国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

2種花粉授粉山核桃果皮光合特性的差異比較*

2017-03-08 07:17徐沁怡趙建文吳建峰曹亦潤楊先有夏國華王正加黃堅欽胡淵淵
林業(yè)科學 2017年1期
關(guān)鍵詞:山核桃

徐沁怡 王 標 趙建文 吳建峰 曹亦潤 楊先有 夏國華 王正加 黃堅欽 胡淵淵

(浙江農(nóng)林大學亞熱帶森林培育國家重點實驗室培育基地 臨安 311300)

2種花粉授粉山核桃果皮光合特性的差異比較*

徐沁怡 王 標 趙建文 吳建峰 曹亦潤 楊先有 夏國華 王正加 黃堅欽 胡淵淵

(浙江農(nóng)林大學亞熱帶森林培育國家重點實驗室培育基地 臨安 311300)

【目的】 研究授不同花粉的山核桃果實發(fā)育期間外果皮光合速率、光合色素及葉綠素熒光特性的變化,探討花粉授粉對山核桃外果皮光合特性的影響,以及其與果實干物質(zhì)形成的關(guān)系,初步揭示花粉直感使山核桃果實增大的光合生理機制,為探尋進一步提高山核桃產(chǎn)量的技術(shù)路徑提供參考依據(jù)。【方法】 設(shè)置2種授粉組合[山核桃×山核桃(hp)和山核桃×薄殼山核桃(pp)],于授粉后不同天數(shù)測定2種花粉授粉山核桃果實的光合面積、干質(zhì)量、光合速率、光合色素及葉綠素熒光特性的變化?!窘Y(jié)果】 1) 薄殼山核桃花粉(pp)授粉的山核桃果實顯著大于山核桃花粉 (hp) 授粉的果實,且外果皮顏色更綠。果實發(fā)育前期(授粉后50~73天)和后期(授粉后103~120天),pp授粉果實表面積和干質(zhì)量的日增量均顯著高于hp授粉果實。授粉后50~85天,pp授粉果實的光合速率顯著高于hp果實。2種花粉授粉山核桃果實的干質(zhì)量日均增量與其單果的光合速率日均增量之間呈顯著相關(guān)。2) 果實發(fā)育過程中,pp授粉果實的葉綠素含量顯著高于hp果實,且果實的葉綠素含量與其外果皮的光合速率呈顯著相關(guān)。3) 在一定光強(1 265 μmol·m-2s-1)下,pp授粉果實的實際光化學效率(Y)、表觀電子傳遞速率(ETR)和光化學猝滅系數(shù)(qP)均顯著高于hp授粉果實。果實發(fā)育過程中,hp授粉果實外果皮ETR達到峰值的光強強度顯著低于pp授粉果實外果皮ETR達到峰值的光強強度,且在果實發(fā)育后期(授粉后103~120天),hp授粉果實外果皮ETR達到峰值的光強強度顯著降低,下降幅度約為50%。在果實發(fā)育后期(授粉后103~120天),hp授粉果實外果皮的Y(NO)顯著增加,pp授粉果實外果皮的Y(NO)無明顯變化; 且在授粉后120天,與hp授粉果實外果皮相比,pp授粉果實外果皮具有較高的Y(Ⅱ)和較低的Y(NO)?!窘Y(jié)論】 授粉后50~73天,pp授粉的山核桃果實干質(zhì)量快速增加主要是由于其較大的光合面積和較高的光合速率; 授粉后103~120天,pp授粉果實干質(zhì)量快速增加主要是由于其較大的光合面積。果實發(fā)育后期(授粉后103~120天),hp授粉的果實較易受到光損傷,而pp授粉的果實具有較強的抗光抑制能力,這可能是pp授粉果實生物量增加的重要原因。關(guān)鍵詞: 山核桃; 外果皮; 氣體交換參數(shù); 葉綠素熒光; 物質(zhì)生產(chǎn)

胡桃科(Juglandaceae)山核桃屬(Carya)有2種普遍栽培的經(jīng)濟樹種: 山核桃(Caryacathayensis)和薄殼山核桃(C.illinoensis)。前者我國特有,味香殼厚; 而后者原產(chǎn)美國,殼薄味濃。通過不同的授粉試驗,山核桃具有明顯的花粉直感現(xiàn)象(葉茂富等, 1965; 王正加等, 2010; 葉浩然等, 2013)。授薄殼山核桃花粉的山核桃果實外果皮變綠,果實、種仁明顯增大,但分子標記顯示授粉子代與母本遺傳基礎(chǔ)無明顯差異(王正加等, 2010),這表明果實變異不是由于遺傳物質(zhì)變化引起的,果實的大小和發(fā)育主要受從葉片及其他非葉光合器官(如綠色果皮)運輸而來的光合產(chǎn)物影響(Cocaliadisetal., 2014)。雖然葉片是植物主要的光合器官,但許多植物的果實也含有葉綠素,能進行光合作用,且對果實或種子的形成具有重要貢獻(Lytovchenkoetal., 2011; Huetal., 2012),是對葉片光合物質(zhì)生產(chǎn)能力的有效補充(Paveletal., 1993; Marcelisetal., 1995; Hetheringtonetal., 1998)。

