国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

細(xì)菌對(duì)利福平耐藥機(jī)制研究進(jìn)展

2017-03-07 11:23:28徐凱悅XUKaiyue強(qiáng)翠欣QIANGCuixin趙建宏ZHAOJianghong
中國(guó)感染控制雜志 2017年2期
關(guān)鍵詞:亞基梭菌埃希菌

徐凱悅(XU Kai-yue),強(qiáng)翠欣(QIANG Cui-xin),趙建宏(ZHAO Jiang-hong)

(河北醫(yī)科大學(xué)第二醫(yī)院 河北省臨床檢驗(yàn)中心,河北 石家莊 050000)

·綜述·

細(xì)菌對(duì)利福平耐藥機(jī)制研究進(jìn)展

徐凱悅(XU Kai-yue),強(qiáng)翠欣(QIANG Cui-xin),趙建宏(ZHAO Jiang-hong)

(河北醫(yī)科大學(xué)第二醫(yī)院 河北省臨床檢驗(yàn)中心,河北 石家莊 050000)

利福平; 耐藥機(jī)制; RNA聚合酶; 利福平耐藥決定區(qū); rpoB

利福霉素為袢霉素類家族成員,可用于治療多種感染,如結(jié)核病、耐甲氧西林金黃色葡萄球菌感染、艱難梭菌引起的艱難梭菌相關(guān)性腹瀉(Clostridiumdifficile-associated diarrhea, CDAD)、衣原體的持續(xù)感染[1]、旅行者腹瀉[2]等。然而,利福霉素廣泛用于臨床感染治療的同時(shí),細(xì)菌耐藥問(wèn)題卻使該殺菌“利器”變得“鈍化”。結(jié)核分枝桿菌極易對(duì)利福平(rifampin, RIF)耐藥,約有3.6%新增結(jié)核病和20.2%復(fù)治結(jié)核病為耐多藥結(jié)核病[3]。CDAD是成人醫(yī)院獲得性腹瀉的主要原因[4],利福霉素類中利福昔明因其口服不易被吸收,用于治療復(fù)發(fā)性CDAD[5],然而艱難梭菌對(duì)利福霉素耐藥率高達(dá)11%[6]。如何在正常發(fā)揮藥物抗菌作用的同時(shí)減少細(xì)菌耐藥的產(chǎn)生,關(guān)系臨床抗感染治療的成敗。本文在介紹RIF抗菌機(jī)制的基礎(chǔ)上,對(duì)細(xì)菌耐RIF的機(jī)制予以綜述,為臨床開(kāi)發(fā)新的細(xì)菌轉(zhuǎn)錄抑制劑類藥物提供幫助,以便更加有效的治療感染。

1 RIF抗菌機(jī)制

因此,細(xì)菌可通過(guò)β亞基的編碼基因—rpoB突變,造成氨基酸的改變,導(dǎo)致對(duì)RIF親和力降低,進(jìn)而對(duì)RIF耐藥。然而作用靶點(diǎn)突變并不是唯一的耐藥機(jī)制,其他耐藥機(jī)制亦有報(bào)道,如對(duì)藥物的修飾滅活作用、膜通透性改變、外排泵等。

2 rpoB突變是細(xì)菌對(duì)利福平耐藥(RIFr)主要機(jī)制

有關(guān)大腸埃希菌、金黃色葡萄球菌和結(jié)核分枝桿菌等細(xì)菌對(duì)RIF的耐藥機(jī)制已有報(bào)道,其中最常見(jiàn)且可引起高水平耐藥的機(jī)制為rpoB突變。

由于RNAP在細(xì)菌中較為保守,因此RIFr株的rpoB突變位點(diǎn)也較保守,故常將其他細(xì)菌的突變位點(diǎn)與大腸埃希菌相應(yīng)序列進(jìn)行比對(duì)。本文涉及不同細(xì)菌耐藥突變位點(diǎn)時(shí),除非有特別說(shuō)明,一律使用大腸埃希菌β亞基氨基酸的相應(yīng)位點(diǎn)進(jìn)行描述。

