国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

蒽醌-2-磺酸鹽強(qiáng)化電輔助微生物體系對(duì)偶氮染料的脫色效果

2017-03-05 05:01張明慧曹占平李松松
環(huán)境科學(xué)研究 2017年3期
關(guān)鍵詞:介體偶氮染料艷紅

張明慧,曹占平,李松松

天津工業(yè)大學(xué)環(huán)境與化學(xué)工程學(xué)院,天津 300387

蒽醌-2-磺酸鹽強(qiáng)化電輔助微生物體系對(duì)偶氮染料的脫色效果

張明慧,曹占平*,李松松

天津工業(yè)大學(xué)環(huán)境與化學(xué)工程學(xué)院,天津 300387

為了提高微生物對(duì)偶氮染料的降解效率,將電輔助引入微生物還原降解過程,對(duì)比研究了EAMS(電輔助微生物體系)、ECS(電化學(xué)體系)和MS(微生物體系)對(duì)偶氮染料活性艷紅X-3B的降解效果,并考察了不同摩爾濃度的AQS(蒽醌-2-磺酸鹽)對(duì)電微生物體系降解染料的強(qiáng)化作用.結(jié)果表明:反應(yīng)24 h時(shí),EAMS對(duì)活性艷紅X-3B的去除率達(dá)到99.8%,比MS(去除率為61.9%)和ECS(去除率為27.1%)二者之和還要大10.8%;EAMS對(duì)活性艷紅X-3B的降解過程符合一級(jí)反應(yīng)動(dòng)力學(xué)特征.當(dāng)c(AQS)為0.050 mmol L時(shí),降解最快,一級(jí)動(dòng)力學(xué)常數(shù)為1.962 h-1,是未添加AQS(0.264 4 h-1)的7.42倍.加入AQS后,體系中電流升高,說明AQS加快了降解過程中電子傳遞速率.研究顯示,AQS的加入實(shí)現(xiàn)了電極-遠(yuǎn)離電極的微生物-染料之間多相反應(yīng)界面遠(yuǎn)程電子傳遞過程,使整個(gè)體系的微生物都可以快速發(fā)揮作用,達(dá)到強(qiáng)化降解偶氮染料.

電輔助微生物;活性艷紅X-3B;反應(yīng)動(dòng)力學(xué);蒽醌-2-磺酸鹽;遠(yuǎn)程電子傳遞

偶氮染料應(yīng)用于很多行業(yè)[1-2],其廢水對(duì)環(huán)境危害大,成為公認(rèn)的難處理廢水之一[3].許多傳統(tǒng)的物理化學(xué)方法[4-5]處理偶氮染料廢水不僅消耗大量化學(xué)藥劑,還會(huì)造成二次污染[6],生物法以低成本、處理徹底等優(yōu)點(diǎn)在染料廢水處理中得到越來越多的重視[7].但是傳統(tǒng)生物法厭氧降解速率很慢,并且用于降解偶氮染料專門培養(yǎng)的菌株和藻類等目前還未能應(yīng)用于工業(yè)廢水處理中[6,8].研究[9-11]表明,將電極應(yīng)用于厭氧微生物系統(tǒng)中,電輔助陰極在較低電位下可持續(xù)提供電子保證微生物還原偶氮染料;并且在電刺激作用下微生物酶的活性被提高,從而加快對(duì)偶氮染料的降解[12].在微生物降解偶氮染料過程中投加氧化還原介體,可以加快偶氮染料的還原速率[13-15],氧化還原介體在染料降解過程中作為電子載體,不斷地將電子從電子供體(微生物)傳遞到電子受體(染料)[16],降低反應(yīng)的活化能,加快反應(yīng)速率,可使污染物還原 氧化速率提高一到幾個(gè)數(shù)量級(jí),促進(jìn)染料的脫色速率[17-18].醌類化合物〔如腐殖質(zhì)[19]、AQDS(蒽醌-2,6-磺酸鹽)[20]和AQS(蒽醌-2-磺酸鹽)[21]等〕作為氧化還原介體已被報(bào)道用于促進(jìn)染料脫色.SUN等[22]研究了在MFC中添加氧化還原介體AQDS后對(duì)剛果紅的脫色影響,結(jié)果表明,加入0.005 mmol L 的AQDS后剛果紅的脫色率提高了394%.YU等[21]研究了在厭氧SBR系統(tǒng)中AQS對(duì)微生物降解甲基橙的影響,結(jié)果表明,加入0.150 mmol L的AQS后甲基橙一級(jí)降解動(dòng)力學(xué)常數(shù)增大了2.47倍.在EAMS(電輔助微生物體系)中,主要是吸附在電極表面的微生物實(shí)現(xiàn)還原染料;在EAMS中引入氧化還原介體后,電子在降解過程中傳遞加快,染料降解速率提高.但氧化還原介體在微觀尺度上是如何提高電輔助微生物降解染料率的,需要進(jìn)一步研究.

