度、抗彎彈性模量、抗彎強(qiáng)度和抗壓強(qiáng)度分別提高39.73%,8.58%,18.82%和57.18%。2) DA染色材和MUF-DA增強(qiáng)-染色復(fù)合改性材染色前后的明度指數(shù)差(ΔL*)、紅綠指數(shù)差(Δa*)和黃藍(lán)指數(shù)差(Δb*)均為負(fù)值,MUF-DA增強(qiáng)-染色復(fù)合改性材的Δa*值更小、ΔL*和Δb*值均更大,藍(lán)色調(diào)更明顯; DG染色材和MUF-DG增強(qiáng)-染色復(fù)合改性材染色前后的Δa*為正值、ΔL*和Δb*為負(fù)值,MUF-DG增強(qiáng)-染色復(fù)合改性材的Δa*、ΔL*和Δb*值均更大,紅色調(diào)更明顯; MUF-DA和MUF-DG增強(qiáng)-染色復(fù)合改性材的色飽和度差(ΔC*)均顯著大于相應(yīng)的DA和DG染色材。3) DA和DG染色材水浸前后的總色差ΔE*分別為12.92和8.30 NBS,MUF-DA和MUF-DG增強(qiáng)-染色復(fù)合改性材水浸前后的總色差ΔE*分別為5.94和6.93 NBS,增強(qiáng)-染色復(fù)合改性材水浸前后顏色溶蝕程度較小。4) DA和DG染色材與未處理材的紅外光譜圖形態(tài)基本一致,MUF-DA和MUF-DG增強(qiáng)-染色復(fù)合改性材與MUF增強(qiáng)改性材的紅外光譜圖形態(tài)基本一致,沒有新的吸收峰產(chǎn)生,吸收峰強(qiáng)度也無明顯變化?!窘Y(jié)論】 1) 染料的加入對(duì)樹脂的增強(qiáng)改性作用影響較小,經(jīng)增強(qiáng)-染色復(fù)合改性處理后人工林楊木的力學(xué)性能明顯提高; 2) 與純?nèi)旧南啾?,增?qiáng)-染色復(fù)合改性材的顏色更鮮明飽滿,染色效果更好,且酸性大紅G與樹脂復(fù)配染色效果優(yōu)于酸性湖藍(lán)A; 3) 與純?nèi)旧南啾?,增?qiáng)-染色復(fù)合改性材耐水色牢度較好,其中酸性湖藍(lán)A與樹脂復(fù)配改性材的耐水色牢度提高明顯; 4) 傅里葉紅外光譜(FTIR)分析表明,染料與MUF復(fù)配染色過程中沒有新的基團(tuán)生成,隨樹脂固化沉積于木材內(nèi)部的染料與MUF和木材之間沒有產(chǎn)生新的化學(xué)結(jié)合。
人工林楊木; 增強(qiáng)-染色復(fù)合改性劑; 浸漬處理; 性能; 紅外分析
隨著天然林資源銳減以及木材資源消耗增加,木材的供需矛盾日益尖銳。為緩解這一矛盾,必須大力發(fā)展并高效利用人工林木材資源。我國人工林面積居世界首位,其中楊樹約占人工林總面積的20%,為我國重要的工業(yè)用材(呂建雄等, 2014)。然而,由于人工林楊木存在密度小、強(qiáng)度低、尺寸不穩(wěn)定、材色單調(diào)、花紋不清晰、裝飾性差等缺點(diǎn),大大限制了其應(yīng)用(楊曉飛等, 2014)。因此,為了充分利用好我國豐富的人工林楊木資源,實(shí)現(xiàn)其高附加值利用,有必要研發(fā)出一種可使人工林楊木各項(xiàng)性能得到全面改善的木材改性技術(shù)。
研究表明,樹脂浸漬改性可有效提高木材的尺寸穩(wěn)定性、力學(xué)強(qiáng)度、抗生物劣化等性能(Dekaetal., 2002; Furunoetal., 2004; Wanetal., 2006),但在實(shí)際應(yīng)用過程中存在滲透性差、游離甲醛超標(biāo)、儲(chǔ)存期短、不能重復(fù)利用以及成本高等問題(黃艷輝等, 2011)。常用水溶性染料在木質(zhì)材料內(nèi)部的滲透和固著過程相互矛盾,滲透性好的染料與處理材的結(jié)合力小,抗流失性差,耐光、耐候性不好,染色過程產(chǎn)生大量廢水,帶來環(huán)境危害,同時(shí)單純?nèi)旧y以滿足產(chǎn)品多性能要求(劉毅等, 2011; 呂曉慧等, 2012)。本研究將木材的功能性改良與染色處理相結(jié)合,采用自制低甲醛水溶性樹脂型增強(qiáng)改性劑MUF與水溶性酸性染料復(fù)配制得增強(qiáng)-染色復(fù)合改性劑,對(duì)人工林楊木進(jìn)行真空加壓浸漬處理,擬使改性后的楊木密度增大、強(qiáng)度提高、染著性和耐水性得到明顯改善,在增強(qiáng)其物理力學(xué)性能的同時(shí),賦予其良好的裝飾性,大大提高其產(chǎn)品價(jià)值。
