楊伊+閆德勤+張海英+楚永賀
摘要摘要:極限學習機(ELM)以其高效、快速和良好的泛化性能在模式識別領(lǐng)域得到廣泛應(yīng)用,然而在高光譜遙感圖像分類中,極限學習機算法不能較好地利用數(shù)據(jù)蘊含的判別信息,限制了ELM的分類性能。為此,提出一種基于判別信息極限學習機(IELM),IELM繼承了極限學習機的優(yōu)勢,并在一定程度上解決了極限學習機在有限高光譜遙感圖像數(shù)據(jù)樣本中學習不充分的問題。高光譜遙感圖像分類實驗結(jié)果表明,該算法具有較好的分類效果。
關(guān)鍵詞關(guān)鍵詞:極限學習機;模式識別;高光譜遙感圖像;判別信息
DOIDOI:10.11907/rjdk.162600
中圖分類號:TP317.4文獻標識碼:A文章編號文章編號:16727800(2017)001016105
對于連續(xù)狹窄的光譜帶,高光譜成像傳感器能夠捕獲詳細和豐富的光譜信息。近年來,隨著圖像處理技術(shù)的發(fā)展,高光譜圖像得到廣泛應(yīng)用,在高光譜圖像應(yīng)用中最重要的任務(wù)是對圖像進行分類。然而,在高光譜遙感圖像分類問題中存在一些挑戰(zhàn)。例如有限訓練樣本之間的不平衡和高維度,高光譜遙感圖像幾何形狀復(fù)雜,高光譜遙感圖像分類計算復(fù)雜度高。為使高光譜遙感圖像分類取得良好效果,近年來,機器學習方法在高光譜圖像分類中得到廣泛應(yīng)用,例如人工神經(jīng)網(wǎng)絡(luò)(Artificial neural networks,ANNs)[1]、支持向量機(Support vector machine,SVM)[2]、多項邏輯回歸(Multinomial logistic regression,MLR)[3]、主動學習(Active learning,AL)[4]等,其它方法如利用稀疏表示[5]以及譜聚類[6]對高光譜進行分離也得到廣泛應(yīng)用。然而,由于高光譜遙感圖像具有髙維度以及復(fù)雜性,通過機器學習算法尋找最優(yōu)的參數(shù)來進行分類通常非常困難,并且耗時,實現(xiàn)高光譜遙感圖像高效快速分類已成為遙感圖像領(lǐng)域的重要問題。
近年來,Huang等[7]基于單隱層前饋神經(jīng)網(wǎng)絡(luò)(Single-hidden layer feedforward networks,SLFNs)結(jié)構(gòu)提出了極限學習機(Extreme learning machine,ELM)。ELM隨機產(chǎn)生隱層節(jié)點的輸入權(quán)值和偏置值,所有參數(shù)中僅有輸出權(quán)值經(jīng)過分析確定。ELM將傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的求解過程轉(zhuǎn)化為一個線性模型,ELM隨機選擇輸入權(quán)值和分析確定SLFNs的輸出權(quán)值,避免了傳統(tǒng)神經(jīng)網(wǎng)絡(luò)學習方法收斂速度慢及陷入局部極小解的可能,具有更好的泛化能力和更快的學習速度。文獻[7]指出ELM通過隨機產(chǎn)生隱層節(jié)點的輸入權(quán)值和偏置值分析確定輸出權(quán)值,保持了SLFNs的通用逼近能力,同時能夠得到一個全局最優(yōu)解。由于ELM良好的泛化能力,使得ELM應(yīng)用在不同的領(lǐng)域中。在高光譜遙感圖像領(lǐng)域,Pal等[8]將ELM應(yīng)用到土地覆蓋分類中,與BP[9]神經(jīng)網(wǎng)絡(luò)和支持向量機相比,ELM取得了更好的分類效果,并且ELM算法的計算復(fù)雜度遠遠小于BP和支持向量機。Bazi等[10]利用差分進化方法優(yōu)化核ELM算法的參數(shù),提高了高光譜遙感圖像的分類效果。為了提高ELM算法在高光譜遙感圖像分類中的穩(wěn)定性,Samat等[11]基于Bagging 和 AdaBoost算法提出了集成的極限學習機算法(Ensemble extreme learning machine,E2LM)。
雖然針對高光譜遙感圖像分類問題,研究人員在ELM算法的基礎(chǔ)上提出了改進,然而 ELM及其改進算法并未充分考慮數(shù)據(jù)樣本間的幾何特征和數(shù)據(jù)蘊含的判別信息。知道樣本之間具有某些相似的屬性和分布特征,樣本之間的相似屬性和分布特征能夠彌補ELM學習不夠充分的問題,進而可以提高ELM的泛化能力,因而數(shù)據(jù)樣本的幾何特征和數(shù)據(jù)蘊含的判別信息對ELM的分類性能具有重要作用。
基于以上分析,本文提出一種基于判別信息極端學習機(Discriminative information regularized extreme learning machine,IELM),對于分類問題,IELM同時考慮到數(shù)據(jù)樣本的幾何特征和數(shù)據(jù)蘊含的判別信息,通過最大化異類離散度和最小化同類離散度,優(yōu)化極端學習機的輸出權(quán)值,從而在一定程度上提高ELM的分類性能和泛化能力。IELM方法的優(yōu)勢在于:①繼承了ELM的優(yōu)點,在一定程度上避免了ELM學習不充分的問題;②將異類離散度和同類離散度引入到ELM中,充分利用數(shù)據(jù)樣本的判別信息;③利用MMC[12]方法有效解決最大化異類離散度和最小化同類離散度矩陣奇異問題。