該研究將石墨電極置入?yún)捬跷⑸锵到y(tǒng)中,組成單室EAMS反應(yīng)器,該反應(yīng)器為序批式厭氧反應(yīng)器.選取偶氮染料活性艷紅X-3B為處理目標(biāo),在不添加AQS時(shí),研究EAMS降解偶氮染料的性能以及不同電壓下的降解動(dòng)力學(xué)分析;然后在 EAMS中引入AQS,研究對(duì)偶氮染料降解效率和降解過程中反應(yīng)體系電流變化,并對(duì)其強(qiáng)化機(jī)理進(jìn)行探究.

該研究旨在探討氧化還原介體強(qiáng)化電輔助微生物機(jī)理,提出電子在電極到遠(yuǎn)離電極的微生物之間的遠(yuǎn)程傳遞理論.由于反應(yīng)過程中AQS沒有被降解,存在二次污染,但是污染較小的不溶于水的固定化中間體分散性差,強(qiáng)化效果不如水溶性的好,接下來筆者將致力于研究無污染且強(qiáng)化效果較好的氧化還原介體.

1 材料與方法

1.1 試驗(yàn)材料

偶氮染料活性艷紅X-3B,上海慈太龍有限公司,分析純,純度為100%,分子式為C19H10Cl2N6O7S2Na2,相對(duì)分子質(zhì)量為615.33.AQS,上海麥克林生物化學(xué)有限公司,分析純,純度為97%,相對(duì)分子質(zhì)量為328.27.其他試劑均為分析純.

試驗(yàn)用水為人工配置的模擬廢水,模擬廢水組成:ρ(乙酸鈉)為1 263 mg L,作為碳源;ρ(NaHCO3) 為100 mg L;ρ(KH2PO4)為9 mg L;ρ(NH4Cl)為76 mg L;ρ(Na2SO4)為10 mg L;ρ(Na2HPO4·12H2O)為90 mg L;ρ(活性艷紅X-3B)為30 mg L.染料廢水的pH調(diào)至7.0±0.5.

污泥微生物取自天津污水處理廠厭氧處理單元的濃縮污泥,ρ(VSS) ρ(TSS)為0.7,污泥含水率為96%,ρ(MLSS)為2 000 mg L.將配制好的廢水和污泥置于反應(yīng)器內(nèi)進(jìn)行厭氧攪拌,并加入輔助電極,施加一定的外電壓進(jìn)行馴化.馴化基質(zhì)每隔24 h更換一次,直至活性艷紅X-3B去除率趨于穩(wěn)定.

1.2 試驗(yàn)裝置及運(yùn)行條件

EAMS采用尺寸為16 cm×15 cm×7 cm的有機(jī)玻璃制作,總體積約為1.7 L,試驗(yàn)中實(shí)際體積為1.1 L.反應(yīng)器上部加蓋密封,磁力攪拌轉(zhuǎn)速為600 r min,不曝氣.在該系統(tǒng)中,陰極和陽極均為石墨極板,每塊極板為7 cm×7 cm,中間為陽極,兩邊為陰極,共3塊極板,極板間距為2 cm.外電路串聯(lián)直流穩(wěn)壓電源,從而控制外電壓.反應(yīng)體系污泥沉降比為30%,換水比例為2 3.MS(微生物體系)和ECS(電化學(xué)體系)使用的反應(yīng)器與EAMS相同,但MS不加外電壓,ECS不加微生物.反應(yīng)均在室溫下〔(20±2)℃〕進(jìn)行.

三種體系對(duì)活性艷紅X-3B的降解率試驗(yàn)中,初始ρ(活性艷紅X-3B)為30 mg L、電壓為0.4 V時(shí),連續(xù)反應(yīng)24 h;EAMS和MS中ρ(MLSS)為2 000 mg L.

