張惠忍,李法虎,呂 威
?
凍融狀態(tài)和初始含水率對(duì)土壤力學(xué)性能的影響
張惠忍1,2,李法虎1※,呂 威1
(1. 中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,北京,100083;2.北京市城市河湖管理處,北京,100089)
凍融狀態(tài)影響土壤的抗剪強(qiáng)度從而威脅季節(jié)性凍土地區(qū)的工程安全、邊坡穩(wěn)定以及土壤流失。通過(guò)直剪試驗(yàn)測(cè)定了不同凍融狀態(tài)和初始含水率對(duì)青藏地區(qū)(S1)和北京地區(qū)(S2)土體抗剪強(qiáng)度的影響。結(jié)果顯示,2種土在未凍和已融狀態(tài)下的抗剪強(qiáng)度相似,且均隨著土含水率的增加而減小,但S1土抗剪強(qiáng)度比S2土大7.5%~9.7%;在凍融狀態(tài)下,S1土抗剪強(qiáng)度隨著土含水率的增加而增大,而S2土則隨之減小。S1凍融土抗剪強(qiáng)度在低含水率(≤13.5%)時(shí)小于未凍土和已融土,而在高含水率(≥24.5%)時(shí)則反之;S2凍融土抗剪強(qiáng)度小于未凍土和已融土。在凍融狀態(tài)下2種測(cè)試土的內(nèi)摩擦角顯著小于未凍土和已融土,而黏聚力整體上則大于未凍土和已融土。與未凍土或已融土相比,2種土在凍融狀態(tài)下的強(qiáng)度相對(duì)較低,宜作為季節(jié)性凍土地區(qū)工程設(shè)計(jì)以及土壤流失防治的基本狀態(tài)。
土壤;土壤含水率;抗剪強(qiáng)度;凍融狀態(tài);青藏高原;土壤內(nèi)摩擦角;土壤黏聚力
中國(guó)遭受季節(jié)性凍融作用影響的土地面積約占國(guó)土陸地面積的98%,主要分布在東北和西南地區(qū)以及西部和北方地區(qū)[1]。這些地區(qū)的工程建設(shè)或土壤侵蝕研究必須考慮凍融作用對(duì)土力學(xué)性能的影響問(wèn)題[2-6]。季節(jié)性凍融土是一個(gè)復(fù)雜的四相體系,不僅含有固體(礦物顆粒和有機(jī)質(zhì))和氣體,而且還含有固態(tài)冰和液態(tài)水[7]。凍融土中的固態(tài)冰和液態(tài)水含量以及固態(tài)冰強(qiáng)度是影響土抗剪強(qiáng)度的重要因素[7-8]。
凍融作用和含水率影響土的抗剪強(qiáng)度從而威脅季節(jié)性凍土地區(qū)的工程安全、邊坡穩(wěn)定以及土壤流失。大量研究結(jié)果顯示,土的抗剪強(qiáng)度隨著土含水率的增加而降低[2,9-13]。土的內(nèi)摩擦角隨著土含水率的增加近似呈線性減小[13-16],而其黏聚力則隨之減小或呈先增大后減小之趨勢(shì)[11,13-16]。凍融作用可引起土團(tuán)聚體分裂以及土顆粒的重新組合[4,17-18],從而導(dǎo)致土從一個(gè)穩(wěn)定狀態(tài)轉(zhuǎn)向另一新的穩(wěn)定狀態(tài)[17]。凍融作用對(duì)土抗剪強(qiáng)度以及抗剪強(qiáng)度指標(biāo)的影響目前尚無(wú)定論,凍融導(dǎo)致土抗剪強(qiáng)度增大、基本不變甚至減小的結(jié)果均有報(bào)道[19-20]。Czurda和Hohmann的試驗(yàn)結(jié)果表明,凍結(jié)后黏土的摩阻力幾乎不變而黏聚力增大[17],王永忠等認(rèn)為凍結(jié)后土的內(nèi)摩擦角和黏聚力均隨土含水率的增加而減小[21]。Ferrick和Gatto的試驗(yàn)結(jié)果顯示,一次凍融循環(huán)對(duì)土強(qiáng)度無(wú)顯著影響但其侵蝕泥沙量卻明顯增大,初始條件特別是土含水率對(duì)試驗(yàn)結(jié)果有較大影響[19]。Formanek等認(rèn)為,一次凍融循環(huán)可降低飽和粉砂壤土黏聚強(qiáng)度的50%[22],而Guo和Shan認(rèn)為融化后土的內(nèi)摩擦角和黏聚力隨土含水率的變化規(guī)律與未凍土相似[23]。楊平和張婷的研究結(jié)果顯示凍融后土的內(nèi)摩擦角增大[24],董曉宏等認(rèn)為土的內(nèi)摩擦角變化不大而黏聚力降低[25-26],Wang等認(rèn)為內(nèi)摩擦角增大而黏聚力降低[5,21,27],而方麗莉等則認(rèn)為土的內(nèi)摩擦角和黏聚力均增大[28]。
凍融作用強(qiáng)度一般可分為強(qiáng)度、中度和輕度3個(gè)級(jí)別[1]。青藏高原和北京地區(qū)分別屬于強(qiáng)度凍融區(qū)和中度凍融區(qū),代表了中國(guó)遭受凍融作用的2個(gè)主要強(qiáng)度級(jí)別,且這2個(gè)地區(qū),或生態(tài)環(huán)境脆弱或人口密度高、生態(tài)環(huán)境壓力大,其凍融影響的研究具有重要的典型意義。凍土融化過(guò)程中的土力學(xué)性能處于一個(gè)非穩(wěn)定狀態(tài)的漸變過(guò)程[7,29],諸多因素包括土的含水率、融化程度(土體含冰量和冰強(qiáng)度)、土顆粒大小及組成以及成土環(huán)境等影響土抗剪強(qiáng)度[2,30-31],而它們的影響規(guī)律尚不清晰。