本研究設(shè)置2種授粉組合:山核桃×山核桃(hp)和山核桃×薄殼山核桃(pp),研究授不同花粉的山核桃果實發(fā)育期間外果皮光合速率、光合色素及葉綠素熒光特性的變化,探討花粉授粉對山核桃外果皮光合特性的影響,以及其與果實干物質(zhì)形成的關(guān)系,初步揭示花粉直感使山核桃果實增大的光合生理機制。通過研究山核桃外果皮的光合增產(chǎn)潛力和優(yōu)勢,為探尋進一步提高山核桃產(chǎn)量的技術(shù)途徑提供參考依據(jù)。

1 材料與方法

1.1 試驗地概況

試驗地位于浙江農(nóng)林大學山核桃試驗林基地(30°14′10.68″E,119°43′11.63″N)。該基地地勢平緩, 2008年采用嫁接苗造林,砧木為2年生湖南山核桃,穗條為1年生山核桃品種, 2012年開始結(jié)果。每年4月花期時施少量復(fù)合肥,9月果實采收后施有機肥,田間栽培技術(shù)措施基本相同。

1.2 試驗材料

選擇無性系山核桃結(jié)果樹8~10株為母本樣株,4月下旬套袋,父本分別為山核桃花粉(記作hp)和薄殼山核桃花粉(記作pp),進行人工授粉。授粉5~7天后除去紙袋,掛牌標記。授粉后30天開始疏果(每個結(jié)果枝只留1個果,便于氣體交換的測定),分別在山核桃果實發(fā)育關(guān)鍵時期(解紅恩等, 2008)采集相同高度的山核桃果實,并進行分析。

1.3 試驗方法

1.3.1 果實形態(tài)和干質(zhì)量的測定 果實成熟后每處理隨機選取120個果實,采用四分法分為4份,作為4個重復(fù)。果長(L)、果徑(T)、果厚(W)用游標卡尺測量,精確到0.01 mm。參照Baryeh(2001)和宋慧芝等(2011)的方法積計算果實表面積。公式如下:

(1)

(2)

式中:Dg為幾何平均徑(mm);S為表面積(cm2)。

然后將果實105 ℃殺青30 min,之后在60 ℃的烘箱烘干至恒質(zhì)量,果干物質(zhì)量用電子天平稱取,精確到0.01 g。

1.3.2 氣體交換參數(shù)的測定 選擇晴天光強穩(wěn)定在1 200~1 400 μmol·m-2s-1(8:00—11:00,14:00—17:00)時,采用Li6400-02標準葉室(LI-COR Inc,Lincoln,USA)測定不同花粉授粉的山核桃相應(yīng)葉片的氣體交換參數(shù),以內(nèi)置紅藍光源02為光源; 采用Li6400-22簇狀葉室測定不同花粉授粉的山核桃果實的氣體交換參數(shù),以18-RGB為光源。每株樹作為1個重復(fù),4次重復(fù),每次重復(fù)3個獨立葉片、果實。

進行氣體交換參數(shù)測定時,設(shè)定葉室內(nèi)氣體流速為500 μmol·s-1,溫度為28 ℃,CO2濃度為400 μmol·mol-1,光強為1 300 μmol·m-2s-1。葉片光合速率為凈光合速率和呼吸速率之和; 果實光合速率為光下的光合速率和黑暗下的呼吸速率之和。山核桃果實外果皮單位面積的光合速率通過代入山核桃果實的表面積/2(與葉片光合速率的計算方法一致,只有上表面積接受光強,所用的面積只是一面)進行校準重新計算。

1.4 數(shù)據(jù)處理方法

數(shù)據(jù)采用Excel 2007軟件進行計算和分析,其獨立樣本t檢驗和方差分析處理均采用SPSS18.0軟件進行統(tǒng)計學分析處理,多重比較采用LSD法分析,利用sigmaplot12.0版專業(yè)繪圖和數(shù)據(jù)分析軟件進行相關(guān)性分析及作圖。