不同電壓下EAMS對(duì)活性艷紅X-3B的降解率試驗(yàn)中,調(diào)節(jié)電壓分別為0.2、0.4、0.6、0.8 V,其他條件不變,連續(xù)反應(yīng)12 h.

AQS對(duì)EAMS降解活性艷紅X-3B的影響試驗(yàn)中,電壓為0.4 V,其他條件不變,于EAMS中添加AQS,使c(AQS)分別為0、0.010、0.025、0.050、0.100 mmol L,考察其對(duì)活性艷紅X-3B降解率及反應(yīng)體系電流變化的影響.

1.3 測試方法

通過TU-1810PC UV-Vis分光光度計(jì)(北京普析通用儀器有限公司,中國)對(duì)活性艷紅X-3B在200~700 nm范圍內(nèi)進(jìn)行掃描發(fā)現(xiàn),活性艷紅X-3B的最大吸收波長在542 nm.每隔一定時(shí)間取樣,樣品經(jīng)10 000 r min離心分離5 min,過0.45 μm膜后測定吸光度.活性艷紅X-3B降解率的計(jì)算:

式中,A0和At分別為零時(shí)刻和t時(shí)刻水樣的吸光度.

采用VICTOR 86E萬能表(西安北成電子有限責(zé)任公司,中國)連續(xù)記錄降解過程中的電流,并通過數(shù)據(jù)線連接電腦將電流數(shù)據(jù)輸出,萬能表串聯(lián)連接于裝置中.

2 結(jié)果與討論

2.1 三種體系對(duì)活性艷紅X-3B的降解率

由圖1可見,在初始ρ(活性艷紅X-3B)為30 mg L、電壓為0.4 V時(shí),連續(xù)反應(yīng)24 h后,EAMS中活性艷紅X-3B幾乎完全降解,降解率達(dá)99.8%;而MS 和ECS中活性艷紅X-3B的降解率分別僅為61.9% 和27.1%.EAMS的降解率比MS和ECS二者之和還要大10.8%,具有較好的降解偶氮染料的特性.

EAMS中電化學(xué)和厭氧微生物對(duì)降解染料起到協(xié)同作用[23].微生物降解染料時(shí),由于缺乏電子供體,脫色速率較低;當(dāng)提供外電壓后,電輔助陰極在較低電位下可以提供較多的電子[11],從而提高了染料的降解率.電化學(xué)氧化法在較低電壓下降解效率較低,雖然廉雨等[24]采用電芬頓氧化法在較低電量下快速降解酸性橙染料,但若應(yīng)用于流量較大的實(shí)際廢水中則會(huì)消耗大量的能源.LIU等[25]以石墨為陽極,以活性炭纖維為陰極與微生物結(jié)合降解活性艷紅X-3B發(fā)現(xiàn),染料和CODCr的去除率比沒有電刺激時(shí)有明顯提高.因此,EAMS可快速降解染料,對(duì)偶氮染料廢水的處理提供了新的思路.

2.2 不同電壓下EAMS對(duì)活性艷紅X-3B的降解

由圖2可見,當(dāng)電壓從0.2 V升至0.8 V時(shí),活性艷紅X-3B的降解率先升后降.電壓太高會(huì)影響微生物活性,不利于染料的降解.當(dāng)外電壓為0.4 V時(shí),12 h活性艷紅X-3B的降解率為96.1%,而在0.2、0.6、0.8 V時(shí)分別為90.5%、91.5%、75.6%,因此,0.4 V的外電壓是用于與電輔助的微生物系統(tǒng)降解活性艷紅X-3B的最佳外電壓.電輔助微生物降解染料速率較快,并且0.4 V的最佳外電壓相對(duì)較低,相比電化學(xué)方法節(jié)約能源.

參照基質(zhì)降解速率的Monod模型,按一級(jí)反應(yīng)動(dòng)力學(xué)方程〔見式(2)〕對(duì)數(shù)據(jù)進(jìn)行擬合,不同電壓下EAMS降解活性艷紅X-3B的過程均符合一級(jí)反應(yīng)動(dòng)力學(xué)方程.

式中:k1為一級(jí)反應(yīng)速率常數(shù),h-1;t為反應(yīng)時(shí)間,h; Ct、C0分別為t時(shí)刻和初始時(shí)刻ρ(活性艷紅X-3B),mg L.不同電壓下的擬合的k1和R2見表1.