2.1 大腸埃希菌RIFr盡管大腸埃希菌感染不在RIF的適應(yīng)證范圍,但大腸埃希菌為細(xì)菌研究的模式菌株,且該菌轉(zhuǎn)錄起始及終止過(guò)程研究也較為詳盡。20世紀(jì)80年代,Jin等[8]對(duì)引起大腸埃希菌RIFr的rpoB位點(diǎn)突變進(jìn)行研究,結(jié)果發(fā)現(xiàn)耐藥突變位點(diǎn)位于rpoB的中部,分為三個(gè)區(qū)域:cluster I(507-533位氨基酸),cluster II(563-572位氨基酸),cluster III(687位氨基酸)。rpoB中所包含這些耐藥突變的區(qū)域稱為利福平耐藥決定區(qū)(rifampin resistance determing region, RRDR)。上述提到的水生棲熱菌RNAP中與RIF存在氫鍵或范德華力的12個(gè)氨基酸,均位于RRDR cluster I—II中,且除E445(水生棲熱菌RpoB蛋白編碼)外,其他11個(gè)氨基酸的突變均可引起RIFr[7]。此外,還有一個(gè)靠近β亞基N端的區(qū)域(N cluster),其突變亦可導(dǎo)致RIFr。研究[9]發(fā)現(xiàn),大腸埃希菌RIFr株β亞基第146位氨基酸存在替換,而該位點(diǎn)位于cluster I—III外。隨后, Severinov等[10]通過(guò)基因定點(diǎn)突變方法,證實(shí)了rpoB N cluster(143-148位氨基酸)突變可導(dǎo)致RIFr。

正如Jin等[8]所假設(shè)的,核心酶中β亞基各部分間似乎通過(guò)彼此合作形成RIF結(jié)合區(qū)。利用某些間接方法,我們可知大腸埃希菌RNAP活性中心及其與RIF結(jié)合位點(diǎn)相互作用的拓?fù)浣Y(jié)構(gòu),如將聚合酶-啟動(dòng)子復(fù)合物與β亞基交聯(lián)到一起后,進(jìn)行限制性酶解和化學(xué)降解,發(fā)現(xiàn)RRDR中的cluster I參與活性中心的形成[11]。

2.2 結(jié)核分枝桿菌RIFr結(jié)核分枝桿菌為緩慢生長(zhǎng)菌,其鑒定及傳統(tǒng)藥敏試驗(yàn)約需12周,時(shí)間長(zhǎng),使得患者早期不能得到個(gè)性化的治療,增加耐藥株出現(xiàn)的風(fēng)險(xiǎn)。而RIFr為耐多藥結(jié)核的一個(gè)可靠標(biāo)志,到目前為止,大部分RIFr結(jié)核分枝桿菌同時(shí)也對(duì)異煙肼耐藥[12]。因此,盡可能全面地了解結(jié)核分枝桿菌中與RIFr有關(guān)的rpoB突變,有利于從分子角度快速檢測(cè)耐藥株。

結(jié)核分枝桿菌RIFr突變主要集中在rpoB中一個(gè)長(zhǎng)度為81bp(β亞基第507-533位氨基酸,位于cluster I內(nèi))的熱點(diǎn)突變區(qū)中,稱為結(jié)核分枝桿菌的RIFr決定區(qū)。報(bào)道顯示,約95%的結(jié)核分枝桿菌RIFr突變位于該區(qū)內(nèi)[13],其中第516、526和531位氨基酸替換最多見(jiàn)[14]。Jamieson等[15]在2株耐多藥結(jié)核分枝桿菌中發(fā)現(xiàn)V146F替換,而該位點(diǎn)位于大腸埃希菌rpoB N cluster(β亞基第143-148位氨基酸),同樣引起RIFr[10]。