2 結(jié)果與分析

2.1 2種花粉授粉山核桃果實的外觀形態(tài)、干質(zhì)量和表面積的變化

pp授粉的山核桃果實明顯大于hp花粉授粉的果實,且外果皮更綠(圖1)。2種花粉授粉山核桃果實的表面積日均增量隨果實發(fā)育呈先升高后降低然后再緩慢升高的趨勢(圖2A),其干質(zhì)量日均增量隨果實發(fā)育呈先增加后下降的趨勢(圖2B)。授粉后50~73天,pp授粉的果實表面積日均增量為0.68 cm2·d-1,而hp授粉處理為0.57 cm2·d-1; 授粉后103~120天,hp授粉的果實表面積日均增量為0.26 cm2·d-1,而pp授粉處理為0.34 cm2·d-1。果實發(fā)育前期(授粉后50~73天),pp授粉的山核桃果實干質(zhì)量日均增量(0.12 gDW·d-1)高于hp授粉的果實(0.07 gDW·d-1); 果實發(fā)育后期(授粉后103~120天),pp授粉的山核桃果實日均干質(zhì)量增量(0.05 gDW·d-1)均高于hp授粉的果實(0.03 gDW·d-1)。在果實發(fā)育的各個時期,pp授粉的山核桃果實表面積和干質(zhì)量均顯著高于hp授粉的果實,其中50,73,85,103和120天時pp授粉山核桃果實的表面積分別是hp授粉果實的1.35,1.26,1.23,1.18和1.2倍; pp授粉山核桃果實的干質(zhì)量分別是hp授粉果實的1.64,1.59,1.51,1.23和1.26倍。

授粉后天數(shù)Days after pollination/d圖1 果實發(fā)育過程中不同花粉授粉山核桃果實外形的變化Fig.1 Changes in shape of hickory fruits pollinated with two different pollens during the fruit growth stages

圖2 果實發(fā)育過程中2種花粉授粉山核桃果實表面積(A)和干質(zhì)量(B)的變化Fig.2 Changes in surface area (A) and mass (B) of hickory fruits pollinated with two different pollens during the fruit growth stages圖中數(shù)據(jù)為均值±標準誤差, **表示相同時期2種花粉授粉的山核桃果實之間在0.01水平達顯著差異,*表示在0.05水平達顯著差異, ns表示在0.05水平無顯著差異。 圖A和B中的小圖分別為不同發(fā)育時期內(nèi)的表面積日均增量和干質(zhì)量日均增量。 Date are presented as the means± standard error. Significant differences in hickory fruits pollinated with two different pollens :**: P<0.01; *:P<0.05; ns: P>0.05. The small figures in the Fig.2 A and B showed the increase rates of surface area and dry mass in fruits pollinated with two different pollens during the different growth stages.下同The same below.

2.2 2種花粉授粉山核桃果實的外果皮及其對應(yīng)葉片氣體交換參數(shù)的變化

隨著果實發(fā)育,2種花粉授粉山核桃外果皮單位面積的光合速率均呈先升高后降低的趨勢(圖3A)。在授粉后73天,hp和pp授粉山核桃外果皮的光合速率均達到最大值,分別7.15和9.54 μmol CO2·m-2s-1。果實發(fā)育的前中期(授粉后50~85天),pp授粉山核桃果實外果皮單位面積的光合速率均顯著高于hp授粉的果實(P<0.05),且在授粉后50,73,85天,前者分別為后者的1.31,1.32,1.33倍。

隨著果實發(fā)育,2種花粉授粉山核桃果實的對應(yīng)葉片光合速率均呈逐漸降低的趨勢。與授粉后50天相比,授粉后85天2種花粉授粉的葉片光合速率降低37%~47%。在整個果實發(fā)育過程中,2種花粉授粉山核桃果實相應(yīng)葉片的光合速率之間無顯著差異(圖3B)。

圖3 果實發(fā)育過程中2種花粉授粉山核桃果實外果皮(A)及其對應(yīng)葉片(B)單位面積上光合速率的變化Fig.3 Changes in apparent photosynthetic rate in exocarp and their corresponding leaves of the hickory fruits pollinated with two different pollens during the fruit growth stages

2.3 2種花粉授粉的山核桃果實單果日均干質(zhì)量增量與單果日均光合速度率增量之間的相關(guān)性

在果實發(fā)育過程中,分別計算一段時間內(nèi)的日平均單果干質(zhì)量和日均單果光合速率。由圖4可以看出,山核桃果實的日均單果光合速率增量與日均單果干質(zhì)量增量之間顯著相關(guān)。

圖4 山核桃果實單果日均干質(zhì)量增量與其單果光合速率日均增量的相關(guān)性Fig.4 Relationship between average daily dry mass increment and average daily apparent photosynthesis rate increment expressed on per fruit of hickory fruits日均單果干質(zhì)量增量=相鄰2個時期的干質(zhì)量增量/間隔天數(shù); 日均單果光合速率增量=日均表面積增量(相鄰2個時期的表面積增量/間隔天數(shù))×平均光合速率(相鄰2個時期的光合速率之和/2)。 Average daily dry mass increment per fruit=dry mass increment of adjacent periods / intervallic days; Daily photosynthetic rate per day=daily surface area increment/2 (surface area increment of adjacent periods / intervallic days/2)×average photosynthetic rate (the sum of adjacent two photosynthesis rate /2).