2.3 AQS對(duì)EAMS降解活性艷紅X-3B的影響

2.3.1 不同c(AQS)下活性艷紅X-3B降解率的變化由圖3可見,隨著c(AQS)的增加,活性艷紅X-3B的降解率首先呈上升趨勢,但當(dāng)c(AQS)增至0.050 mmol L后,繼續(xù)升高c(AQS)降解率不再增加.當(dāng)c(AQS)為0.050 mmol L時(shí),2 h染料去除率達(dá)到98%;當(dāng)c(AQS)為0.010、0.025、0.100 mmol L時(shí),2 h去除率分別為72.0%、84.4%、96.5%,但在5 h內(nèi)活性艷紅X-3B均已降解完全,空白樣2 h活性艷紅X-3B降解率僅為45%.研究表明,通過投加氧化還原介體可使偶氮染料生物脫色反應(yīng)速率提高一到幾個(gè)數(shù)量級(jí)[26-27];崔姍姍等[28]研究發(fā)現(xiàn),添加0.100 mmol L AQS后,偶氮染料生物脫色速率常數(shù)提高了約350%.由圖3(b)可見,添加0.050 mmol L AQS后,一級(jí)反應(yīng)速率常數(shù)(k1)由0.264 4(見表1)增至1.962 0,增大了7.42倍.氧化還原介體對(duì)電微生物降解偶氮染料強(qiáng)化作用十分明顯,在電輔助作用下,微生物與電極結(jié)合,不僅為染料降解提供了更多的電子和較低的電位,加入AQS后,又加快了電子傳遞,進(jìn)一步提高了染料的脫色速率,縮短了降解時(shí)間.

電子由微生物到偶氮染料的傳遞是厭氧生物脫色的關(guān)鍵因素.氧化還原介體的加入可加速這一電子傳遞過程,同時(shí)降低偶氮染料分子的空間位阻,加速偶氮染料脫色[29].氧化還原介體的濃度對(duì)偶氮染料厭氧生物脫色的加速存在飽和效應(yīng)[30-31],該研究也證實(shí)了這一點(diǎn):c(AQS)到達(dá)一定值后,繼續(xù)增大c(AQS)對(duì)偶氮染料脫色的促進(jìn)效果不再增加.

2.3.2 不同c(AQS)下反應(yīng)體系中電流的變化

由圖4可見,不添加AQS時(shí),電流在50 min內(nèi)就達(dá)到穩(wěn)定,穩(wěn)定值約為0.4 mA;而當(dāng) c(AQS)為0.010、0.025、0.050和0.100 mmol L時(shí),電流降到穩(wěn)定的時(shí)間分別約為100、120、150和180 min,電流穩(wěn)定值約為0.5 mA,c(AQS)越高,電流達(dá)到穩(wěn)定的時(shí)間越長.不添加AQS時(shí),電子從微生物到電極以及微生物到染料間的傳遞需要消耗很大的能量,電子移動(dòng)速率較慢;添加AQS后,AQS加快了遠(yuǎn)離電極的微生物和電極間的電子傳遞,促進(jìn)了偶氮染料氧化還原;通過不斷地被氧化還原[32-33],AQS不斷傳遞電子,電子移動(dòng)速率較快,電流下降較慢.當(dāng)c(AQS)達(dá)到0.100 mmol L時(shí),雖然電子移動(dòng)很快,降解率卻不再增加,這可能是高濃度AQS的毒性對(duì)微生物酶的活性產(chǎn)生了抑制作用[34]所致.

2.3.3 AQS強(qiáng)化電輔助微生物還原偶氮染料機(jī)理探究

在AQS強(qiáng)化電輔助微生物還原降解活性艷紅X-3B的過程中,AQS作為電子傳遞體,加快了電子在微生物與電極以及微生物與染料之間的傳遞,提高了活性艷紅X-3B的降解率.AQS強(qiáng)化電輔助微生物還原過程機(jī)理如圖5所示.