了解結(jié)核分枝桿菌RIFr株的rpoB突變情況,有助于利用分子方法快速檢測(cè)疑似感染患者體內(nèi)的結(jié)核分枝桿菌及其耐藥性?,F(xiàn)已有多種快速檢測(cè)結(jié)核分枝桿菌RIFr株的方法,如高分辨率溶解曲線分析[16]以及基于鎖核酸(locked nucleic acid, LNA)探針的實(shí)時(shí)PCR技術(shù)[17]等。2013年美國(guó)食品藥品管理局(FDA)批準(zhǔn)了一種商品化的基于PCR法檢測(cè)痰標(biāo)本中結(jié)核分枝桿菌DNA的試劑盒,可同樣檢測(cè)RIFr株[18]。

2.3 艱難梭菌RIFr艱難梭菌是專性厭氧革蘭陽(yáng)性芽孢桿菌, 被認(rèn)為是引起抗生素相關(guān)性腹瀉的主要病原菌之一,嚴(yán)重感染者可發(fā)生假膜性腸炎、腸壞死甚至死亡。近年由于艱難梭菌高產(chǎn)毒株(027/NAP1/BI型)在世界多個(gè)地區(qū)的暴發(fā)流行,使艱難梭菌成為醫(yī)院獲得性腹瀉的主要病原菌[19]。利福霉素類抗生素,尤其是利福昔明可用于治療復(fù)發(fā)性CDAD[5]。然而,艱難梭菌對(duì)利福霉素的耐藥時(shí)有發(fā)生。據(jù)現(xiàn)有文獻(xiàn)[6]估計(jì),艱難梭菌對(duì)RIF的耐藥率達(dá)11%,且有升高趨勢(shì)。Freeman等[20]對(duì)歐洲22個(gè)國(guó)家艱難梭菌耐藥監(jiān)測(cè)發(fā)現(xiàn),17個(gè)國(guó)家出現(xiàn)RIFr艱難梭菌,尤其是意大利、捷克、丹麥和匈牙利出現(xiàn)了高比率耐藥(57%~64%)。有報(bào)道[21]指出,利福霉素暴露是患者發(fā)生耐藥艱難梭菌感染的危險(xiǎn)因素之一,甚至在用利福霉素治療期間就可發(fā)生耐藥艱難梭菌感染[22]。面對(duì)日益嚴(yán)峻的耐藥形勢(shì),了解其耐藥機(jī)制尤為重要。目前認(rèn)為艱難梭菌RIFr通常與rpoB突變有關(guān),涉及的氨基酸替換為第502、505、548、488、492和498位(艱難梭菌RpoB蛋白編碼)等,大多對(duì)應(yīng)于RRDR cluster I,其中第502、505位氨基酸替換最為多見(jiàn)[21,23-27]。

3 其他RIFr機(jī)制

除上述耐藥機(jī)制之外,某些菌屬本身的RNAP對(duì)RIF不敏感,如密螺旋體屬、疏螺旋體屬、端螺旋體屬和一些土壤放線菌,原因在于其rpoB第531位的密碼子為天冬酰胺而非敏感菌屬中的絲氨酸[28]。

除rpoB突變外,細(xì)菌可通過(guò)其他方式對(duì)RIF產(chǎn)生低水平耐藥,如RNAP結(jié)合蛋白的保護(hù)作用、對(duì)RIF修飾滅活、膜通透性改變和外排泵的過(guò)度表達(dá)等。

天藍(lán)色鏈霉菌可耐受低濃度RIF,Newell等[29]研究顯示其RNAP結(jié)合蛋白R(shí)bpA介導(dǎo)該菌的低水平耐藥,另外,該研究發(fā)現(xiàn)在結(jié)核分枝桿菌、麻風(fēng)分枝桿菌和白喉棒狀桿菌中亦存在rbpA同源基因。近來(lái)有研究[30]顯示,結(jié)核分枝桿菌RbpA通過(guò)間接的方式介導(dǎo)耐藥,并不影響RNAP對(duì)RIF的敏感性,而是調(diào)整RNAP核心酶結(jié)構(gòu),增加核心酶對(duì)σA的親和性,加速σA指導(dǎo)的轉(zhuǎn)錄,從而產(chǎn)生耐藥。同時(shí),研究發(fā)現(xiàn),RbpA結(jié)合于RNAP β亞基Sandwich-Barrel Hybrid模體上,且該區(qū)域并不與RIF結(jié)合位點(diǎn)重合。DnaA蛋白可與RNAP結(jié)合,在一定程度上削弱RIF對(duì)RNAP的抑制作用[31]。Dey等[32]經(jīng)體內(nèi)及體外研究證實(shí),恥垢分枝桿菌MsRbpA蛋白可與RNAP β亞基相互作用,提高RNAP對(duì)RIF的耐受水平,介導(dǎo)低水平耐藥,同時(shí)該研究發(fā)現(xiàn)MsRbpA同源體保守存在于分枝桿菌屬中。Weiss等[33]研究顯示,在結(jié)核分枝桿菌中削弱CarD/RNAP β亞基的相互作用可增加該菌對(duì)RIF敏感性。