雖然國(guó)內(nèi)外對(duì)凍土力學(xué)以及凍融循環(huán)對(duì)土力學(xué)性質(zhì)影響的研究較多,但由于凍融過(guò)程中土體含冰量的測(cè)定以及試驗(yàn)條件控制等因素的影響,土的抗剪強(qiáng)度以及抗剪強(qiáng)度指標(biāo)與含冰量之間關(guān)系的研究較為困難[29],有關(guān)凍融土力學(xué)性能的研究較少。因此,本文選取試驗(yàn)過(guò)程中較易控制的溫度指標(biāo)間接表示凍土融化程度以及凍融狀態(tài),以青藏高原和北京地區(qū)2種土作為研究對(duì)象,研究不同凍融狀態(tài)和初始水分含量對(duì)土的抗剪強(qiáng)度以及抗剪強(qiáng)度指標(biāo)的影響,為深入理解初始條件對(duì)季節(jié)性凍融地區(qū)的工程安全、邊坡穩(wěn)定以及土壤侵蝕強(qiáng)度的變化規(guī)律奠定基礎(chǔ)。
1.1 土樣采集
試驗(yàn)土分別采集于青海省西寧市S101公路拉雞山段的天然草地(36°21.8¢N、101°26.8¢E,海拔高度3 682 m)和北京市昌平區(qū)沙河鎮(zhèn)的農(nóng)用土地(40°9¢N、116°15¢E,海拔高度45 m)。土樣采集時(shí),先清除掉取樣區(qū)域的地表植被和0~5 cm的表層土壤,然后采集5~30 cm處土體。西寧市位于青藏高原東北部,屬于大陸高原半干旱氣候區(qū),年均降水量和氣溫分別為380 mm和7.6℃。采樣區(qū)土壤為高山草甸土,有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)為4.1%,黏粒(< 0.002 mm)、粉粒(>0.002~0.05 mm)和砂粒(>0.05~2.0 mm)質(zhì)量分?jǐn)?shù)分別為8.3%、39.7%和52.0%,屬于砂壤土;昌平區(qū)位于北京西北部,屬于暖溫帶大陸性季風(fēng)氣候區(qū),年均降水量和氣溫分別為550.3 mm和11.8 ℃。該地區(qū)土壤為黃土母質(zhì)的潮土,有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)約為2.0%,黏粒、粉粒和砂粒質(zhì)量分?jǐn)?shù)分別為5.2%、58.8%和36.0%,其質(zhì)地屬于粉壤土。為敘述方便,青藏地區(qū)和北京地區(qū)2種測(cè)試土分別簡(jiǎn)稱為S1土和S2土。
1.2 試件制備
將采集的土樣風(fēng)干、過(guò)2 mm篩子后備用。取一定質(zhì)量的風(fēng)干土樣平鋪于搪瓷盤內(nèi)。根據(jù)風(fēng)干土含水率、試驗(yàn)設(shè)計(jì)的含水率以及土樣質(zhì)量,計(jì)算制備試驗(yàn)試件所需的加水量。將稱量后的水用小型噴霧器均勻噴灑在土樣上,充分?jǐn)嚢韬笱b入密封容器內(nèi)濕潤(rùn)一晝夜。根據(jù)環(huán)刀容積和設(shè)計(jì)干密度,計(jì)算所需濕土質(zhì)量,制備剪切試件待用。土試件直徑6.18 cm、高2.0 cm。2種土試件的設(shè)計(jì)干密度均為1.3 g/cm3,孔隙度為50.1%。土樣準(zhǔn)備以及剪切試件制備過(guò)程按照土工試驗(yàn)規(guī)程(SL237-1999)的要求執(zhí)行[32]。S1土試件的初始含水率(質(zhì)量)分別為8.0%、13.5%、19.0%、24.5%和30.0%,S2土試件的初始含水率(質(zhì)量)分別為12.0%、18.0%、25.3%和31.0%。S1土和S2土的飽和含水率分別為38.3%和37.0%、田間持水量分別為32.4%和30.1%。
將制備好的土試件,進(jìn)行3種不同的凍融處理:1)未經(jīng)凍融過(guò)程的試件(簡(jiǎn)稱未凍土,對(duì)照);2)在-18 ℃恒溫條件下凍結(jié)24 h的試件(凍融土);3)在-18 ℃恒溫條件下凍結(jié)24 h、然后在27 ℃恒溫條件下融解12 h的試件(已融土)。為防止凍融過(guò)程中的水分蒸發(fā),在土試件外面套裝塑料保鮮袋密封。
1.3 剪切試驗(yàn)
將不同凍融狀態(tài)下的試件,采用南京土壤儀器廠生產(chǎn)的ZJ電動(dòng)應(yīng)變控制式直剪儀在實(shí)驗(yàn)室進(jìn)行剪切試驗(yàn)。S1土剪切試驗(yàn)時(shí)的實(shí)驗(yàn)室平均溫度為10 ℃,S2土的平均溫度為27 ℃。每個(gè)試驗(yàn)處理3次重復(fù)。
在直剪試驗(yàn)前,先將環(huán)刀上、下部土體用削土刀刮平,并用潔凈干布將環(huán)刀外部擦拭干凈后稱質(zhì)量,然后按照土工試驗(yàn)規(guī)程進(jìn)行直剪試驗(yàn)[32]。直剪試驗(yàn)采用快剪方法[7]??紤]到直剪試驗(yàn)時(shí)相對(duì)較高的實(shí)驗(yàn)室溫度與第二 種試驗(yàn)處理的低溫狀況這一特殊性,剪切速度均設(shè)定為2.4 mm/min(12 r/min),法向應(yīng)力采用50、100、150和200 kPa四級(jí)。試件所受的剪應(yīng)力按式(1)計(jì)算:
式中為剪應(yīng)力,kPa;為量力環(huán)測(cè)表的讀數(shù),0.01 mm;為量力環(huán)校正系數(shù)。試驗(yàn)所用直剪儀的量力環(huán)校正系數(shù)為1.794 N/0.01 mm;0為試件受力面積,cm2。
在剪切試驗(yàn)過(guò)程中,如果量力環(huán)讀數(shù)達(dá)到穩(wěn)定或出現(xiàn)峰值后顯著減小,則在剪切位移量為4 mm時(shí)停止剪切試驗(yàn);如果量力環(huán)的讀數(shù)一直增大,則在剪切位移量為 6 mm時(shí)停止試驗(yàn)。根據(jù)式(1)計(jì)算的剪應(yīng)力和由位移計(jì)測(cè)定的位移量,以剪應(yīng)力為縱坐標(biāo)、剪切位移量為橫坐標(biāo),繪制剪應(yīng)力與剪切位移量關(guān)系曲線圖。選取剪應(yīng)力與剪切位移量關(guān)系曲線上的峰值點(diǎn)或穩(wěn)定值所對(duì)應(yīng)的剪應(yīng)力作為土的抗剪強(qiáng)度;若無(wú)明顯峰值點(diǎn)或穩(wěn)定值時(shí),則取剪切位移量為4 mm時(shí)所對(duì)應(yīng)的剪應(yīng)力為土的抗剪強(qiáng)度。
假設(shè)凍融土的抗剪強(qiáng)度由土體本身強(qiáng)度與固體冰強(qiáng)度2部分組成且均滿足摩爾-庫(kù)倫(Mohr-Coulomb)強(qiáng)度準(zhǔn)則,則根據(jù)不同法向應(yīng)力條件下測(cè)定的土抗剪強(qiáng)度,即可按照庫(kù)侖定理總應(yīng)力法計(jì)算非飽和凍融土的抗剪強(qiáng)度指標(biāo)和[7,13-14,32-33]:
式中τ為土的抗剪強(qiáng)度,kPa;為法向應(yīng)力,kPa;為土的黏聚力,kPa;為土的內(nèi)摩擦角,(o)。
2.1 土含水率對(duì)抗剪強(qiáng)度的影響
3種凍融狀態(tài)下S1土和S2土的抗剪強(qiáng)度隨土含水率的變化見(jiàn)圖1。在未凍和已融狀態(tài)下,S1土和S2土的抗剪強(qiáng)度均隨著初始土含水率的增加而減?。▓D1a~圖1b和圖1d~圖1e),這與許多研究結(jié)果一致[2,9-12,34-35]。在試驗(yàn)條件下,未凍和已融狀態(tài)下的S1土抗剪強(qiáng)度平均比S2土大7.5%~9.7%。
在凍融狀態(tài)下,S1土在法向應(yīng)力≤100 kPa時(shí)的抗剪強(qiáng)度隨著土含水率的增加而增大;而當(dāng)法向應(yīng)力≥150 kPa時(shí)則隨著土含水率的增加先減小而后增大,其值在土含水率為19.0%時(shí)最?。▓D1c)。S2凍融土的抗剪強(qiáng)度則隨著初始土含水率的增加而減?。▓D1f)。
水分是土顆粒之間相互位移的潤(rùn)滑劑。當(dāng)土中的水分增多時(shí),土顆粒在外力作用下更容易發(fā)生相對(duì)移動(dòng),因而未凍土和已融土的抗剪強(qiáng)度隨著初始土含水率的增加而逐漸減?。▓D1a~圖1b和圖1d~圖1e)。S1土與S2土均屬壤土,但前者比后者含有更多的粗顆粒(砂粒)以及更高的黏粒和有機(jī)質(zhì)含量,這可能是導(dǎo)致在相同含水率條件下S1未凍土和已融土抗剪強(qiáng)度稍微大于S2土的原因(圖1a~圖1b和圖1d~圖1e)[35-38]。
在凍融狀態(tài)下,土體中既有固體冰也有液態(tài)水。凍融土的抗剪強(qiáng)度主要由土體強(qiáng)度和固體冰強(qiáng)度以及兩者間的相互作用而決定[7,17,39]。當(dāng)法向應(yīng)力較?。ā?00 kPa)時(shí),土顆粒之間的摩阻力較低,此時(shí)冰強(qiáng)度對(duì)凍融土的抗剪強(qiáng)度影響相對(duì)較大,因此初始土含水率越高,凍融土中的固體冰越多,從而導(dǎo)致其抗剪強(qiáng)度越大(圖1c)。而當(dāng)法向應(yīng)力較大(≥150 kPa)時(shí),土密度增大,摩阻力對(duì)土抗剪強(qiáng)度的影響增強(qiáng)[17],因此土含水率越高其潤(rùn)滑作用越大,從而導(dǎo)致土體抗剪強(qiáng)度在初始土含水率較低時(shí)隨含水率的增大而降低;但當(dāng)初始含水率增加到一定程度(19.0%)后,固體含冰量對(duì)抗剪強(qiáng)度的影響程度大于液態(tài)水的潤(rùn)滑作用,導(dǎo)致此時(shí)土體抗剪強(qiáng)度隨含水率的增加而增大(圖1c)。而S2土抗剪強(qiáng)度隨初始土含水率的變化趨勢(shì)明顯不同于S1土(圖1c和圖1f),這可能與它們?cè)谥奔粼囼?yàn)過(guò)程中的融化程度有關(guān)。雖然整個(gè)直剪快剪試驗(yàn)過(guò)程所需的時(shí)間很短(<2~3 min),但由于標(biāo)準(zhǔn)剪切盒體積(60 cm3)較小,直剪試驗(yàn)時(shí)的實(shí)驗(yàn)室溫度會(huì)對(duì)凍結(jié)土的融化程度有一定影響。S1土剪切試驗(yàn)時(shí)的實(shí)驗(yàn)室溫度為10 ℃,而S2土剪切試驗(yàn)時(shí)的實(shí)驗(yàn)室溫度為27 ℃,因此S2土試件中會(huì)有更多的固體冰融化為液態(tài)水,同時(shí)S2土試件中殘留的固體冰的強(qiáng)度相對(duì)也更低些[8,39]。這些因素可能導(dǎo)致S2凍融土抗剪強(qiáng)度隨初始土含水率的變化規(guī)律更接近于已融土(圖1e和圖1f)。