在不添加AQS的EAMS中,陽極獲得電子主要依靠附著在陽極表面的微生物氧化底物,電子從陽極經(jīng)導(dǎo)線傳遞到陰極,然后附著在陰極表面的微生物從陰極表面獲取電子,通過自身的反應(yīng)最終還原污染物.在整個(gè)電子傳遞過程中,電子主要是從陽極附近的微生物—陽極—陰極—陰極附近的陰極微生物—污染物的短程傳遞,而整個(gè)混合液中的具有電化學(xué)活性的微生物并沒有發(fā)揮有效的作用.這一過程大大限制了電子從遠(yuǎn)離陽極的微生物到陽極以及陰極—遠(yuǎn)離陰極微生物—污染物的多相界面的傳遞,從而限制了對(duì)污染物的快速降解.加入可溶性的電子傳遞體AQS,離電極較遠(yuǎn)的陽極微生物將氧化底物得到的電子傳遞至AQS,還原態(tài)的AQS將電子快速的傳至陽極表面.陰極電子除了傳遞給附近微生物,還可利用AQS快速地將電子傳遞至離電極較遠(yuǎn)微生物[35],使混合液中的微生物充分發(fā)揮作用,實(shí)現(xiàn)強(qiáng)化還原污染物.AQS的加入,實(shí)現(xiàn)了微生物-陽極兩相和陰極-微生物-污染物多相界面間的遠(yuǎn)程電子傳遞過程.加入AQS后,體系電流值提高(見圖4),也說明了AQS加快了電子在反應(yīng)體系中的傳遞,實(shí)現(xiàn)了電子在電極-混合液中微生物-染料之間遠(yuǎn)程傳遞過程,最終強(qiáng)化了電輔助微生物對(duì)偶氮染料活性艷紅X-3B的脫色.電子的遠(yuǎn)程傳遞使遠(yuǎn)離電極的微生物有了能與電極接觸的機(jī)會(huì)[36],為加快染料降解做出了貢獻(xiàn).

偶氮染料生物脫色依靠還原性輔酶對(duì)染料還原降解,由于還原性輔酶NADH具有較低的電位,電子由還原酶直接轉(zhuǎn)移到偶氮染料需要熱能太高,從而限制了電子的傳遞速率[22,37-38].添加AQS后,還原酶獲得的電子首先被介體捕捉,分子量較小的AQS既可以進(jìn)行胞外電子傳遞,也可以進(jìn)行跨膜電子傳遞.在降解過程中,AQS首先接受電子,然后還原態(tài)AQS快速把電子傳遞給染料,偶氮鍵斷裂,完成脫色;而還原態(tài)AQS則恢復(fù)到初始狀態(tài),進(jìn)行又一次電子傳遞,反復(fù)的傳遞電子提高電子的利用速率,從而提高了染料的降解效率[3].

3 結(jié)論

a)在初始ρ(活性艷紅X-3B)為30 mg L、電壓為0.4 V時(shí),連續(xù)反應(yīng)24 h后,EAMS(電輔助微生物體系)中活性艷紅X-3B幾乎完全降解,降解率達(dá)99.8%;而MS(微生物體系)和ECS(電化學(xué)體系)中活性艷紅X-3B的降解率分別僅為61.9%和27.1%.

b)在EAMS中加入AQS后,活性艷紅X-3B的降解率迅速提升.當(dāng)c(AQS)為0.050 mmol L時(shí),活性艷紅X-3B的降解最快,一級(jí)反應(yīng)速率常數(shù)為不添加AQS時(shí)的7.42倍.加入AQS后,系統(tǒng)電流提高,達(dá)到穩(wěn)定時(shí)的時(shí)間延長,原因是AQS作為電子傳遞介體加快了降解過程中電子的傳遞.

c)AQS強(qiáng)化電輔助微生物降解活性艷紅X-3B,首先電輔助為微生物提供了足夠的電子,AQS的加入不僅加快了電子從微生物到染料的傳遞,同時(shí)實(shí)現(xiàn)了微生物-陽極和陰極-微生物-染料之間的遠(yuǎn)程電子傳遞,使遠(yuǎn)離電極的微生物也能發(fā)揮作用快速還原染料,最終提高整個(gè)體系的活性艷紅X-3B降解速率.

[1] CAI Yingjie,LIN Lina,XIA Dongsheng,et al.Degradation of reactive brilliant Red X-3B dye by microwave electrodeless UV irradiation[J].Clean-Soil,Air,Water,2011,39(1):31-38.

[2] ANA M M,MARTIN D J,OMAR O D,et al.Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using,nickel electrodes in divided and undivided cells[J].Electrochimica Acta,2012,59:140-149.