某些細(xì)菌可通過(guò)對(duì)RIF修飾使其失活從而產(chǎn)生耐藥。常見(jiàn)的修飾方式為糖基化、核糖基化、磷酸化和脫色效應(yīng),其中脫色效應(yīng)與單加氧酶有關(guān)[34]。在敲除皮疽諾卡菌rpoB2后,單加氧酶介導(dǎo)的脫色效應(yīng)成為其耐藥的主要方式[35]。恥垢分枝桿菌可使RIF核糖基化而對(duì)其天然耐藥,該菌表達(dá)的Arr蛋白具有單ADP-核糖基轉(zhuǎn)移酶作用,催化利福霉素類藥物ADP-核糖基化,使其失活[36]。此外,該研究發(fā)現(xiàn),arr同源基因廣泛存在于環(huán)境細(xì)菌及嗜麥芽窄食單胞菌、洋蔥伯克霍爾德菌、天藍(lán)色鏈霉菌和谷氨酸棒狀桿菌等細(xì)菌中。研究[37]顯示,對(duì)RIF同系物C25位修飾后可抵抗恥垢分枝桿菌ADP-核糖基轉(zhuǎn)移酶對(duì)其滅活作用。Spanogiannopoulos等[38]從環(huán)境放線菌中分離出1株RIFr放線菌—WAC1438,發(fā)現(xiàn)其可對(duì)RIF進(jìn)行糖基化失活,rgt1438為其糖基轉(zhuǎn)移酶編碼基因。1994年研究[39]發(fā)現(xiàn),細(xì)菌可以通過(guò)磷酸轉(zhuǎn)移酶將RIF磷酸化而失活,然而,直到最近才有研究揭示了放線菌中該酶的編碼基因rph[40]。該研究同時(shí)發(fā)現(xiàn)rph上游的一段保守序列——利福平相關(guān)元件(RAE),該序列與RIF滅活酶編碼基因有關(guān)。同時(shí)研究指出,RIF敏感菌中亦存在rph同源基因,如產(chǎn)單核細(xì)胞李斯特菌和臘樣芽孢桿菌。近來(lái),Qi等[41]獲得產(chǎn)單核細(xì)胞李斯特菌RIF磷酸轉(zhuǎn)移酶(LmRPH)在不同催