2.4 2種花粉授粉山核桃果實外果皮葉綠素含量的變化及其與外果皮光合速率相關(guān)性

由圖5可以看出,在果實發(fā)育過程中,除授粉后120天外,pp授粉的山核桃果實外果皮葉綠素含量均顯著高于hp授粉的果實,均在授粉后73天達到最大值,此后開始快速下降。隨果實外果皮葉綠素含量的增加,果實外果皮平均光合速率也升高,且二者極顯著相關(guān)(圖6)。

圖5 果實發(fā)育過程中2種花粉授粉山核桃果實外果皮葉綠素含量的變化Fig.5 Changes in chlorophyll content in exocarp of hickory fruits pollinated with two different pollens during the fruit growth stages

2.5 2種花粉授粉山核桃果實外果皮葉綠素熒光參數(shù)的變化

在果實發(fā)育過程中,不同花粉授粉山核桃果實外果皮之間的Fv/Fm之間不存在顯著差異。隨著果實發(fā)育,pp授粉山核桃果實外果皮的實際光化學效率(Y)顯著高于hp授粉的果實。授粉后103~120天,hp授粉的山核桃外果皮Y下降54.7%,而pp授粉的山核桃外果皮下降30.4%。ETR代表光合作用的表觀電子傳遞速率,當光強恒定時,其變化決定Y的變化,不同授粉處理間的ETR變化與Y的變化趨勢相似(表1)。qP是光合機構(gòu)光系統(tǒng)Ⅱ的光化學猝滅系數(shù),表示PS Ⅱ中處于開放狀態(tài)的反應(yīng)中心所占的比例。由表1可知,隨著果實發(fā)育,pp授粉山核桃果實外果皮的qP值均顯著高于hp授粉的果實。

2.6 2種花粉授粉山核桃果實外果皮葉綠素電子傳遞特性的變化

快速光曲線是一種新的快速測定光合機構(gòu)光合作用活性的有力工具,可以反映光系統(tǒng)Ⅱ電子傳遞的飽和特性和光合活性(Ralphetal., 2005)。從圖7可以看出,光強從0~200 μmol·m-2s-1,不同花粉授粉山核桃果實外果皮的ETR均快速增加。授粉后50天,hp授粉山核桃果實外果皮的ETR在光強為770 μmol·m-2s-1達到最高值,而pp授粉山核桃果實外果皮的ETR在光強為1 710 μmol·m-2s-1達到最高值; 授粉后103天,hp授粉山核桃果實外果皮的ETR在光強710 μmol m-2s-1達到最高值,而pp授粉山核桃果實外果皮的ETR在光強958 μmol·m-2s-1達到最高值; 授粉后120天,hp授粉山核桃果實外果皮的ETR在光強為356 μmol·m-2s-1達到最高值,而pp授粉的山核桃果實外果皮的ETR在光強為717 μmol·m-2s-1達到最高值。

2.7 2種花粉授粉山核桃果實外果皮快速響應(yīng)曲線的變化

圖6 2種花粉授粉山核桃果實外果皮的葉綠素含量與光合速率之間的相關(guān)性Fig.6 Relationship between chlorophyll content and photosynthetic rate in exocarp of hickory fruits pollinated with two different pollens

在果實發(fā)育過程中,pp授粉山核桃果實的Y(Ⅱ)顯著高于hp授粉的山核桃果實; 但2種花粉授粉處理間的Y(NPQ)無顯著差異。果實發(fā)育前期(授粉后50天)和后期(授粉后120天),pp授粉山核桃果實外果皮的Y(NO)顯著低于hp授粉的果實(圖8A1,A2,C1和C2)。授粉后103~120天,hp和pp授粉山核桃果實外果皮的Y(Ⅱ)均顯著降低。非調(diào)節(jié)性能量耗散的量子產(chǎn)量[Y(NO)]代表熒光和不依賴光的基礎(chǔ)熱耗散比例。果實發(fā)育后期(授粉后103~120天),hp授粉山核桃果實外果皮的Y(NO)顯著增加, 而pp授粉山核桃果實外果皮Y(NO)卻無顯著變化。Y(NPQ) 是調(diào)節(jié)性能量耗散的量子產(chǎn)量,其值是光保護的重要指標。隨著果實發(fā)育,pp授粉山核桃果實外果皮的Y(NPQ)未發(fā)生顯著變化; 然而,授粉后50~103天,hp授粉山核桃果實外果皮的Y(NPQ)顯著增加(圖8)。

表1 2種花粉授粉山核桃果實外果皮的葉綠素熒光參數(shù)①

3 討論

圖7 2種花粉授粉處理后山核桃果實的快速光曲線Fig.7 Rapid light curves of of hickory fruit pollinated with two different pollens during the fruit growth stagesA.授粉后50天50 d after pollination; B.授粉后103d 103 d after pollination; C.授粉后120天 120 d after pollination.