[3] 康麗,郭建博,李洪奎,等.氧化還原介體催化強(qiáng)化偶氮染料脫色研究進(jìn)展[J].河北工業(yè)科技,2010,27(6):447-450.KANG Li,GUO Janbo,LI Hongkui,et al.Research advance of catalytic effect of redox mediator in azo dye decolorization process [J].Hebei Journal of Industrial Science and Technology,2010,27 (6):447-450.

[4] 劉漢湖,張雙圣,張雙全,等.污泥與煤共熱解制備吸附劑及其對(duì)活性艷紅X-3B的吸附性能[J].環(huán)境科學(xué)研究,2011,24 (6):704-710.LIU Hanhu,ZHANG Shuangsheng,ZHANG Shuangquan,et al.Adsorptive properties of an adsorbent to Reactive Brilliant Red X-3B prepared from sludge and coal by co-pyrolysis[J].Research of Environmental Sciences,2011,24(6):704-710.

[5] KABRA A,KHANDARE R,GOVINDWAR S.Development of a bioreactor forremediation of textile effluent and dye mixture:a plant-bacterial synergistic strategy[J].Water Research,2013,47: 1035-1048.

[6] 潘潔.高級(jí)氧化技術(shù)處理印染廢水的研究進(jìn)展[J].北方環(huán)境,2013,29(3):100-103.PAN Jie.Research progress and development of advanced oxidation technology applied in dye wastewater[J].North Environment,2013,29(3):100-103.

[7] QU Yuanyuan,CAO Xiangyu,MA Qiao,etal.Aerobic decolorization and degradation of Acid Red B by a newly isolated Pichia sp.TCL[J].Journal of Hazardous Materials,2012,223: 31-38.

[8] STOLZ A.Basic and applied aspects in the microbial degradation of azo dyes[J].Applied Microbiology and Biotechnology,2001,56(1 2):69-80.

[9] 曹占平,張景麗,張宏偉.電輔助微生物還原降解五氯酚的電子傳遞機(jī)理[J].化工學(xué)報(bào),2012,63(12):4042-4047.CAO Zhanping,ZHANG Jingli,ZHANG Hongwei.Electron transfer mechanism ofpentachlorophenolreduction in electro-assisted microbial system[J].Journal of Chemical Industry and Engineering,2012,63(12):4042-4047.

[10] WANG Youzhao,WANG Aijie,LIU Wenzong,et al.Accelerated azo dye removal by biocathode formation in single-chamber biocatalyzed electrolysis systems[J].Bioresource Technology,2013,146(10): 740-743.

[11] HUANG Liping,CHAI Xiaolei,QUAN Xie,et al.Reductive dechlorination and mineralization of pentachorophenol in biocathode microbial fuelcells[J].Bioresource Technology,2012,112: 167-174.

[12] SARATALE R G,SARATALE G D,SARATALE J S,et al.Ecofriendly degradation of sulfonated diazo dye C.I.Reactive Green 19A using Micrococcus glutamicus NCIM-2168[J].Bioresource Technology,2009,100(17):3897-3905.

[13] MER D S,PIM F,ANDRE BEZERRA D S.Impact of the redox mediator sodium anthraquinone-2,6-disulphonate(AQDS)on the reductive decolourisation of the azo dye Reactive Red 2(RR2)in one-and two-stage anaerobic systems[J].Bioresource Technology,2012,121(7):1-7.

[14] GUO Jianbo,LIU Huijuan,QUA Jiuhui,et al.The structure activity relationship of non-dissolved redox mediators during azo dye biodecolorization processes[J].Bioresource Technology,2012,112: 350-354.

[15] CARLOS A M H,ENRIC B.Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods:a general review[J].Applied Catalysis B:Environmental,2009,87 (3 4):105-145.

[16] BAETA,B E L,AQUINO S F,SILVA S Q,et al.Anaerobic degradation of azo dye Drimaren blue HFRL in UASB reactor in the presence of yeast extract a source of carbon and redox mediator [J].Biodegradation,2012,23(2):199-208.

[17] LI Lihua,ZHOU Jiti,WANG Jing,et al.Anaerobic biotransformation ofazo dye using polypyrrole anthraquinone disulphonate modified active carbon felt as a novel immobilized redox mediator[J].Separation and Purification Technology,2009,66(2):375-382.