1.1 試驗(yàn)材料
試材: 大青楊(Populusussuriensis),試材尺寸: 300 mm(L)×20 mm(R)×20 mm(T)。染料: 酸性大紅G(C.I. Acid Red 1,分子質(zhì)量509.42)和酸性湖藍(lán)A(C.I. Acid Blue 7,分子質(zhì)量690.80),購自北京廣春染料廠。樹脂型增強(qiáng)改性劑: 自制,三聚氰胺、甲醇、甲醛、尿素的摩爾比為1∶2.3∶2.3∶1.2,無色透明,黏度10 mPa·s(23 ℃),固體含量58.6%,pH 7.5~8,水溶解倍數(shù)≥7。
1.2 浸漬處理
將酸性大紅G和酸性湖藍(lán)A分別配制成質(zhì)量分?jǐn)?shù)為0.5%的染料水溶液DG和DA; 將增強(qiáng)改性樹脂稀釋成質(zhì)量分?jǐn)?shù)為20%的樹脂溶液,得到樹脂型增強(qiáng)改性劑MUF; 在20%樹脂溶液中分別加入質(zhì)量分?jǐn)?shù)為0.5%的酸性大紅G和酸性湖藍(lán)A,制得增強(qiáng)-染色復(fù)合改性劑MUF-DG和MUF-DA。采用真空(-0.1 MPa,40 min)→吸藥→卸真空→加壓(1.0 MPa,2 h)→卸壓工藝,分別對(duì)人工林楊木進(jìn)行真空加壓浸漬處理,得到DG、DA、MUF、MUF-DG和MUF-DA改性材,將各處理材先氣干至50%含水率,再采用梯度升溫的較軟基準(zhǔn)進(jìn)行人工干燥,調(diào)整至10%含水率,備用。
1.3 性能測(cè)試與分析
1.3.3 耐水色牢度測(cè)試 將各改性材絕干測(cè)色,再分別浸入等量蒸餾水中浸泡6 h后絕干測(cè)色,通過染色材水浸前后的顏色差異考察其顏色溶蝕程度。
1.3.4 FTIR分析 傅里葉紅外光譜儀,溴化鉀(KBr)壓片法,掃描次數(shù)32次,分辨率4 cm-1,掃描范圍4 000~400 cm-1,比較分析未處理材、增強(qiáng)改性材和增強(qiáng)-染色復(fù)合改性材譜圖變化。
2.1 增強(qiáng)-染色復(fù)合改性材的物理力學(xué)性能
由表1可知,純?nèi)旧腄A和DG的質(zhì)量增加率分別為-1.69%和-0.65%,密度分別為0.352和0.365 g·cm-3; MUF-DA和MUF-DG增強(qiáng)-染色復(fù)合改性材的質(zhì)量增加率分別為42.64%和54.27%,密度分別為0.445和0.510 g·cm-3。由于部分木材抽提物可被染料水溶液溶解析出(韋雙穎等, 2008),致使水溶液染色材的密度反而比素材略有降低。DG染色材的質(zhì)量增加率和密度大于DA染色材,MUF-DG增強(qiáng)-染色復(fù)合改性材的質(zhì)量增加率和密度也大于MUF-DA增強(qiáng)-染色復(fù)合改性材,說明酸性大紅G在水溶液和樹脂溶液中的上染性比酸性湖藍(lán)A好,分析認(rèn)為是由于酸性大紅G的分子質(zhì)量小于酸性湖藍(lán)A,因而更容易向木材內(nèi)部滲透。
表1 改性楊木的密度和質(zhì)量增加率*括號(hào)內(nèi)為該數(shù)據(jù)標(biāo)準(zhǔn)偏差,下同。The data in bracket is standard deviation.The same below.