圖1 不同凍融狀態(tài)下青海砂壤土(S1)和北京粉壤土(S2)抗剪強(qiáng)度隨初始含水率的變化
2.2 凍融狀態(tài)對(duì)抗剪強(qiáng)度的影響
凍融狀態(tài)對(duì)S1和S2土抗剪強(qiáng)度的影響分別見(jiàn)圖2和圖3。在不同凍融狀態(tài)下,S1土和S2土的抗剪強(qiáng)度均隨法向應(yīng)力的增加而近似線性增大(圖2和圖3),這表明在測(cè)試的法向應(yīng)力范圍內(nèi)以總應(yīng)力法表示的摩爾-庫(kù)倫破壞準(zhǔn)則適用于非飽和凍融土[40]。
圖2 不同初始含水率(w)條件下凍融狀態(tài)對(duì)青海砂壤土(S1)抗剪強(qiáng)度的影響
圖3 不同初始含水率(w)條件下凍融狀態(tài)對(duì)北京粉壤土(S2)抗剪強(qiáng)度的影響
在不同初始含水率條件下,未凍土與已融土的抗剪強(qiáng)度大小相似(圖2和圖3)。S1未凍土與已融土抗剪強(qiáng)度之間的相對(duì)差異為0.8%~8.7%(平均3.4%)、S2未凍土與已融土抗剪強(qiáng)度之間的差異為0.1%~14.5%(平均3.7%),未凍土與已融土抗剪強(qiáng)度之間均呈顯著線性正相關(guān)(S1土,;S2土,)。這些數(shù)據(jù)表明,一次凍融循環(huán)對(duì)本研究所測(cè)試的2種土的抗剪強(qiáng)度的影響程度相對(duì)較小,與Ferrick和Gatto的結(jié)論一致[19]。
在凍融狀態(tài)下,S1土抗剪強(qiáng)度在初始含水率≤13.5%時(shí)小于未凍土和已融土,而當(dāng)土含水率≥24.5%時(shí)其強(qiáng)度大于未凍土和已融土(圖2)。在土含水率為19.0%時(shí),S1凍融土的抗剪強(qiáng)度在低法向應(yīng)力(≤100 kPa)條件下大于未凍土和已融土的抗剪強(qiáng)度,而在高法向應(yīng)力時(shí)則小于未凍土和已融土(圖2c)。這一結(jié)果表明,凍融土的抗剪強(qiáng)度既與初始土含水率有關(guān),同時(shí)也受法向應(yīng)力大小的影響。除在低法向應(yīng)力(50 kPa)時(shí)與未凍土和已融土的抗剪強(qiáng)度大小相似外,S2凍融土抗剪強(qiáng)度在測(cè)試的初始土含水率和法向應(yīng)力范圍內(nèi)均明顯小于未凍土和已融土,且其差異程度隨著法向應(yīng)力或初始土含水率的增加而增大(圖3)。例如,在法向應(yīng)力為200 kPa條件下,初始土含水率為12.0%時(shí)的S2凍融土抗剪強(qiáng)度約為未凍土或已融土的85.4%,而在含水率為31.0%時(shí)此值則為70.0%。
凍融過(guò)程會(huì)引起土團(tuán)聚體分裂從而導(dǎo)致土結(jié)構(gòu)凍脹破壞以及土顆粒位移,一些已增大的孔隙無(wú)法恢復(fù)其原有狀況,從而導(dǎo)致融化土體喪失部分原有的強(qiáng)度[2,5,17]。此外,凍融循環(huán)也可引起土的內(nèi)摩擦角和黏聚力發(fā)生變化[5]。但單獨(dú)一次凍融循環(huán)過(guò)程對(duì)土抗剪強(qiáng)度的影響較小特別是對(duì)非黏性土[17,19,27],從而導(dǎo)致已融土抗剪強(qiáng)度相似于未凍土(圖2和圖3)。
在凍融狀態(tài)下,土中固體冰的存在會(huì)增大冰與土之間的膠結(jié)作用,從而提高土的強(qiáng)度[17,39],因此在初始含水率較高(≥24.5%)時(shí)S1凍融土的抗剪強(qiáng)度顯著大于非凍土和已融土(圖2);但當(dāng)初始土含水率較低(≤13.5%)時(shí),少量固體冰的存在可能比液態(tài)水更有助于土顆粒的移位,從而導(dǎo)致凍融土的抗剪強(qiáng)度小于非凍土和已融土(圖2)。S2凍融土抗剪強(qiáng)度與未凍土或已融土抗剪強(qiáng)度的關(guān)系(圖3)不同于S1土(圖2),這可能與試驗(yàn)條 件有關(guān)。直剪試驗(yàn)時(shí)的實(shí)驗(yàn)室溫度影響土抗剪強(qiáng)度[7]。在剪切試驗(yàn)時(shí),S2土相對(duì)較高的溫度(27 ℃)導(dǎo)致了剪切試件中更多的固體冰融化,這不僅顯著降低了冰晶體之間的鍵結(jié)力和固體冰的強(qiáng)度[17,39],同時(shí)固體冰融化后的水分來(lái)不及排出試件從而降低了冰與土之間的摩阻力[11,31],這2方面的原因?qū)е铝薙2凍融土抗剪強(qiáng)度小于未凍土和已融土(圖3)。固體冰在壓力作用下也會(huì)產(chǎn)生輕微的弱化現(xiàn)象而導(dǎo)致部分抗剪強(qiáng)度的損失[7,17],這可能是凍融土抗剪強(qiáng)度隨法向應(yīng)力增加的速率(抗剪強(qiáng)度~法向應(yīng)力曲線的斜率)普遍小于非凍土和已融土的原因(圖2和圖3)。
2.3 土含水率和凍融狀態(tài)對(duì)抗剪強(qiáng)度指標(biāo)的影響