圖8 果實發(fā)育過程中不同花粉授粉山核桃果實的Y(Ⅱ)、Y(NPQ)、Y(NO)隨光合有效輻射(PAR)升高的變化Fig.8 Estimated fraction of Y(Ⅱ), Y(NPQ), and Y(NO) in exocarp of hickory fruits pollinated with two different pollens with increasing photosynthetic active radiation (PAR) during the fruit growth stagesA1: 山核桃花粉授粉后50天; B1: 山核桃花粉授粉后103天; C1: 山核桃花粉授粉后120天; A2: 薄殼山核桃花粉授粉后50天; B2: 薄殼山核桃花粉授粉后103天; C2: 薄殼山核桃花粉授粉后120天. A1: pollinated with hickory pollen at 50 d after pollination; B1: pollinated with hickory pollen at 103 d after pollination; C1: pollinated with hickory pollen at 120 d after pollination; A2: pollinated with pecan pollen at 50 d after pollination; B2: pollinated with pecan pollen at 103 d after pollination; C2: pollinated with pecan pollen at 120 d after pollination.

本研究結(jié)果顯示,pp授粉的山核桃果實顯著大于hp授粉的果實,且外果皮顏色更綠(圖1),這與黎章矩等(1982)、葉茂富等(1965)、王正加等(2010)、葉浩然等(2013)的研究結(jié)果一致,存在明顯的花粉直感現(xiàn)象。AFLP和SSR分子標記顯示子代與母本間不存在差異,表明以薄殼山核桃為父本授粉的山核桃果實變異不是由于遺傳物質(zhì)的變化引起的(王正加等, 2010)。本研究結(jié)果顯示,在果實發(fā)育過程中,pp授粉山核桃果實的外果皮表面積、干質(zhì)量均顯著高于hp授粉的果實(圖2)。許多植物的果實具有光合能力,且具有向種子運輸距離短的特點,對其果實、種子的生長和發(fā)育具有重要的作用(Blankeetal., 1989; Birkholdetal., 1992; Paveletal., 1993; Hiekeetal., 2002; Huetal., 2012)。pp授粉的山核桃果實外果皮光合速率顯著高于hp授粉的果實,而2種花粉授粉山核桃果實對應(yīng)葉片之間的光合速率是一致的(圖3),因此,筆者推測造成2種花粉授粉山核桃果實干質(zhì)量差異的原因可能是不同花粉對山核桃外果皮光合作用的差異。植物光合生產(chǎn)能力與其光合面積、光合能力、光合時間和光照強度均密切相關(guān)。本研究結(jié)果顯示,果實發(fā)育早期(授粉后50~73天)和后期(授粉103~120天),pp授粉山核桃果實表面積的增加速率均大于hp授粉的果實(圖2), 且在授粉后50~85天,pp授粉山核桃果實外果皮單位面積的光合速率約為hp授粉果實的1.3倍(圖3),說明pp授粉山核桃果實干質(zhì)量增量與其較大的光合面積和較高的光合能力密切有關(guān),這可以從山核桃果實日均單果干質(zhì)量與其日均單果光合速率增量的相關(guān)性分析中得到進一步證實(圖4)。

葉綠素在光能吸收和轉(zhuǎn)化中起著重要作用,是光合作用的基礎(chǔ)。本研究結(jié)果顯示,pp授粉山核桃果實外果皮葉綠素含量顯著高于hp授粉的果實(圖5),且山核桃果實外果皮葉綠素含量與光合速率呈極顯著相關(guān)(圖6)。這表明pp授粉山核桃果實外果皮積累較多的葉綠素是其具有較高外果皮光合速率的重要原因(孫山, 2009),為提高果實自身的物質(zhì)生產(chǎn)及積累能力奠定基礎(chǔ)。