經(jīng)增強(qiáng)-染色處理后,楊木的抗彎彈性模量、抗彎強(qiáng)度和抗壓強(qiáng)度等性能均明顯提高。由圖1可知,與純?nèi)旧腄A相比,MUF-DA增強(qiáng)-染色復(fù)合改性材的抗彎彈性模量、抗彎強(qiáng)度和抗壓強(qiáng)度分別提高6.76%,17.63%和54.32%; 與純?nèi)旧腄G相比,MUF-DG增強(qiáng)-染色復(fù)合改性材的抗彎彈性模量、抗彎強(qiáng)度和抗壓強(qiáng)度分別提高8.58%,18.82%和57.18%。增強(qiáng)-染色復(fù)合改性材與純樹脂增強(qiáng)改性材的力學(xué)性能基本一致,表明染料對(duì)樹脂的增強(qiáng)改性作用幾乎沒有影響。
2.2 增強(qiáng)-染色復(fù)合改性材的顏色
經(jīng)不同染料溶液浸漬處理后,楊木顏色變化顯著。由表2可知,DA和MUF-DA改性材,ΔL*、Δa*和Δb*均為負(fù)值,表明處理后楊木顏色藍(lán)色調(diào)增多; MUF-DA增強(qiáng)-染色復(fù)合改性材的Δa*值更小、ΔL*和Δb*值均更大,表明其藍(lán)色調(diào)增加得更多。DG和MUF-DG改性材,Δa*均為正值,ΔL*和Δb*均為負(fù)值,Δa*正值越大顏色越紅,說明紅染效果明顯; MUF-DG復(fù)合染色材的Δa*、ΔL*和Δb*值均更大,說明其紅色調(diào)增加得更多。所有染色楊木的顏色飽和度都明顯上升,染色后的ΔC*均為正值,但MUF-DG和MUF-DA增強(qiáng)-染色復(fù)合改性材的ΔC*顯著大于相應(yīng)的DG和DA純?nèi)旧?,說明增強(qiáng)-染色復(fù)合改性材的顏色更為飽滿艷麗。與純?nèi)旧南啾?,增?qiáng)-染色復(fù)合改性材的總色差ΔE*稍小,分析認(rèn)為可能主要是因?yàn)樗具^程中水的抽提作用使楊木明度下降較大所致。觀察處理后的實(shí)際染色效果,純?nèi)旧拇嬖谌玖暇奂?、染色不均、?nèi)外色差大等現(xiàn)象; 增強(qiáng)-染色復(fù)合改性材整體顏色并無明顯差異,勻染性良好。綜上,增強(qiáng)-染色復(fù)合改性材的顏色更為鮮明、飽滿、均勻,總體染色效果更好。
圖1 改性楊木與未處理材的力學(xué)性能Fig.1 The mechanical properties of modified and untreated poplar woods
改性材ModifierL?a?b?C?ΔL?Δa?Δb?ΔC?ΔE?DA3623(506)-624(832)-3134(993)3278(768)-5797(203)-953(246)-4728(306)1651(290)7550(259)MUF?DA5071(654)-2392(700)-2395(1079)345(578)-4349(361)-2721(161)-3989(280)1823(221)6513(212)DG3154(548)2383(969)-163(1212)2416(861)-6266(237)2054(223)-1757(211)789(212)6832(220)MUF?DG4773(776)4461(704)727(1186)4519(731)-4647(411)4132(286)-867(205)2892(336)6295(292)
2.3 增強(qiáng)-染色復(fù)合改性材的耐水色牢度
不同染色楊木水浸前后的顏色變化如表3所示,DA和DG染色材水浸前后的總色差ΔE*分別為12.92和8.30 NBS,顏色溶蝕明顯。李紅等(2005)研究表明,酸性染料與木材主要通過物理吸附作用結(jié)合使其容易水溶析出,DA染色材水浸前后的色差大于DG染色材,分析認(rèn)為主要是染料分子結(jié)構(gòu)和分子質(zhì)量的不同引起固色效果的差異(鄧邵平等, 2008),酸性湖藍(lán)A比酸性大紅G的分子質(zhì)量更大,使其在木材中的滲透性和固著性更差(王傳貴等, 2014)。MUF-DA和MUF-DG增強(qiáng)-染色復(fù)合改性材水浸前后的總色差ΔE*分別為5.94和6.93 NBS,顏色溶蝕程度均小于相應(yīng)純?nèi)旧?,分析認(rèn)為染料與樹脂增強(qiáng)改性劑復(fù)配浸入木材后,具有良好耐水性能的三聚氰胺脲醛樹脂在固化過程中對(duì)染料進(jìn)行了有效固定,從而使染色木材的耐水色牢度明顯提高。