土抗剪強(qiáng)度并不是一個(gè)表征土力學(xué)性能的獨(dú)立參數(shù),它是法向應(yīng)力的函數(shù)。為揭示凍融狀態(tài)和土含水率對(duì)土力學(xué)性能的內(nèi)在影響機(jī)理,我們分別計(jì)算確定了S1土和S2土在不同試驗(yàn)處理時(shí)的抗剪強(qiáng)度指標(biāo)–內(nèi)摩擦角和黏聚力(圖4)。S1土和S2土在未凍和已融狀態(tài)下的內(nèi)摩擦角值均隨著初始土含水率的增加而減小且大小相似(圖4a和圖4b)。凍融土的值隨著土含水率也基本呈減小之趨勢(shì),但其值顯著小于未凍土和已融土(圖4a和圖4b),這可能意味著凍融土的冰水混合物極大地降低了土顆粒之間的咬合作用及其相互位移時(shí)的摩阻力[40]。S1未凍土和已融土的值介于10.6°~12.0°、凍融土的值介于7.2°~10.1°,這與S2土的9.7°~11.4°和6.2°~9.5°的取值范圍基本相似。
圖4 不同凍融狀態(tài)下青海砂壤土(S1)和北京粉壤土(S2)內(nèi)摩擦角f和黏聚力c隨初始含水率的變化
在未凍和已融狀態(tài)下,S1土和S2土的黏聚力均隨著土含水率的增加而減小并逐漸趨近于0(圖4c和圖4d),且S1已融土和S2已融土的值均小于未凍土(圖4c和圖4d),這顯示了凍融循環(huán)對(duì)土結(jié)構(gòu)的破壞作用[17]。在未凍和已融狀態(tài)下S1土的值稍微大于S2土(圖4c和 圖4d),這可能與前者相對(duì)較高的有機(jī)質(zhì)以及黏粒含量有關(guān)[2,35,38]。
S1凍融土的值隨著初始土含水率的增加而增大(圖4c)。當(dāng)初始土含水率由8.0%增大到30.0%時(shí),其值增大了5.3倍;而S2凍融土的值隨著初始土含水率的增加呈先增大后減小之趨勢(shì),該值在含水率為18.0%時(shí)最大(圖4d)。S2凍融土的值明顯小于S1凍融土且其隨土含水率的變化規(guī)律明顯不同于S1凍融土,這可能與剪切過(guò)程中實(shí)驗(yàn)室溫度不同而導(dǎo)致土試件中固體冰的不同融化程度有關(guān)。由于冰晶體與土顆粒之間的膠結(jié)作用[17,40],在凍融狀態(tài)下S1土和S2土的值整體上均大于已融土和未凍土(圖4c和圖4d)。
土的抗剪強(qiáng)度可以近似看作由土體的黏聚強(qiáng)度和摩擦強(qiáng)度2部分組成(式2)[34]。黏聚強(qiáng)度反映了土體內(nèi)部的各種物理-化學(xué)膠結(jié)作用力,黏粒含量、有機(jī)質(zhì)含量以及土含水率等對(duì)其有較大影響;摩擦強(qiáng)度反映了土顆粒之間的摩擦力和咬合力,它主要與土團(tuán)聚體穩(wěn)定性、土顆粒形狀以及土含水率等有關(guān)[2]。固體冰含量及其強(qiáng)度以及液態(tài)水含量均對(duì)凍融土的抗剪強(qiáng)度有較大影響[40],它們對(duì)黏聚強(qiáng)度和摩擦強(qiáng)度的不同影響作用及其影響程度共同決定了凍融土的抗剪強(qiáng)度。凍融土中部分固體冰的存在避免了土顆粒之間的直接接觸,降低了土顆粒形狀、渾圓度、粒徑以及顆粒級(jí)配等的影響[17],從而導(dǎo)致其內(nèi)摩擦角小于未凍土和已融土(圖4a和圖4b)。但凍融土中固體冰的存在卻顯著增大了土的膠結(jié)力特別是當(dāng)初始土含水率較高時(shí)[17,39],從而導(dǎo)致凍融土黏聚強(qiáng)度明顯高于未凍土和已融土(圖4c和圖4d)。
1)S1土(青藏地區(qū))和S2土(北京地區(qū))的抗剪強(qiáng)度均隨法向應(yīng)力的增加而近似線性增大。在測(cè)試的法向應(yīng)力范圍內(nèi),非飽和凍融土的抗剪強(qiáng)度包線可以采用摩爾-庫(kù)倫總應(yīng)力破壞準(zhǔn)則表示。
2)在未凍和已融狀態(tài)下,S1土和S2土的抗剪強(qiáng)度均隨著初始土含水率的增加而減小,S1土抗剪強(qiáng)度比S2土大7.5%~9.7%。與未凍土相比,一次凍融循環(huán)對(duì)2種土抗剪強(qiáng)度的影響程度平均為3.4%~3.7%。在凍融狀態(tài)下,S1土抗剪強(qiáng)度在低法向應(yīng)力時(shí)隨著土含水率的增加而增大,而在高法向應(yīng)力時(shí)則先減小后增大;S2凍融土則隨之減小。S1凍融土在初始土含水率≤13.5%時(shí)的抗剪強(qiáng)度小于未凍土和已融土,而當(dāng)土含水率≥24.5%時(shí)其值則大于未凍土和已融土;S2凍融土抗剪強(qiáng)度在不同土含水率條件下基本上均小于未凍土和已融土。
3)在未凍、已融和凍融狀態(tài)下,S1土和S2土的內(nèi)摩擦角均隨著初始土含水率的增加而減小。2種土在未凍和已融狀態(tài)下的內(nèi)摩擦角值大小基本相似,但凍融狀態(tài)下的值顯著小于未凍土和已融土。
4)在未凍和已融狀態(tài)下,S1土和S2土的黏聚力均隨著初始土含水率的增加而減小,且已融土的值小于未凍土。在凍融狀態(tài)下,S1土的值隨著初始土含水率的增加而增大,而S2土的值則隨之呈先增大后減小之趨勢(shì)。不論S1土還是S2土,在凍融土狀態(tài)下其值基本上均大于未凍土和已融土。