另外,細(xì)菌還可通過(guò)降低膜通透性、調(diào)節(jié)外排泵或膜通道蛋白的表達(dá)而耐藥。分枝桿菌屬細(xì)菌由于其獨(dú)特的富于脂質(zhì)的細(xì)胞壁結(jié)構(gòu)導(dǎo)致膜通透性低,因而對(duì)多種抗生素天然耐藥。有研究[43]顯示,恥垢分枝桿菌細(xì)胞壁中Wag31-AccA3與胞壁脂質(zhì)的通透性和對(duì)親脂性藥物(如RIF)耐藥有關(guān),敲除Wag31后胞壁對(duì)親脂性分子通透性增強(qiáng),對(duì)RIF敏感性增加,AccA3過(guò)度表達(dá)則結(jié)果反之。許多細(xì)菌外排泵可將RIF排至細(xì)胞外,導(dǎo)致低水平耐藥,如結(jié)核分枝桿菌[44-45]。波賽鏈霉菌可產(chǎn)生2種抗腫瘤分子——阿霉素和道諾霉素,其drrAB編碼的DrrAB外排系統(tǒng),屬ABC結(jié)合盒類轉(zhuǎn)運(yùn)體,可將該2種分子排至細(xì)胞外。近有研究[46]顯示,該轉(zhuǎn)運(yùn)體為多藥轉(zhuǎn)運(yùn)體,RIF為其底物之一。恥垢分枝桿菌中,marRAB操縱子編碼兩種ABC結(jié)合盒類轉(zhuǎn)運(yùn)體,MarR蛋白通過(guò)調(diào)節(jié)marRAB操縱子的表達(dá),進(jìn)而影響細(xì)菌對(duì)RIF的耐藥性。與其他外排泵不同的是,該菌中此2種ABC結(jié)合盒類轉(zhuǎn)運(yùn)體過(guò)度表達(dá)反而增加細(xì)菌對(duì)RIF的敏感性,因此,該菌中的MarR蛋白為阻遏蛋白,抑制marRAB操縱子的表達(dá),產(chǎn)生耐藥[47]。此外,某些細(xì)菌可通過(guò)膜表面通道蛋白的表達(dá)調(diào)節(jié)對(duì)RIF的耐藥性。Danilchanka等[48]研究顯示,牛分枝桿菌卡介苗膜通道蛋白CpnT的編碼基因cpnT的突變,可導(dǎo)致RIFr,與此同時(shí),研究人員認(rèn)為該CpnT膜通道蛋白可能與臨床分離的無(wú)法用已知耐藥基因突變解釋的結(jié)核分枝桿菌耐藥有關(guān)。

4 總結(jié)與展望

rpoB RRDR堿基突變是細(xì)菌對(duì)RIF呈高水平耐藥的主要機(jī)制。此外,細(xì)菌對(duì)RIF的共價(jià)修飾、RNAP結(jié)合蛋白的保護(hù)作用以及外排泵的過(guò)度表達(dá)等亦為細(xì)菌對(duì)RIFr的機(jī)制。對(duì)耐藥機(jī)制的研究有助于優(yōu)化治療,減少耐藥的產(chǎn)生,如外排泵抑制劑與利福霉素的聯(lián)合應(yīng)用或許可縮小單藥對(duì)細(xì)菌的耐藥突變選擇窗,有利于減少耐藥的產(chǎn)生;對(duì)利福霉素某些位點(diǎn)進(jìn)行改造,抵抗滅活酶的修飾;根據(jù)細(xì)菌rpoB耐藥突變情況,優(yōu)化或開(kāi)發(fā)新的利福霉素等。

[1] Rothstein DM, van Duzer J, Sternlicht A, et al. Rifalazil and other benzoxazinorifamycins in the treatment of chlamydia-based persistent infections[J]. Arch Pharm (Weinheim), 2007, 340(10): 517-529.

[2] Huang DB, DuPont HL. Rifaximin-a novel antimicrobial for enteric infections[J]. J Infect, 2005, 50(2): 97-106.

[3] World Health Organization. Global tuberculosis report 2013[S].WHO, 2013.

[4] Dubberke E.Clostridiumdifficileinfection: the scope of the problem[J]. J Hosp Med, 2012, 7 (Suppl 3): S1-S4.

[5] Mattila E, Arkkila P, Mattila PS, et al. Rifaximin in the treatment of recurrentClostridiumdifficileinfection[J]. Aliment Pharmacol Ther, 2013, 37(1): 122-128.

[6] Spigaglia P. Recent advances in the understanding of antibiotic resistance inClostridiumdifficileinfection[J]. Ther Adv Infect Dis, 2016, 3(1): 23-42.

[7] Campbell EA, Korzheva N, Mustaev A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase[J]. Cell, 2001, 104(6): 901-912.

[8] Jin DJ, Gross CA. Mapping and sequencing of mutations in theEscherichiacolirpoB gene that lead to rifampicin resistance[J]. J Mol Biol, 1988, 202(1): 45-58.