表3 染色楊木水浸前后的顏色變化
2.4 FTIR分析
圖2 改性楊木與未處理材的FTIR光譜Fig.2 FTIR spectra of modified and untreated poplar woods
本研究中,基于酸性大紅G的增強(qiáng)-染色復(fù)合改性楊木的密度、抗彎彈性模量、抗彎強(qiáng)度和抗壓強(qiáng)度分別比純?nèi)旧腄G提高了39.73%,8.58%,18.82%和57.18%; 基于酸性湖藍(lán)A的增強(qiáng)-染色復(fù)合改性楊木的密度、抗彎彈性模量、抗彎強(qiáng)度和抗壓強(qiáng)度分別比純?nèi)旧腄A提高了26.42%,6.76%,17.63%和54.32%。增強(qiáng)-染色復(fù)合改性材的各項(xiàng)力學(xué)性能比未處理材明顯提高,與純樹脂增強(qiáng)改性材力學(xué)性能基本一致,表明染料對(duì)樹脂的增強(qiáng)改性作用幾乎沒有影響,這與鄭雅嫻等(2016a) 對(duì)鉤葉藤(Plectocomiapierreana)材增強(qiáng)-染色復(fù)合改性及性能研究的結(jié)果基本一致。
酸性染料在木材工業(yè)中應(yīng)用廣泛,但耐水性較差,在一定程度上影響了染色材利用(顧麗莉等, 2001)。鄭雅嫻等(2016b)認(rèn)為樹脂對(duì)酸性染料的滲透和分散有明顯促進(jìn)作用。本研究中,增強(qiáng)-染色復(fù)合改性劑在木材中的滲透性和勻染性良好,增強(qiáng)-染色復(fù)合改性材比純?nèi)旧念伾鼮榫鶆颍珴筛鼮槠G麗。本研究得出酸性染料-MUF復(fù)合染色材耐水色牢度較好,這與前人得出的酸性染料染色后木材耐水性較差(顧麗莉等, 2001; 韋雙穎等, 2008)的結(jié)果相反。分析其原因:一方面樹脂型改性劑中含有大量—NH2,可與酸性染料中磺酸基—RSO3-反應(yīng)生成鹽,形成穩(wěn)定的離子鍵(段新芳等, 2003; 顧繼友等, 2007); 另一方面樹脂型改性劑自身交聯(lián)縮聚形成高聚物,并與纖維素上的羥基發(fā)生交聯(lián)反應(yīng),形成三維網(wǎng)狀結(jié)構(gòu),使染料與樹脂一同固著于木材內(nèi)部(方桂珍等, 1997),從而提高了染色材耐水色牢度。
木材樹脂浸漬增強(qiáng)處理可提高軟質(zhì)木材的物理力學(xué)性能(Dekaetal., 2002),木材染色可提高木材的裝飾性(顧麗莉等, 2001)。本研究將木材的功能性改良與染色處理相結(jié)合,在提高其物理力學(xué)性能的同時(shí),賦予其良好的裝飾性,全面改善了人工林楊木的各項(xiàng)性能。增強(qiáng)-染色復(fù)合改性劑,不僅能在染色的同時(shí)進(jìn)行多功能改性,而且還有望解決染色材色牢度差等問題。但是,增強(qiáng)-染色復(fù)配體系的機(jī)制以及增強(qiáng)-染色復(fù)合改性材的耐光色牢度還有待進(jìn)一步研究。
將自制水溶性樹脂型增強(qiáng)改性劑MUF分別與酸性大紅G和酸性湖藍(lán)A復(fù)配得到增強(qiáng)-染色復(fù)合改性劑,通過真空加壓浸漬處理,對(duì)人工林楊木進(jìn)行增強(qiáng)-染色復(fù)合改性,結(jié)果表明: 1) 染料的加入對(duì)樹脂的增強(qiáng)改性作用影響較小,增強(qiáng)-染色復(fù)合改性楊木的密度、抗彎彈性模量、抗彎強(qiáng)度和抗壓強(qiáng)度均比未處理材明顯提高; 2) 與純?nèi)旧南啾?,增?qiáng)-染色復(fù)合改性材的顏色更為均勻,色澤更為艷麗,總體上MUF-染料復(fù)合改性的染色效果更好; 3) 酸性大紅G和酸性湖藍(lán)A與MUF樹脂溶液復(fù)配后,在木材中的耐水色牢度均明顯提高,MUF樹脂對(duì)耐水色牢度較差的酸性湖藍(lán)A的固色作用更為明顯; 4) FTIR分析表明,染料與MUF復(fù)配染色過程中沒有新基團(tuán)生成,說明隨樹脂固化沉積于木材內(nèi)部的染料與木材組分和起增強(qiáng)改性作用的MUF樹脂之間沒有產(chǎn)生新的化學(xué)結(jié)合。