凍融狀態(tài)對(duì)土抗剪強(qiáng)度以及抗剪強(qiáng)度指標(biāo)的影響顯著。在凍融過(guò)程中土力學(xué)性能隨土體內(nèi)固體冰與液體水含量的變化規(guī)律值得進(jìn)一步深入研究。
[1] 張瑞芳,王瑄,范昊明,等.我國(guó)凍融區(qū)劃分與分區(qū)侵蝕特征研究[J].中國(guó)水土保持科學(xué),2009,7(2):24-28. Zhang Ruifang, Wang Xuan, Fan Haoming, et al. Study on the regionalization of freeze-thaw zones in China and the erosion characteristics[J]. Science of Soil and Water Conservation, 2009, 7(2): 24-28. (in Chinese with English abstract)
[2] Bryan R B. Soil erodibility and processes of water erosion on hillslope[J]. Geomorphology, 2000, 32(3/4): 385-415.
[3] Brunori F, Penzo M C, Torri D. Soil shear strength: Its measurement and soil detachability[J]. Catena, 1989, 16(1): 59-71.
[4] Edwards L M. The effects of soil freeze-thaw on soil aggregate breakdown and concomitant sediment flow in Prince Edward Island: A review[J]. Can J Soil Sci, 2013, 93(4): 459-472.
[5] Wang D Y, Ma W, Niu Y H, et al. Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay[J]. Cold Regions Science and Technology, 2007, 48(1): 34-43.
[6] Léonard J, Richard G. Estimation of runoff critical shear stress for soil erosion from soil shear strength[J]. Catena, 2004, 57(3): 233-249.
[7] 崔托維奇H A.凍土力學(xué)[M].北京:科學(xué)出版社,1985.
[8] Liu J K, Peng L Y. Experimental study on the unconfined compression of a thawing soil[J]. Cold Regions Science and Technology, 2009, 58(1/2): 92-96.
[9] Osman N, Barakbah S S. Parameters to predict slope stability-soil water and root profiles[J]. Ecological Engineering, 2006, 28(1): 90-95.
[10] Osman N, Barakbah S S. The effect of plant succession on slope stability[J]. Ecological Engineering, 2011, 37(2): 139-147.
[11] Yang Y H, Zhang J G, Zhang J H, et al.Impacts of soil moisture content and vegetation on shear strength of unsaturated soil[J]. Wuhan University Journal of Nature Science, 2005, 10(4): 682-688.
[12] 黃琨,萬(wàn)軍偉,陳剛,等.非飽和土的抗剪強(qiáng)度與含水率關(guān)系的試驗(yàn)研究[J].巖土力學(xué),2012,33(9):2600-2604. Huang Kun, Wan Junwei, Chen Gang, et al. Testing study of relationship between water content and shear strength of unsaturated soils[J]. Rock and Soil Mechanics, 2012, 33(9): 2600-2604. (in Chinese with English abstract)
[13] da Silva R B, de Souza Dias Junior M, Iori P. Prediction of soil shear strength in agricultural and natural environments of the Brazilian Cerrado[J]. Pesq Agropec Bras, 2015, 50(1): 82-91.