本研究表明,2種花粉授粉山核桃果實的最大光化學效率(Fv/Fm)之間無明顯差異,均在0.713~0.771之間(表1),說明2種花粉授粉山核桃外果皮對光能利用的能力是一致的。在一定強度光化學(1 265 μmol·m-2s-1)存在的條件下,pp授粉山核桃果實的實際光化學效率(Y)、電子傳遞速率(ETR)、光合機構(gòu)PSⅡ反應(yīng)中心的比例(qP)均顯著高于hp授粉的果實,這表明具有較高光合電子傳遞能力的pp授粉的山核桃果實外果皮可能是與其具有較高的qP有關(guān)。陸地棉花(Gossypiumhirsutum)盛鈴期,‘雜交棉石雜2號’和‘新陸早43號’非葉器官(鈴殼和莖稈)的實際光化學效率顯著高于常規(guī)棉是其產(chǎn)量高的主要原因(張亞黎等, 2010)。因此,筆者推測pp授粉山核桃果實外果皮光合速率高與其具有較高的Y有關(guān)。

在果實發(fā)育過程中,不同花粉授粉山核桃果實外果皮ETR達到峰值的光強強度顯著降低,且pp授粉山核桃果實外果皮ETR達到峰值的光強強度顯著高于hp授粉的果實(圖7)。這表明,在相同的光強下,hp授粉的山核桃果實外果皮更易受到光抑制(Bertaminietal., 2003)。Y(NO)是光損傷的重要指標(Ralphetal., 2005),如果Y(NO)較高,則表明此時入射光可能超過了植物能接受的程度,受到光損傷。果實發(fā)育前期(授粉后50天)和后期(授粉后120天),與hp授粉的果實相比,pp授粉果實具有較高的Y(Ⅱ)和較低的Y(NO)(圖8)。這表明在相同輻射的強光照射下,pp授粉的核桃果實外果皮具有較強的抗光抑制能力。越來越多的研究認為,增強植物光合機構(gòu)的抗光抑制能力與其生物量的提高密切相關(guān)(Wangetal., 2002; Longetal., 2006)。張亞黎等(2010)研究認為,陸地棉非葉綠色器官光合生產(chǎn)能力的提高與其較好的抗光抑制能力有關(guān)。因此,果實發(fā)育后期,pp授粉山核桃果實具有較高抗光抑制能力可能是其果實干質(zhì)量增加的重要原因。

4 結(jié)論

綜上所述,薄殼山核桃授粉山核桃果實干質(zhì)量增加與其外果皮的光合作用密切相關(guān)。果實發(fā)育前期(授粉后50~73天),薄殼山核桃授粉山核桃果實干質(zhì)量快速增加是由于其果實具有較大的光合面積和較高的光合速率; 果實發(fā)育后期(授粉后103~120天),果實干質(zhì)量快速增加主要是由于其果實具有較大的光合面積。果實發(fā)育后期(授粉后120天),薄殼山核桃授粉山核桃果實具有較強的抗光抑制能力可能也是其干質(zhì)量增加的重要原因。

黎章矩, 夏逍鴻, 施拱生. 1982. 山核桃種間雜交試驗研究. 浙江林學院科技通訊, (1): 44-53.

(Li Z J, Xia X H, Shi G S. 1982. Hickory interspecific hybridization experiment research. Journal of Zhejiang Forestry College, (1): 44-53. [in Chinese])

宋慧芝, 張京平, 何 勇. 2011. 香榧青果的物理特性和其堅果力學特性研究. 農(nóng)機化研究, 33(11): 170-173.

(Song H Z, Zhang J P, He Y. 2011. Research on physical and mechanical property of Chinese torreya. Journal of Agricultural Mechanization Research, 33(11): 170-173. [in Chinese])

孫 山. 2009. 蘋果綠色果皮光合生理特性及果皮灼傷機制的研究. 泰安:山東農(nóng)業(yè)大學博士學位論文, 50-53.

(Sun S. 2009. Study on photosynthetic characteristics and mechanism of sunburn in green peel of apple fruit. Tai’an:PhD thesis of Shandong Agricultural University, 50-53. [in Chinese])

王正加, 張 斌, 夏國華,等. 2010. 山核桃×薄殼山核桃花粉直感效應(yīng)與后代分析. 果樹學報, 27(6): 908-913.

(Wang Z J, Zhang J, Xia G H,etal. 2010. Analysis of the progeny ofCaryacathayensis×C.illinoensisand the xenia effect. Journal of of Fruit Science, 27(6): 908-913. [in Chinese])

解紅恩, 黃有軍, 薛霞銘,等. 2008. 山核桃果實生長發(fā)育規(guī)律. 浙江農(nóng)林大學學報, 25(4): 527-531.

(Xie H E, Huang Y J, Xue X M,etal. 2008. Growth and development of theCaryacathayensisnut. Journal of Zhejiang Forestry & Agricultural University, 25(4): 527-531. [in Chinese])

葉浩然, 邵慰忠, 常 君,等. 2013. 山核桃與薄殼山核桃的雜交優(yōu)勢在山核桃生產(chǎn)中的應(yīng)用試驗. 浙江林業(yè)科技, 33(4): 83-85.