[18] 郭延凱,馬志遠(yuǎn),郭建博,等.醌介體催化強(qiáng)化酸性紅B生物脫色[J].環(huán)境工程學(xué)報(bào),2013,7(5):1739-1743.GUO Yankai,MA Zhiyuan,GUO Jianbo,etal.Enhanced biodecolorization of Acid Red B catalyzed by quinone mediators [J].Chinese Journal of Environmental Engineering,2013,7(5): 1739-1743.

[19] LIU Guangfei,ZHOU Jiti,WANG Jing,et al.Decolorization of azo dyes by Shewanella oneidensis MR-1 in the presence of humic acids[J].Applied Microbiology and Biotechnology,2011,91(2): 417-424.

[20] WANG Jing,LI Lihua,ZHOU Jiti,et al.Enhanced biodecolorization of azo dyes by electropolymerization-immobilized redox mediator [J].Journal of Hazardous Materials,2009,168(2 3):1098-1104.

[21] YU Lei,ZHANG Xiaoyu,WANG Shi,et al.Microbial community structure associated with treatment of azo dye in a start-upanaerobic sequenced batch reactor[J].Journal of the Taiwan Institute of Chemical Engineers,2015,54:118-124.

[22] SUN Jian,LI Wanjun,LI Youming,et al.Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell[J].Bioresource Technology,2013,142(4):407-414.

[23] DOAN H D,WU Jianning,BOITHI E,et al.Treatment of wastewater using a combined biologicaland electrochemical technique[J].Journal of Chemical Technology and Biotechnology,2003,78(6):632-641.

[24] 廉雨,賴波,周岳溪,等.電芬頓氧化法處理酸性橙Ⅱ模擬廢水[J].環(huán)境科學(xué)研究,2012,25(3):328-332.LIAN Yu,LAI Bo,ZHOU Yuexi,et al.Treatment of acid orangeⅡsimulated wastewater by electro fenton oxidation[J].Research of Environmental Sciences,2012,25(3):328-332.

[25] LIU Shentan,SONG Hailiang,WEI Size,et al.Effect of direct electrical stimulation on decolorization and degradation of azo dye reactive brilliant red X-3B in biofilm-electrodereactors[J].Biochemical Engineering Journal,2015,93:294-302.

[26] SU Y,ZHANG Y,WANG J,et al.Biocalalyst effects of immobilizes anthraquinone of anaerobic reduction of azo dyes by the salt-tolerant bacteria[J].Bioresource Technology,2009,100(12):2982-2987.

[27] GUO Jianbo,KANG Li,YANG Jingliang,et al.Study on a novel non-dissolved redox mediator catalyzing biological denitrification technology[J].Bioresource Technology,2011,101(11):4238-4241.

[28] 崔姍姍,徐宏勇,周思辰,等.氧化還原介體對(duì)偶氮染料厭氧脫色的影響[J].哈爾濱理工大學(xué)學(xué)報(bào),2008,13(2):103-106.CUI Shanshan,XU Hongyong,ZHOU Sichen,et al.Effects of different redox mediators on the anaerobic reduction of azo dyes [J].Journal of Harbin University of Science&Technology,2008,13(2):103-106.

[29] SIMON A,POULICEK M,VELIMIROV B,et al.Oxygen-insensitive nitroreductases NfsA and NfsB of escherichia coli function under anaerobic conditions as lawsone-dependent azo reductases[J].Applied and Environmental Microbiology,2003,69(69):3448-3455.

[30] LIU Guangfei,ZHOU Jiti,WANG Jing,et al.Acceleration of azodye decolorization by using quinone reductase activity of azo reductase and quinone redox mediator[J].Bioresource Technology,2009,100 (11):2791-2795.

[31] PEARCE C I,CHRISTIE R,BOOTHMAN C,et al.Reactive azo dye reduction by Shewanella strain J18 143[J].Biotechnology Bioeng,2006,95:692-703.

[32] PEREIRA R A,PEREIRA M F R,ALVES M M,et al.Carbon based materials as novel redox mediators for dye wastewater biodegradation[J].Applied Catalysis B:Environmental,2014,144 (1):713-720.

[33] SANTOS A B D,CERVANTES F J,YAYA-BEAS R E,et al.Effect of redox mediator,AQDS,on the decolourisation of a reactive azo dye containing triazine group in a thermophilic anaerobic EGSB reactor[J].Enzyme&Microbial Technology,2003,33(7):942-951.

[34] WOLF M,KAPPLER A,JIANG Jie,et al.Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens[J].Environmental Science &Technology,2009,43(15):5679-5685.