鄧邵平,葉翠仙,陳孝云,等. 2009. 3種助劑對(duì)染色單板耐水色牢度的影響及其FTIR分析. 福建林學(xué)院學(xué)報(bào),29(1): 45-48.
(Deng S P,Ye C X,Chen X Y,etal. 2009. Study on the effect of color fastness of water about three dyeing auxiliary to dyed veneer and its mechanism analysis by FTIR methods. Journal of Fujian College of Forestry,29(1): 45-48. [in Chinese])
段新芳,孫芳利,朱 偉,等. 2003. 殼聚糖處理對(duì)木材染色的助染效果及其機(jī)理的研究. 林業(yè)科學(xué),39(6): 126-130.
(Duan X F,Sun F L,Zhu W,etal. 2003. Effects of wood dyeing pretreated with chitosan and its mechanism for color improvement by chitosan. Scientia Silvae Sinicae,39(6): 126-130. [in Chinese])
方桂珍,李 堅(jiān),劉一星,等. 1997. 三聚氰胺-甲醛與木材的交聯(lián)作用. 林業(yè)科學(xué),33(3): 252-258.
(Fang G Z,Li J,Liu Y X,etal. 1997. Cross-linking effect between wood and melamine-formaldehyde. Scientia Silvae Sinicae,33(3): 252-258. [in Chinese])
顧繼友,孟黎鵬,韋雙穎,等. 2007. 殼聚糖后處理染色單板的耐水和耐光顏色穩(wěn)定性. 東北林業(yè)大學(xué)學(xué)報(bào),35(10): 26-32.
(Gu J Y,Meng L P,Wei S Y,etal. 2007. Color fastness of the dyed veneer treated by chitosan. Journal of Northeast Forestry University, 35(10): 26-32. [in Chinese])
顧麗莉,羅 云,劉 靜,等. 2001. 木材染色研究. 林產(chǎn)化學(xué)與工業(yè),21(2): 49-52.
(Gu L L,Luo Y,Liu J,etal. 2001. The research of wood dyeing. Chemistry and Industry of Forest Products,21(2): 49-52. [in Chinese])
黃艷輝,費(fèi)本華,余 雁,等. 2011. 木材低分子量樹脂改性研究進(jìn)展.安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),38(6): 863-866.
(Huang Y H,F(xiàn)ei B H,Yu Y,etal. 2011. Advance in low molecular weight resin modification of wood. Journal of Anhui Agricultural University,38(6): 863-866. [in Chinese])
李 紅,于志明. 2005. 染料與木材結(jié)合機(jī)理的研究. 北京林業(yè)大學(xué)學(xué)報(bào),27 (4): 78-81.