[14] 陳紅星,李法虎,郝仕玲,等.土壤含水率與土壤堿度對(duì)土壤抗剪強(qiáng)度的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2007,23(2):21-25. Chen Hongxing, Li Fahu, Hao Shiling, et al. Effects of soil water content and soil sodicity on soil shearing strength[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(2): 21-25. (in Chinese with English abstract)
[15] Cokca E, Erol O, Armangil F. Effect of compaction moisture content on the shear strength of an unsaturated clay[J]. Geotechnical and Geological Engineering, 2004, 22(2): 285-297.
[16] 倪九派,袁天澤,高明,等.土壤干密度和含水率對(duì)2種紫色土抗剪強(qiáng)度的影響[J]. 水土保持學(xué)報(bào),2012,26(3):72-77.
Ni Jiupai, Yuan Tianze, Gao Ming, et al. Effect of soil water content and dry density on soil shearing strength for calcareous purple soil and neutral purple soil[J]. Journal of Soil and Water conservation, 2012, 26(3): 72-77. (in Chinese with English abstract)
[17] Czurda K A, Hohmann M. Freezing effect on shear strength of clayey soils[J]. Applied Clay Science, 1997, 12(1/2): 165-187.
[18] Kv?rn? S H, ?ygarden L. The influence of freeze–thaw cycles and soil moisture on aggregate stability of three soils in Norway[J]. Catena, 2006, 67(3): 175-182.
[19] Ferrick M G, Gatto L W. Quantifying the effect of a freeze–thaw cycle on soil erosion: laboratory experiments[J]. Earth Surf Process Landforms, 2005, 30(10): 1305-1326.
[20] 齊吉琳,程國(guó)棟,Vermeer P A.凍融作用對(duì)土工程性質(zhì)影響的研究現(xiàn)狀[J].地球科學(xué)進(jìn)展,2005,20(8):887-894. Qi Jilin, Cheng Guodong, Vermeer P A. State-of-the-art of influence of freeze-thaw on engineering properties of soils[J]. Advances in Earth Science, 2005, 20(8): 887-894. (in Chinese with English abstract)
[21] 王永忠,劉雄軍,艾傳井,等.南方短時(shí)凍土抗剪強(qiáng)度指標(biāo)、值的試驗(yàn)研究[J].武漢大學(xué)學(xué)報(bào):工學(xué)版,2010,43(2):198-202. Wang Yongzhong, Liu Xiongjun, Ai Chuanjing, et al. Experimental investigation on shear strength parametersandfor a temporarily frozen soil in South China[J]. Engineering Journal of Wuhan University, 2010, 43(2): 198-202. (in Chinese with English abstract)
[22] Formanek G E, McCool D K, Papendick R I.Freeze-thaw and consolidation effects on strength of a wet silt loam[J]. Transactions of the ASAE, 1984, 27(6): 1749-1752.
[23] Guo Y, Shan W. Monitoring and experiment on the effect of freeze-thaw on soil cutting slope stability[J]. Procedia Environmental Sciences, 2011, 10(Part B): 1115-1121.
[24] 楊平,張婷.人工凍融土物理力學(xué)性能研究[J].冰川凍土,2002,24(5):665-667. Yang Ping, Zhang Ting. The physical and the mechanical properties of original and frozen-thawed soil[J]. Journal of Glaciology and Geocryology, 2002, 24(5): 665-667. (in Chinese with English abstract)
[25]董曉宏,張愛(ài)軍,連江波,等.反復(fù)凍融下黃土抗剪強(qiáng)度劣化的試驗(yàn)研究[J].冰川凍土,2010,32(4):767-772. Dong Xiaohong, Zhang Aijun, Lian Jiangbo, et al. Study of shear strength deterioration of loess under repeated freezing-thawing cycles[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 767-772. (in Chinese with English abstract)
[26] 蘇謙,唐第甲,劉深.青藏斜坡黏土凍融循環(huán)物理力學(xué)性質(zhì)試驗(yàn)[J].巖石力學(xué)與工程學(xué)報(bào),2008,27(增刊1):2990-2994. Su Qian, Tang Dijia, Liu Shen. Test on physico-mechanical properties of Qinghai-Tibet slope clay under freezing- thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Supp.1): 2990-2994. (in Chinese with English abstract)
[27] Hohmann-Porebska M. Microfabric effects in frozen clays in relation to geotechnical parameters[J]. Applied Clay Science, 2002, 21(1/2): 77-87.
[28] 方麗莉,齊吉琳,馬巍.凍融作用對(duì)土結(jié)構(gòu)性的影響及其導(dǎo)致的強(qiáng)度變化[J].冰川凍土,2012,34(2):435-440. Fang Lili, Qi Jilin, Ma Wei. Freeze-thaw induced changes in soil structure and its relationship with variations in strength[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 435-440. (in Chinese with English abstract)
[29] Tsarapov M N. Use of pore pressure to determine strength characteristics of thawing soils[J]. Soil Mechanics and Foundation Engineering, 2007, 44(4): 132-136.
[30] Simonsen E, Isacsson U. Thaw weaking of pavement structure in cold regions[J]. Cold Regions Science and Technology, 1999, 29(2): 135-151.
[31] Harris C, Davies M C R, Coutard J P. Laboratory simulation of periglacial solifluction: Significance of porewater pressures, moisture contents and undrained shear strengths during soil thawing[J]. Permafrost and Periglacial Processes, 1995, 6(4): 293-311.
[32] 中華人民共和國(guó)水利部.土工試驗(yàn)規(guī)程(SL237-1999)
[S].北京:中國(guó)水利水電出版社,1999.
[33] Gao L X, Li S Q, Chai S X, et al. A model for estimation the shear strength of the frozen soil based on the theory of composite materials[J]. Journal of Convergence Information Technology, 2012, 7(22): 128-137.