為評價和驗證本文提出的基于判別信息極端學習機的高光譜遙感圖像分類方法,實驗使用Indian Pines,Salinas scene兩個高光譜遙感圖像數(shù)據(jù),將本文所提出的方法與ELM、支持向量機(Support vector machine,SVM)、最近鄰分類器協(xié)作表示(Collaborative representation nearest neighbor classifier,CRNN)[13]進行對比,實驗結(jié)果表明本文提出的算法能夠取得較好的分類效果。
實驗環(huán)境為惠普工作站處理器:Intel(R)Xeon(R) CPU E5-1603 0 @2.80 GHz,安裝內(nèi)存:8.00GB ,系統(tǒng)類型:64位操作系統(tǒng),版本:win7,語言開發(fā)環(huán)境采用 Matlab 2010b。
第一組實驗數(shù)據(jù)為Indian Pines遙感圖像數(shù)據(jù),Indian Pines數(shù)據(jù)是AVIRIS傳感器在薩利納斯山谷收集的數(shù)據(jù),該圖像包含200個波段,圖像大小為145×145,地表真實分類如圖1所示,Indian Pines數(shù)據(jù)集屬性設(shè)置如表1所示。
第二組實驗數(shù)據(jù)為Salinas scene遙感圖像數(shù)據(jù),Salinas scene數(shù)據(jù)是AVIRIS傳感器在薩利納斯山谷收集的數(shù)據(jù),該圖像包含204個波段,圖像大小為512×217,地表真實分類如圖2所示, Salinas scene數(shù)據(jù)集屬性設(shè)置如表2所示。
實驗中,對于Indian Pines和Salinas scene圖像數(shù)據(jù),隨機選取1%的數(shù)據(jù)樣本作為訓練集,剩下部分為測試集,使用總體精度(OA),Kappa系數(shù),平均準確率(AA)衡量不同算法的性能。
(1)總體精度。總體精度(overall accuracy,OA)是對分類結(jié)果質(zhì)量的總體評價,等于被正確分類的像素總和除 以總的像素個數(shù)。被正確分類的像素沿著混淆矩陣的對角線分布,它顯示了被正確分類到真實分類中的像元數(shù)。根據(jù)混淆矩陣可得OA的計算式為:p=∑ci=1miiN(21)其中,c表示類別數(shù)目,mii表示混淆矩陣對角線上的元素,N=∑ci=1∑cj=1mij表示測試樣本的總數(shù)。
(2)Kappa系數(shù)。Kappa系數(shù)采用一種多元離散分析技術(shù),反映分類結(jié)果與參考數(shù)據(jù)之間的吻合程度,它考慮了混淆矩陣的所有因子,是一種更為客觀的評價指標,其定義為:k=N∑ci=1mii-∑ci=1(mi+m+i)N2-∑ci=1(mi+m+i)(22)其中,mi+,m+i分別表示混淆矩陣第i行的總和、第i列的總和,c表示類別數(shù)目,N為測試樣本總數(shù),mii表示混淆矩陣對角線上的元素,Kappa系數(shù)越大分類精度越高。
(3)平均精度。平均精度(average accuracy,AA)定義為每類分類準確率相加除以類別總數(shù)。AA=∑ci=1accic(23)其中,c表示類別數(shù)目,acci表示每類的分類準確率。
4.2實驗結(jié)果及分析
將IELM與ELM,SVM,CRNN進行對比,SVM采用libsvm工具箱,核函數(shù)采用徑向基核函數(shù)(Radial basis function,RBF),懲罰參數(shù)c=0.02,核函數(shù)參數(shù)g=0.02,IELM與ELM均采用Sigmoid函數(shù)作為激活函數(shù),隱層節(jié)點個數(shù)設(shè)置為500,懲罰參數(shù)c=20。
5結(jié)語
本文提出了一種基于判別信息極端學習機的高光譜遙感圖像分類方法,創(chuàng)新之外在于考慮到光譜遙感圖像數(shù)據(jù)的聯(lián)系和差異信息。IELM引入同類離散度和異類離散度的概念,體現(xiàn)了輸入空間數(shù)據(jù)的判別信息,通過最大化異類離散度和最小化同類離散度,優(yōu)化極端學習機的輸出權(quán)值。與NN,SVM, ELM算法的對比實驗表明,本文所提出方法的分類效果優(yōu)于NN,SVM,ELM算法。
參考文獻:
[1]Q SAMI UL HAQ,L TAO.Neural network based adaboosting approach for hyperspectral data classication[J].International Conference on Computer Science and Network Technology(ICCSNT),2011:241245.