[9] Lisitsyn NA, Sverdlov ED, Moiseyeva EP, et al. Mutation to rifampicin resistance at the beginning of the RNA polymerase beta subunit gene inEscherichiacoli[J]. Mol Gen Genet, 1984, 196(1): 173-174.

[10] Severinov K, Soushko M, Goldfarb A, et al.RifR mutations in the beginning of theEscherichiacolirpoB gene[J]. Mol Gen Genet, 1994, 244(2): 120-126.

[11] Severinov K, Mustaev A, Severinova E, et al. The beta subunit Rif-cluster I is only angstroms away from the active center ofEscherichiacoliRNA polymerase[J]. J Biol Chem, 1995, 270(49): 29428-29432.

[12] Chen X, Wang B, Yang W, et al. Rolling circle amplification for direct detection ofrpoB mutations inMycobacteriumtuberculosisisolates from clinical specimens[J]. J Clin Microbiol, 2014, 52(5): 1540-1548.

[13] Tan Y, Hu Z, Zhao Y, et al. The beginning of therpoB gene in addition to the rifampin resistance determination region might be needed for identifying rifampin/rifabutin cross-resistance in multidrug-resistantMycobacteriumtuberculosisisolates from Southern China[J]. J Clin Microbiol, 2012, 50(1): 81-85.

[14] Musser JM. Antimicrobial agent resistance in mycobacteria: molecular genetic insights [J]. Clin Microbiol Rev, 1995, 8(4): 496-514.

[15] Jamieson FB, Guthrie JL, Neemuchwala A, et al. Profiling ofrpoB mutations and MICs for rifampin and rifabutin inMycobacteriumtuberculosis[J]. J Clin Microbiol, 2014, 52(6): 2157-2162.

[16] Malhotra B, Goyal S, Bhargava S, et al. Rapid detection of rifampicin resistance inMycobacteriumtuberculosisby high-resolution melting curve analysis[J]. Int J Tuberc Lung Dis, 2015, 19(12): 1536-1541.

[17] Zhao Y, Li G, Sun C, et al. Correction: Locked nucleic acid probe-based real-time PCR assay for the rapid detection of rifampin-resistantMycobacteriumtuberculosis[J]. PLoS One, 2016, 11(6): e0157275.

[18] Centers for Disease Control and Prevention (CDC). Availability of an assay for detectingMycobacteriumtuberculosis, including rifampin-resistant strains, and considerations for its use-United States, 2013[J]. MMWR Morb Mortal Wkly Rep, 2013, 62(41): 821-827.

[19] Kelly CP, LaMont JT.Clostridiumdifficile-more difficult than ever[J]. N Engl J Med, 2008, 359(18): 1932-1940.

[20] Freeman J, Vernon J, Morris K, et al. Pan-European longitudinal surveillance of antibiotic resistance among prevalentClostridiumdifficileribotypes[J]. Clin Microbiol Infect, 2015, 21(3): 248.e9-248.e16.

[21] Curry SR, Marsh JW, Shutt KA, et al. High frequency of rifampin resistance identified in an epidemicClostridiumdifficileclone from a large teaching hospital[J]. Clin Infect Dis, 2009, 48(4): 425-429.

[22] Carman RJ, Boone JH, Grover H, et al. In vivo selection of rifamycin-resistantClostridiumdifficileduring rifaximin therapy[J]. Antimicrob Agents Chemother, 2012, 56(11): 6019-6020.

[23] O'Connor JR, Galang MA, Sambol SP, et al. Rifampin and rifaximin resistance in clinical isolates ofClostridiumdifficile[J]. Antimicrob Agents Chemother, 2008, 52(8): 2813-2817.

[24] Huang H, Weintraub A, Fang H, et al. Antimicrobial susceptibility and heteroresistance in ChineseClostridiumdifficilestrains[J]. Anaerobe, 2010, 16(6): 633-635.

[25] Spigaglia P, Barbanti F, Mastrantonio P, et al. Multidrug resistance in EuropeanClostridiumdifficileclinical isolates[J]. J Antimicrob Chemother, 2011, 66(10): 2227-2234.