[34] Sojka R E, Busscher W J, Lehrsch G A. In situ strength, bulk density, and water content relationships of a Durinodic Xeric Haplocalcid soil[J]. Soil Science, 2001, 166(8): 520-529.
[35] Davies P. Influence of organic matter content, moisture status and time after reworking on soil shear strength[J]. Journal of Soil Science, 1985, 36(2): 299-306.
[36] Li Y R. Effects of particle shape and size distribution on the shear strength behavior of composite soils[J]. Bull Eng Geol Environ, 2013, 72(3/4): 371-381.
[37] Asare S N, Rudra R P, Dickinson W T, et al. Frequency of freeze-thaw cycles, bulk density and saturation effects on soil surface shear and aggregate stability in resisting water erosion[J]. Canadian Agricultural Engineering, 1997, 39(4): 273-279.
[38] Froese J C, Cruse R M, Ghaffarzadeh M. Erosion mechanics of soils with an impermeable subsurface layer[J]. Soil Science Society of America Journal, 1999, 63(6): 1836-1841.
[39] Wang D Y, Ma W, Wen Z. Study on strength of artificially frozen soils in deep alluvium[J]. Tunnelling and Underground Space Technology, 2008, 23(4): 381-388.
[40] Arenson L U, Springman S M.Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0 ℃[J]. Can Geotech J, 2005, 42(2): 431-442.
Effects of freeze-thaw status and initial water content on soil mechanical properties
Zhang Huiren1,2, Li Fahu1※, Lü Wei1
(1.100083,; 2.100089,)
The freeze-thaw conditions affect soil shear strength and hence threaten engineering safety, soil slope stability, and soil loss in seasonal frozen-soil region. Shear strength was tested for 2 kinds of soils (sandy loam in Qinghai-Tibet Plateau (S1) and silt loam in Beijing region (S2)) under 3 freeze-thaw statuses (unfrozen soil, frozen soil, and thawing soil after frozen) and different initial water contents (8.0%-31.0% in mass fraction) by direct shear apparatus in the laboratory. The unfrozen soil specimen did not suffer freeze-thaw processing in the laboratory, the thawing soil specimen was sheared after frozen at -18℃ for 24 h, and the thawed soil specimen was done after frozen at -18℃ for 24 h and then thawed at 27℃ for 12 h. The shear velocity was set to 2.4 mm/min. Experimental results showed that the shear strength of the 2 types of soils increased approximately linearly with the increasing of normal stress, and the shear strength envelope of unsaturated thawing soil could be expressed by total stress Mohr-Coulomb failure criteria under tested normal stress, freeze-thaw status and soil water content conditions. The shear strengths of unfrozen and thawed soils were similar to each other and their difference was averagely 3.4%-3.7% after one freeze-thaw cycle, and they decreased with the increased initial soil water content for the 2 types of soils. The shear strength of soil sample S1 was 7.5%-9.7% greater than that of S2 under the unfrozen and thawed statuses. Under the thawing status, the shear strength of S1 increased with the initial soil water content but that of S2 decreased with it. The shear strength of the thawing S1 soil was smaller than that for the unfrozen and thawed soils at low soil water content (13.5%) but it was on the contrary when the water content was higher; the shear strength of the thawing S2 soil was smaller than that for the unfrozen and thawed soils under all the soil water contents. Under the unfrozen, thawed, and thawing statuses, the internal friction angle for both types of soils declined with the increase of soil water content. The internal friction angles under the unfrozen and thawed statues were similar to each other but they were significantly greater than that under the thawing status. The soil cohesion under the unfrozen or thawed statuses decreased with the increased soil water content and that under the thawed status was smaller than that under the unfrozen status for both types of soils. Under the thawing status, the soil cohesion of S1 increased significantly with the increased initial soil water content but that of S2 first increased and then decreased with it. The soil cohesion of both types of soils under the thawing status generally was significantly greater than that under the unfrozen and thawed statuses. The variation ranges of the internal friction angle for the 2 types of soils were similar to each other but their soil cohesion was significantly different under experimental conditions. The soil at the thawing status had a relatively low shear strength compared with that at the unfrozen or thawed statuses, and hence the thawing status should be adopted as the basic status for engineering design or soil loss prevention in seasonal frozen-soil regions.
soils; soil moisture; shear strength; freeze-thaw status; Qinghai-Tibet Plateau; soil internal friction angle; soil cohesion
10.11975/j.issn.1002-6819.2017.03.017
S152.9; P642.14; P642.3
A
1002-6819(2017)-03-0128-06
2016-05-12
2016-12-19
國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(41230746)
張惠忍,女,碩士,主要從事水土保持研究。北京市海淀區(qū)北洼路又一村甲1號(hào),100089。E-mail:airen1223@sina.com。
李法虎,男,教授,博士,博士生導(dǎo)師,主要從事農(nóng)業(yè)水土工程與水土環(huán)境的研究。北京市海淀區(qū)清華東路17號(hào)中國(guó)農(nóng)業(yè)大學(xué)295信箱,100083。E-mail:lifahu@cau.edu.cn
張惠忍,李法虎,呂 威. 凍融狀態(tài)和初始含水率對(duì)土壤力學(xué)性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):128-133. doi:10.11975/j.issn.1002-6819.2017.03.017 http://www.tcsae.org
Zhang Huiren, Li Fahu, Lü Wei.Effects of freeze-thaw status and initial water content on soil mechanical properties[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 128-133. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.03.017 http://www.tcsae.org