(Ye H R, Shao W Z, Chang J,etal. 2013. Experiment on artificial pollination ofCaryacathayensisbyC.illinoensis. Journal of Zhejiang Forestry Science & Technology, 33(4): 83-85. [in Chinese])

葉茂富, 吳厚鈞. 1965. 山核桃與薄殼山核桃雜交的研究. 林業(yè)科學, 10(1): 50-56.

(Ye M F, Wu H J. 1965.Study of artificial pollination ofCaryacathayensisbyC.illinoensis. Scientia Silvae Sinicae, 10(1): 50-56. [in Chinese])

張亞黎, 馮國藝, 胡淵淵,等. 2010. 棉花非葉綠色器官光合能力的差異及與物質(zhì)生產(chǎn)的關(guān)系. 作物學報, 36(4): 701-708.

(Zhang Y L, Feng G Y, Hu Y Y,etal.2010. Photosynthetic activity and its correlation with matter production in non-foliar green organs of cotton. Acta Agronomica Sinica, 36(4): 701-708. [in Chinese])

Baryeh E A. 2001. Physical properties of bambara groundnuts. Journal of Food Engineering, 47(4): 321-326.

Bertamini M, Nedunchezhian N. 2003. Photoinhibition of photosynthesis in mature and young leaves of grapevine (VitisviniferaL.).Plant Science, 164(4): 635-644.

Birkhold K T, Koch K E, Darnell R L,etal. 1992. Carbon and nitrogen economy of developing rabbiteye blueberry fruit. Journal of the American Society for Horticulturalence, 117(1): 139-145.

Blanke M M, Lenz F. 1989. Fruit photosynthesis. Plant Cell & Environment, 12(1): 31-46.

Cocaliadis M F, Fernández-Muoz R, Pons C,etal. 2014. Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword? Journal of Experimental Botany, 65(16): 4589-4598.

Genty B, Briantais J M, Baker N R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990(1): 87-92.

Hendrickson L, Furbank R T, Chow W S. 2004. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynthesis Research, 82(1): 73-81.

Hetherington S E, Smillie R M, Davies W J. 1998. Photosynthetic activities of vegetative and fruiting tissues of tomato. Journal of Experimental Botany, 49(324): 1173-1181.

Hieke S, Menzel C M, Lüdders P. 2002. Effects of leaf, shoot and fruit development on photosynthesis of lychee trees (Litchichinensis). Tree Physiology, 22(13): 955-961.

Hu Y Y, Zhang Y L, Luo H H,etal. 2012. Important photosynthetic contribution from the non-foliar green organs in cotton at the late growth stage. Planta, 235(2): 325-336.

Klughammer C, Schreiber U. 1994. An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta, 192(2): 261-268.

Lichtenthaler H K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol, 148(1): 350-382.

Long S P, Zhu X G, Naidu S L,etal. 2006. Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment, 29(3): 315-330.

Lytovchenko A, Eickmeier I, Pons C,etal. 2011. Tomato fruit photosynthesis is seemingly unimportant in primary metabolism and ripening but plays a considerable role in seed development. Plant Physiology, 157(4): 1650-1663.

Marcelis L F M, Hofman-Eijer L R B. 1995. The contribution of fruit photosynthesis to the carbon requirement of cucumber fruits as affected by irradiance, temperature and ontogeny. Physiologia Plantarum, 93(3): 476-483.

Pavel E W, Dejong T M. 1993. Seasonal CO2exchange patterns of developing peach (Prunuspersica) fruits in response to temperature, light and CO2concentration. Physiologia Plantarum, 88(2): 322-330.

Ralph P J, Gademann R. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Botany, 82(3):222-237.Schreiber U, Bilger W, Neubauer C. 1995. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis∥Schulze E D,Caldwell M M. Ecophysiology of photosynthesis. Germany: Springer Berlin Heidelberg, 49-70.

Wang Q, Zhang Q D, Zhu X G,etal. 2002. PSⅡ photochemistry and xanthophyll cycle in two superhigh-yield rice hybrids, liangyoupeijiu and hua-an 3 during photoinhibition and subsequent restoration. Acta Botanica Sinica, 44(11): 1297-1302.