[26] Miller MA, Blanchette R, Spigaglia P, et al. Divergent rifamycin susceptibilities ofClostridiumdifficilestrains in Canada and Italy and predictive accuracy of rifampin Etest for rifamycin resistance[J]. J Clin Microbiol, 2011, 49(12): 4319-4321.

[27] Nyc O, Krutova M, Liskova A, et al. The emergence ofClostridiumdifficilePCR-ribotype 001 in Slovakia[J]. Eur J Clin Microbiol Infect Dis, 2015, 34 (8): 1701-1708.

[28] Kim H, Kim SH, Ying YH, et al. Mechanism of natural rifampin resistance ofStreptomycesspp.[J]. Syst Appl Microbiol, 2005, 28(5): 398-404.

[29] Newell KV, Thomas DP, Brrekasis D, et al. The RNA polymerase-binding protein RbpA confers basal levels of rifampicin resistance onStreptomycescoelicolor[J]. Mol Microbiol, 2006, 60(3): 687-696.

[30] Hu Y, Morichaud Z, Chen S, et al.MycobacteriumtuberculosisRbpA protein is a new type of transcriptional activator that stabilizes the σ A-containing RNA polymerase holoenzyme [J]. Nucleic Acids Res, 2012, 40(14): 6547-6557.

[32] Dey A, Verma AK, Chatterji D. Role of an RNA polymerase interacting protein, MsRbpA, fromMycobacteriumsmegmatisin phenotypic tolerance to rifampicin[J]. Microbiology, 2010, 156(Pt 3): 873-883.

[33] Weiss LA, Harrison PG, Nickels BE, et al. Interaction of CarD with RNA polymerase mediatesMycobacteriumtuberculosisviability, rifampin resistance, and pathogenesis [J]. J Bacteriol, 2012, 194(20): 5621-5631.

[34] Tupin A, Gualtieri M, Roquet-Banères F, et al. Resistance to rifampicin: at the crossroads between ecological, genomic and medical concerns[J]. Int J Antimicrob Agents, 2010, 35(6): 519-523.

[35] Hoshino Y, Fujii S, Shinonaga H, et al. Monooxygenation of rifampicin catalyzed by the rox gene product ofNocardiafarcinica: structure elucidation, gene identification and role in drug resistance[J]. J Antibiot(Tokyo), 2010, 63(1): 23-28.

[36] Baysarowich J, Koteva K, Hughes DW, et al. Rifamycin antibiotic resistance by ADP-ribosylation: Structure and diversity of Arr[J]. Proc Natl Acad Sci U S A, 2008, 105(12): 4886-4891.

[37] Combrink KD, Denton DA, Harran S, et al. New C25 carbamate rifamycin derivatives are resistant to inactivation by ADP-ribosyl transferases[J]. Bioorg Med Chem Lett, 2007, 17(2): 522-526.

[38] Spanogiannopoulos P, Thaker M, Koteva K, et al. Characterization of a rifampin-inactivating glycosyltransferase from a screen of environmental actinomycetes[J]. Antimicrob Agents Chemother, 2012, 56(10): 5061-5069.

[39] Yazawa K, Mikami Y, Maeda A, et al. Phosphorylative inactivation of rifampicin byNocardiaotitidiscaviarum[J]. J Antimicrob Chemother, 1994, 33(6): 1127-1135.

[40] Spanogiannopoulos P, Waglechner N, Koteva K, et al. A rifamycin inactivating phosphotransferase family shared by environmental and pathogenic bacteria[J]. Proc Natl Acad Sci, U S A, 2014, 111(19): 7102-7107.

[41] Qi X, Lin W, Ma M, et al. Structural basis of rifampin inactivation by rifampin phosphotransferase[J]. Proc Natl Acad Sci, U S A, 2016, 113(14): 3803-3808.

[42] Stogios PJ, Cox G, Spanogiannopoulos P, et al. Rifampin phosphotransferase is an unusual antibiotic resistance kinase[J]. Nat Commun, 2016, 7: 11343.