[2]J A GUALTI,R F CROMP.Support vector machines for hyperspectral remote sensing classification[J].in Proc.SPIE 27th AIPR Workshop:Adv.Comput.Assisted Recognit.Int.Soc.Opt.Photonics,Washington,DC,USA,1999:221232.
[3]J Li,J BIOUCASDIAS,A.PLAZA.Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression[J].IEEE Geosci.Remote Sens.Lett,2013,10(2):318322.
[4]W DI,MM CRAWFORD.Active learning via multiview and local proximity coregularization for hyperspectral image classification[J].IEEE Journal of Selected Topics in Signal Processing,2011,5(3):618628.
[5]J BIOUCASDIAS,M A T.FIGUEIREDO.Alternating direction algorithms for constrained sparse regression:application to hyperspectral unmixing[J].Hyperspectral Image and Signal Processing:Evolution in Remote Sensing (WHISPERS),2010:14.
[6]Y TARABALKA,J A BENEDIKTSSON,J CHANUSSOT.Spectralspatial classification of hyperspectral imagery based on partitional clustering techniques[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(8):29732987.
[7]GB HUANG,H ZHOU,X DING,et al.Extreme learning machine for regression and multiclass classification[J].IEEE Trans.Syst Man Cybern B,2012,42(2):51329.
[8]M PAL,A E MAXWELL,T A WARNER.Kernelbased extreme learning machine for remotesensing image classification[J].Remote Sens.Lett,2013,4(9):853862.
[9]D RUMELHART,G HINTON,R WILLIAMS.Learning by backpropagating errors[J].Nature,1986,323(6088):533536.
[10]Y BAZI.Differential evolution extreme learning machine for the classification of hyperspectral images[J].IEEE Geosci.Remote Sens.Lett,2014,11(6):10661070.
[11]A SAMAT,P DU,S LIU,et al.E2LMs:ensemble extreme learning machines for hyperspectral image classification[J].IEEE J.Sel.Topics Appl.Earth Observ.Remote Sens,2014,7(4):10601069.
[12]H LI,T JIANG,K ZHANG.Efficient robust feature extraction by maximum margin criterion[J].IEEE Transactions on Neural Networks ,2006,17(1):157165.
[13]W LI,Q DU,F(xiàn) ZHANG.Collaborativerepresentationbased nearest neighbor classifier for hyperspectral imagery[J].IEEE Geoscience and Remote Sensing Letters ,2015,12(2):389393.
[14]G B HUANG.An insight into extreme learning machines:random neurons,random features and kernels[J].Cognitive Computation,2014,6(3):376390.
責任編輯(責任編輯:陳福時)