(責任編輯 王艷娜 郭廣榮)

Variation in Photosynthetic Characteristics of Exocarp ofCaryacathayensisFruits Pollinated with Different Pollens

Xu Qinyi Wang Biao Zhao Jianwen Wu Jianfeng Cao Yirun Yang Xianyou Xia Guohua Wang Zhengjia Huang Jianqin Hu Yuanyuan

(NurturingStationfortheStateKeyLaboratoryofSubtropicalSilviculture,ZhejiangA&FUniversityLin’an311300)

【Objective】To elucidate the effect of metaxenia on photosynthesis that promotes fruit enlargement in Carya cathayensis, the shape, gas exchange, chlorophyll content and chlorophyll fluorescence characteristics of C. cathayensis fruits pollinated with two different pollens during the fruit growth stages were measured. 【Method】 Two pollination combinations (C.cathayensis×C.cathayensisorC.cathayensis×C.illinoensis) were conducted in this study. The dynamic changes in photosynthetic area, dry mass, photosynthetic rate, chlorophyll content and chlorophyll fluorescence were investigated during the fruit growth stages. 【Result】 1) The hickory fruits pollinated with pecan pollens (pp) were significant larger and greener than those pollinated with hickory pollens (hp). Compared with the hickory fruits pollinated with hp, the increasing rate of the surface area and dry mass per day per fruit was significant higher in hickory fruits pollinated with pp at the early and late fruit growth stages (from 50 to 73 d after pollination and from 103 to 120 d after pollination). The photosynthetic rate per area of exocarp in hickory fruits pollinated with pp was significantly higher than that in fruits pollinated with hp during 50 to 85 days after pollination. Moreover, a significant positive correlation was found between the dry mass increment and photosynthesis rate increment expressed on per fruit per day of hickory fruits. 2) The chlorophyll content of exocarp in fruits pollinated with pp was significantly higher than that in fruits pollinated with hp, and there was a significant positive correlation between the chlorophyll content and photosynthetic rate of exocarp in hickory fruits. 3) TheY, ETR andqPin fruits pollinated with pp were significantly higher than those in fruits pollinated with hp at PAR of 1 265 μmol·m-2s-1. The light intensity of the maximum ETR in exocarp of hickory fruits pollinated with hp was significantly lower compared with that in fruits pollinated with pp during the fruit growth stages. The light intensity of the maximum ETR in exocarp of hickory fruits pollinated with hp significantly decreased at the late fruit growth stage (from 103 to 120 d after pollination), decreased by about 50%. TheY(NO) in exocarp of hickory fruits pollinated with hp significantly increased from 103 to 120 d after pollination. Compared with pericarp of hickory fruits pollinated with hp, the exocarp of fruits pollinated with pp had higherY(II) and lowerY(NO). 【Conclusion】 At the early fruit growth stage (from 50 to 73 d after pollination), the faster increase in dry mass of the fruits pollinated with pp was due to the higher photosynthetic surface area and photosynthetic rate; at the late fruit growth stage (from 103 to 120 d after pollination), the faster increase in dry mass of the fruits pollinated with pp was due to the increased photosynthetic surface area. At the late fruit growth stage (from 103 to 120 d after pollination), the fruits pollinated with hp was more susceptible to light damage. It is suggested that the higher dry mass of fruits pollinated with pp might to related to the adaptability of high-light at the late growth stages.

hickory; exocarp; gas exchange parameters; chlorophyll fluorescence; biomass production

10.11707/j.1001-7488.20170105

2016-02-05;

2016-05-30。

浙江省自然科學基金項目(LY15C160003); 國家重大科學研究計劃 863計劃(2013AA102605); . 浙江省大學生科技創(chuàng)新活動計劃資助項目(2015R412044); 浙江省林學重之重一級學科研究生創(chuàng)新項目(201502); 杭州市科技發(fā)展計劃(20130432B85)。

S718.43

A

1001-7488(2017)01-0038-09

*胡淵淵為通訊作者。

猜你喜歡
山核桃
遼西地區(qū)山核桃種植及管理技術(shù)
山核桃
臨安山核桃
臨安山核桃
淳安山核桃今年有望增產(chǎn)一成以上
松鼠的山核桃
輝南培育壯大山核桃產(chǎn)業(yè)
美國:高需求重塑美洲山核桃產(chǎn)業(yè)
美國:雨水助山核桃豐收
山核桃“硬傷”何時痊愈
屏山县| 申扎县| 南皮县| 梅河口市| 岱山县| 阿巴嘎旗| 赞皇县| 柘城县| 河曲县| 北海市| 武强县| 南昌县| 临清市| 广元市| 区。| 中阳县| 新巴尔虎左旗| 德庆县| 石门县| 新田县| 资兴市| 南康市| 增城市| 莱芜市| 仙游县| 金溪县| 南投市| 临沧市| 安庆市| 若羌县| 贵港市| 阿瓦提县| 巩义市| 武义县| 昌都县| 桦甸市| 吉首市| 惠来县| 衡山县| 西平县| 武陟县|