(Li H,Yu Z M. 2005. Combinative mechanism between dyestuff and wood. Journal of Beijing Forestry University, 27(4): 78-81. [in Chinese])
劉 毅,郭洪武,邵靈敏,等. 2011. 室內(nèi)環(huán)境下染色單板的光變色過程. 東北林業(yè)大學(xué)學(xué)報(bào),39(10): 74-76.
(Liu Y,Guo H W,Shao L M,etal. 2011. Analysis of photo-discoloration of dyed veneers in indoor environments. Journal of Northeast Forestry University, 39(10): 74-76. [in Chinese])
劉君良,李 堅(jiān),劉一星,等. 2000. PF預(yù)聚物處理固定木材壓縮變形的機(jī)理. 東北林業(yè)大學(xué)學(xué)報(bào),28(4): 16-20.
(Liu J L,Li J,Liu Y X,etal. 2000. Study on the fixation mechanism of compressive deformation of wood by PF resin treatment. Journal of Northeast Forestry University,28(4): 16-20. [in Chinese])
呂建雄,徐 康,劉 元,等. 2014. 速生人工林楊木增強(qiáng)改性的研究進(jìn)展. 中南林業(yè)科技大學(xué)學(xué)報(bào),34 (3): 99-103.
(Lü J X,Xu K,Liu Y,etal. 2014. Research progresses on reinforced modification of poplar wood from fast growing plantation. Journal of Central South University of Forestry and Technology,34(3): 99-103. [in Chinese])
呂曉慧,朱林峰. 2012. 速生楊木材染色處理工藝的研究. 中南林業(yè)科技大學(xué)學(xué)報(bào),32(1): 70-74.
(Lü X H,Zhu L F. 2012. Study on dyeing treatment technology of fast-growing poplar wood. Journal of Central South University of Forestry and Technology,32(1): 70-74. [in Chinese])
王傳貴,裴韻文,張雙燕,等. 2014. 不同染料對(duì)棕櫚藤材的影響及機(jī)理分析. 林產(chǎn)化學(xué)與工業(yè),34(4): 121-125.
(Wang C G,Pei Y W,Zhang S Y,etal. 2014. Effect of different dyes on rattan and its dyeing mechanism. Chemistry and Industry of Forest Products,34(4): 121-125. [in Chinese])
韋雙穎,王 砥,顧繼友. 2008. 酸性染料在樺木中的滲透與吸附. 東北林業(yè)大學(xué)學(xué)報(bào),36(3): 45-48.
(Wei S Y,Wang D,Gu J Y. 2008. Permeability and adsorption of acid dyes in birch wood. Journal of Northeast Forestry University,36(3): 45-48. [in Chinese])
楊曉飛,韓英磊. 2011. 楊木資源的高效利用. 木材加工機(jī)械,22(5): 36-38.
(Yang X F,Han Y L. 2011. The modification and efficient utilization of poplar wood. Wood Processing Machinery,22(5): 36-38. [in Chinese])
鄭雅嫻,呂文華,許茂松. 2016a. 鉤葉藤材的增強(qiáng)-染色復(fù)合改性及其性能研究. 南京林業(yè)大學(xué)學(xué)報(bào): 自然科學(xué)版,40(2): 155-159.
(Zheng Y X,Lü W H,Xu M X,etal. 2016. Research of strengthening-dyeing modification ofPlectocomiapierreanacane and its properties. Journal of Nanjing Forestry University: Natural Science Edition,40(2): 155-159. [in Chinese])
鄭雅嫻,呂文華,許茂松. 2016b. 增強(qiáng)-染色復(fù)合改性楊木的耐水色牢度. 東北林業(yè)大學(xué)學(xué)報(bào),44(2):39-41.
(Zheng Y X,Lü W H,Xu M X,etal. 2016. Research of strengthening-dyeing modification ofPlectocomiapierreanacane and its properties. Journal of Northeast Forestry University,44(2): 39-41. [in Chinese])
Deka M,Saikia C N,Baruah K K. 2002. Studies on thermal degradation and termite resistant properties of chemically modified wood. Bioresource Technology,84(2): 151-157.