[43] Xu WX, Zhang L, Mai JT, et al. The Wag31 protein interacts with AccA3 and coordinates cell wall lipid permeability and lipophilic drug resistance inMycobacteriumsmegmatis[J]. Biochem Biophys Res Commun, 2014, 448 (3): 255-260.

[44] Pang Y, Lu J, Wang Y, et al. Study of the rifampin monoresistance mechanism inMycobacteriumtuberculosis[J]. Antimicrob Agents Chemother, 2013, 57(2): 893-900.

[45] Li G, Zhang J, Guo Q, et al. Study of efflux pump gene expression in rifampicin-monoresistantMycobacteriumtuberculosisclinical isolates[J]. J Antibiot (Tokyo), 2015, 68(7): 431-435.

[46] Li W, Sharma M, Kaur P. The DrrAB efflux system ofStreptomycespeucetiusis a multidrug transporter of broad substrate specificity[J]. J Biol Chem, 2014, 289(18): 12633-12646.

[47] Zhang H, Gao L, Zhang J, et al. A novel marRAB operon contributes to the rifampicin resistance inMycobacteriumsmegmatis[J]. PloS One, 2014, 9(8): e106016.

[48] Danilchanka O, Pires D, Anes E, et al. TheMycobacteriumtuberculosisouter membrane channel protein CpnT confers susceptibility to toxic molecules[J]. Antimicrob Agents Chemother, 2015, 59(4): 2328-2336.

(本文編輯:熊辛睿)

Advances in rifampin resistance mechanism in bacteria

(The Second Hospital of Hebei Medical University Hebei Provincial Center for Clinical Laboratories, Shijiazhuang 050000, China)

2016-08-20

河北省自然科學(xué)基金(H2013206450);河北省科技廳基礎(chǔ)條件平臺(tái)建設(shè)項(xiàng)目(10966142D);河北醫(yī)科大學(xué)第二醫(yī)院科研基金(2h2201605)

徐凱悅 (1990-),女(漢族),河北省石家莊市人,檢驗(yàn)師,主要從事細(xì)菌感染性病原體的檢測(cè)與流行病學(xué)研究。

趙建宏 E-mail:zhaojh_2002@yahoo.com

10.3969/j.issn.1671-9638.2017.02.021

R378

A

1671-9638(2017)02-0186-05

猜你喜歡
亞基梭菌埃希菌
丁酸梭菌的篩選、鑒定及生物學(xué)功能分析
心臟鈉通道β2亞基轉(zhuǎn)運(yùn)和功能分析
豬肉毒梭菌中毒癥的發(fā)生和診療方法
522例產(chǎn)ESBLs大腸埃希菌醫(yī)院感染的耐藥性和危險(xiǎn)因素分析
胰島素通過(guò)mTORC2/SGK1途徑上調(diào)肺泡上皮鈉通道α亞基的作用機(jī)制
西藏牦牛肉毒梭菌中毒病的防治
西藏科技(2015年10期)2015-09-26 12:10:24
產(chǎn)β-內(nèi)酰胺酶大腸埃希菌的臨床分布及耐藥性分析
尿液大腸埃希菌和肺炎克雷伯菌I類整合子分布及結(jié)構(gòu)研究
珠海地區(qū)婦幼保健院大腸埃希菌產(chǎn)ESBLs的基因型研究
小RNA干擾蛋白酶體亞基α7抑制K562細(xì)胞增殖
大宁县| 芦山县| 兰西县| 巴中市| 民权县| 新巴尔虎右旗| 商河县| 宁安市| 阿瓦提县| 电白县| 芮城县| 永修县| 水城县| 斗六市| 象山县| 磐安县| 鱼台县| 孟村| 宁夏| 科技| 兴国县| 宜城市| 慈溪市| 通城县| 政和县| 科技| 大邑县| 揭东县| 柳林县| 昌都县| 平顶山市| 彭水| 桐乡市| 神农架林区| 容城县| 广德县| 彭州市| 三门峡市| 柳江县| 蒲江县| 揭东县|