[35] 馬金蓮,馬晨,湯佳,等.電子穿梭體介導(dǎo)的微生物胞外電子傳遞:機(jī)制及應(yīng)用[J].化學(xué)進(jìn)展,2015,27(12):1833-1840.MA Jinlian,MA Chen,TANG Jia,etal.Mechanismsand applications of electron shuttle-mediated extracellularelectron transfer[J].Progress in Chemistry,2015,27(12):1833-1840.

[36] 王有昭.生物電化學(xué)系統(tǒng)強(qiáng)化偶氮染料酸性黑10B脫色及作用機(jī)制[D].哈爾濱:哈爾濱工業(yè)大學(xué),2014.

[37] SANTOS A B D,CERVANTES F J,VAN LIER J B,et al.Review paperon currenttechnologiesfordecolourisation oftextile wastewaters: perspectives for anaerobic biotechnology[J].Bioresource Technology,2007,98(12):2369-2385.

[38] RABAEY K,VERSTRAETE W.Microbialfuelcells:novel biotechnology for energy generation[J].Trends in Biotechnology,2005,23(6):291-298.

Enhanced Decolorization of Azo Dye in Electro-Assisted Microbial System by Anthraquinone-2-Sulfonate(AQS)

ZHANG Minghui,CAO Zhanping*,LI Songsong
School of Environmental and Chemical Engineering,Tianjin Polytechnic University,Tianjin 300387,China

In order to improve the biodegradation efficiency of azo dye,electro-assist was introduced to the process of microbial reduction.The degradation rate of azo dye reactive brilliant red X-3B in an electro-assisted microbial system(EAMS)was studied compared with that in an electro-chemical system(ECS)and a microbial system(MS).The accelerating effects of redox mediator anthraquinone-2-sulfonate (AQS)on degradation of dyes were studied in EAMS.The results indicated that the degradation rate of azo dye in EAMS was 99.8% within 24 h,which was 10.8%higher than the sum of degradation in ECS(61.9%)and in MS(27.1%).The decolorization process of reactive brilliant red X-3B with time followed first-order kinetics in EAMS.Dye degradation was fastest when the concentration of AQS was 0.050 mmol L.The first-order kinetic constant was 1.962,which was 7.42 times that without AQS(0.2644 h-1).The current of the system rose after adding AQS,which demonstrated that AQS promoted the speed of electrons transferring in the degradation process.The long-range electron transfer processes of the multiphase interface between electrode,microorganism away from electrode and pollutants were implemented after adding AQS.The process made microorganism of the whole system work quickly,which strengthened the degradation of azo dyes.

electro-assisted microbial system;reactive brilliant red X-3B;reaction kinetics;anthraquinone-2-sulfonate;long-range electron transfer

X703.1

1001-6929(2017)03-0471-07

A

10.13198 j.issn.1001-6929.2017.01.69

張明慧,曹占平,李松松.蒽醌-2-磺酸鹽強(qiáng)化電輔助微生物體系對(duì)偶氮染料的脫色效果[J].環(huán)境科學(xué)研究,2017,30(3):471-477.

ZHANG Minghui,CAO Zhanping,LI Songsong.Enhanced decolorization of azo dye in electro-assisted microbial system by anthraquinone-2-sulfonate(AQS) [J].Research of Environmental Sciences,2017,30(3):471-477.

2016-07-19

2016-11-04

國家自然科學(xué)基金項(xiàng)目(51078265)

張明慧(1992-),女,河南濮陽人,2576227310@qq.com.

*責(zé)任作者,曹占平(1970-),男,河北石家莊人,副教授,博士,主要從事難生物降解污染物的處理研究,caozhanping2012@126.com

猜你喜歡
介體偶氮染料艷紅
利用正構(gòu)烷烴建立快速篩查禁用偶氮染料定性分析方法探究
黃麻無紡布漆酶/介體催化交聯(lián)改性研究
難忘的一天
馮艷紅作品
淺談漆酶-介體系統(tǒng)在染料降解中的應(yīng)用研究*
高校思想政治工作的子系統(tǒng)及其要素
高校思想政治工作的子系統(tǒng)及其要素
A Note on Stage Structure Predator-Prey Model with Prey Refuge
介體不同投加方式強(qiáng)化低溫污水生物反硝化脫氮
紡織品偶氮染料中致癌芳香胺檢測的研究進(jìn)展及存在問題