Furuno T,Imamura Y,Kajita H. 2004. The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls. Wood Science and Technology, 37(5): 349-361.
Lang Q,Chen H Y,Pu J W. 2013. Wood modification using a urea-formaldehyde prepolymer. Wood and Fiber Science,45(2): 1-8.
Wan H,Kim M G. 2006. Impregnation of southern pine wood and strands with low molecular weight phenol formaldehyde resins for stabilization of oriented strandboard. Wood and Fiber science, 38(2):314-324.
(責(zé)任編輯 石紅青)
Properties of Strengthening-Dyeing-Combined Modified Plantation Poplar Wood
Xu Maosong Lü Wenhua Wang Xueyu
(ResearchInstituteofWoodIndustry,CAFBeijing100091)
【Objective】In order to provide the technical support for the efficient exploitation and utilization of plantation poplar wood resources, this study investigated the method of strengthening-dyeing-combined modification of plantation poplar wood and the properties of the modified wood. 【Method】The acid red G aqueous solution, the acid blue A aqueous solution, and the acid red G and the acid blue A blended individually with water soluble strengthening modifier (i.e. MUF resin), all of the same dye mass fraction, were used to modify the plantation poplar wood through the vacuum-pressure impregnation treatment, and the DA, DG, MUF-DAand MUF-DGdyed wood were obtained respectively. The physical and mechanical properties, color and colorfastness to water of all the dyed wood were measured.【Result】Results showed that: 1) The weight percent gain of the DA, DG, MUF-DAand MUF-DGdyed wood were -1.69%, -0.65%, 42.64% and 54.27%, and their density were 0.352, 0.365, 0.445 and 0.510 g·cm-3, respectively. Compared with those of the DAdyed wood, the density, modulus of elasticity (MOE), modulus of rupture (MOR), and compressive strength of the MUF-DAmodified wood increased by 26.42%, 6.76%, 17.63%, and 54.32% respectively. As compared with those of the DGdyed wood, the density, MOE, MOR, and compressive strength of the MUF-DGmodified wood increased by 39.73%, 8.58%, 18.82%, and 57.18% respectively. 2) The light index difference (ΔL*), green-red index difference (Δa*) and yellow-blue index difference (Δb*) of the DAand MUF-DAwere all negative, and the MUF-DA’s Δa*was lower, its ΔL*and Δb*were higher, so its blue tone was more obvious. As for the DGand MUF-DG, the ΔL*and Δb*were negative and the Δa*was positive, and the ΔL*, Δa*and Δb*of the MUF-DGwere all higher, so its red tone was more obvious. The color saturation difference (ΔC*) of the MUF-DAand MUF-DGwere much higher than those of the DAand DG. 3) The total color difference (ΔE*) of the DAand DGafter water erosion test were 12.92 and 8.30 NBS, while those of the MUF-DAand MUF-DGdecreased to 5.94 and 6.93 NBS respectively. 4) The IR spectra of the DAand DGdyed wood were similar to that of the untreated wood, and the spectra of the MUF-DAand MUF-DGmodified wood were similar to that of the MUF strengthened wood, no new absorption peak was observed and the peak intensity was almost unchanged. 【Conclusion】1) The acid dyes had minor effects on the reinforcement function of MUF resin, and their combined modification could significantly improve the density, MOR, MOE, and the compressive strength of plantation poplar wood. 2) Compared with the simple dyed wood, the color of strengthening-dyeing combined wood was more vivid and showed better dyeing effect, especially the effect of MUF-DGwas the best. 3) The colorfastness to water of the strengthening-dyeing combined wood was better than that of the simple dyed wood, especially the effect of MUF-DAwas the best. 4) FTIR analysis showed that no new chemical group generated during the strengthening-dyeing combined modification process, and there was no new chemical bonding produced between the wood components and dye which deposited with MUF resin and fixed in wood.
plantation poplar wood; strengthening-dyeing combined modifier; impregnation treatment; properties; FTIR analysis
10.11707/j.1001-7488.20170110
2016-09-11;
2016-02-25。
中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(CAFYBB2014MB003)。
S781.7
A
1001-7488(2017)01-0082-06
*呂文華為通訊作者。